FANVIANYVIANYVIANYIANYI/ANYI/AN

; QﬂQﬂQﬂQﬂQﬂQﬂQ /
NYZANYZANYZANYZANYZANYZANTZAN
ZAN\YZANYZANVZANVZANYZANYZA\Y7
NYZANYZANYZANYZANYZANYZANTZAN

FJANVIANVIANVIANVIANVIANVIANYS

Prof Ken Bi
LEVERAGING RDMA | Frofessor Ken Birman
CS441 416 Lecture 27

A BRIEF HISTORY OF RDMA

. it all started here at Cornelll

In 1995, Werner Vogels (now CTO at Amazon) was working as
a Cornell researcher and offered to help Thorsten Von Eicken
(now a tech entrepreneur) and two students develop a new

programming model for computer networking

CORNELL CS4414/5416 - FALL 2025 2

CONTEXT: EVOLUTION OF NETWORK
INTERFACE CARDS

When the U-Net project started, computer networks were based
on standard ethernet and accessed through network adaptors
that handled data transfers

Some of these NICs began to offer programmability: it was
possible to replace the firmware on the card with new firmware
coded in C. The firmware controlled DMA transfers between the
network and host memory, just like for a disk controller

CORNELL CS4414/5416 - FALL 2025 3

KEY IDEA ONE: GET THE —
KERNEL OFF THE PATH %

The insight the U-Net team started with
was that for many tasks, the kernel was

more of a bottleneck than a helper

Figure 1: The traditional networking
places the kernel in the path of all communication. The
U-Net architecture (b} only uses a simple multiplex-
ing/demultiplexing agent—that can be implemented in

Legend:

@ User

application

E Operating
system

kernel

[E Network
interface

NI with
NIl message

multiplex

architecture (a)

hardware—in the data communication path and uses the

kernel only for set-up.

They argued that for very high speed
networking of the kind used in HPC
supercomputers, we should bypass the kernel

CORNELL CS4414/5416 - FALL 2025

4

recy free o send
queue queue communication segment queue

KEY IDEA TWO: MOVE \-gaagral:
DATA USING DMA E

U-Net endpoint

]
)|

[

|

b) application 1 application2 application 3

At very high speeds, interrupts seem EEin]| el] [B

slow too, so they proposed “queue pairs” i \§ /
e
The U-Net NIC would monitor for send U-Net NI/

requests on the send queue. Seeing a
send, U-Net ran a simple protocol to match against a pending
receive request on the target machine, then would do the

transfer and move the two completed requests to a free queue

CORNELL CS4414/5416 - FALL 2025 5

KEY IDEA THREE: MODIFIED USER CODE

Rather than using the POSIX TCP connection model, U-Net favored a
direct send/receive model.

The remote user would poll, watching for an incoming RPC request,
then respond instantly

This required changing user code to build messages in memory
regions “pinned and mapped” where the RDMA NIC could see the
data (and where Linux wouldn’t page it out)

CORNELL CS4414/5416 - FALL 2025 6

IT WORKED!

U-Net was about 100x faster than standard TCP for simple RPC
requests and ran on standard PC servers. It was far faster than
the world’s fastest parallel supercomputers.

A consortium was formed to standardize the concept and this led
to modern Infiniband networks and RDMA

CORNELL CS4414/5416 - FALL 2025 7

INFINIBAND VERSUS ETHERNET

Both run on the same optical networking layer.

But as we learned in Lecture 16, TCP has an approach in which
senders send faster and faster until loss occurs: linear speedup
but multiplicative backoff, yielding the famous saw-tooth

Infiniband uses a “credit” concept

CORNELL CS4414/5416 - FALL 2025 8

INFINIBAND CREDIT

It works hop by hop. Consider one switch, router or NIC sending
and another receiving.

The receiver advertises available memory capacity to the
sender: “credit” to send.

The sender waits for credit and won’t ever overrun the receiver

CORNELL CS4414/5416 - FALL 2025 9

ROUTED INFINIBAND?

It works the identical way, with credit hop by hop.

ldeally, devices don’t need to store in memory before they
forward... but they always have that option!

This turns out to drive loss rates to near zero in modern
datacenter settings, similar to a NUMA computer memory bus.

CORNELL CS4414/5416 - FALL 2025 10

RDMA IS A NEW U-NET BUT LAYERED OVER
INFINIBAND

It uses the same credit-based scheme at the Infiniband layer

The end-to-end abstraction uses “bound queue-pairs”, just like
U-Net: one for requests and the other for completions

Requests can be send, receive, and also some fancy ones:
remote read and remote write

CORNELL CS4414/5416 - FALL 2025 11

REMOTE READ AND WRITE

These require pre-granted permission and setup

But the idea is that one machine, call it R, grants permission for a
second machine, call it S, to directly access its memory.

Now S can create some object in its own memory and read or
write it directly into the memory of R.

CORNELL CS4414/5416 - FALL 2025 12

COMPARISON?

Send and Receive are a lot like TCP operations, but using the U
Net model. The receive buffer needs to be large enough for the
Send operation.

Remote read and write don’t require any posted operation by
the receiver (R in our example). S literally is writing directly into
R’s memory, or reading from it (the operation is like memcpy but
over a network).

CORNELL CS4414/5416 - FALL 2025 13

RDMA ON ETHERNET: RoCE

There was a lot of interest in using RDMA in cloud computing, but
not in moving to Infiniband: too different/disruptive.

So a “converged” model was proposed, supporting both RDMA
and Infiniband at the same time, sharing the ethernet

This is called RoCE. Pronounced “rocky”.

CORNELL CS4414/5416 - FALL 2025 14

TODAY?

All cloud computing systems offer HPC clusters
with Infiniband “wiring” as well as standard

Ethernet, and RDMA support on Infiniband.

Internally many cloud operators have RoCE deployments, but for
their own use only. They limit it for use by infrastructure tools

CORNELL CS4414/5416 - FALL 2025 15

N\YFZANYIANYIANTVI ANV I ANTY I ANY S AN

% Qﬂ%ﬂ%ﬂ%ﬂ%ﬂ%ﬂ% /
NYZANYZANYZANYZANYZANYZANTZAN
ZAN\YZANYZANVZANYZANYZANYZA\Y/
NYZANYZANYZANYZANYZANYZANTZAN

FJANVIANVIANVIANVIANVIANVIANYS

MICROSOFT’S FARM KEY-VALUE STORE | °°°°°°°°° ssor Ken Birmar

IDEA MAP FOR THIS PART OF OUR LECTURE

Modern applications often work with big data

By definition, big data means “you can't fit it on your machine”
Reminder: Shared storage servers accessed over a network.

RDMA hardware accelerator for
TCP and remote memory access.
How FaRM leveraged this.

Concept: Transactions. Applying

Reminder: Key Value Storage]
this concept to a key-value store.

CORNELL CS4414 - SPRING 2023 17

Ken spent a sabbatical at MSRC F

\
MICROSOFT’S GOALS WITH FARM

In the Microsoft “bing” search engine, they had a need to store
various kinds of objects that represent common searches and
results. Most of these objects are small, but they have so many of
them that in total, it represents a big-data use case.

The Microsoft research FaRM project (based in Cambridge
England) was asked to help solve this problem.

CORNELL CS4414 - SPRING 2023 18

BIG OBJECTS

When they do have big objects, they break them into smaller chunks
(very small, in fact: 60 bytes plus a 4-byte header)

Farm is used via a put/get API, not with general transactions. But
because of this issue of objects being large, we do have a form of
transaction: one done to update a chunked object.

WEe’'ll see how they do this

CORNELL CS4414 - SPRING 2023 19

A FEW OBSERVATIONS THEY MADE

The felt they should try to leverage new kinds of hardware.

» The specific option that interested them was remote direct
memory access hetworking, also called RDMA.

> RDMA makes the whole data center into a large NUMA system.
All the memory on every machine can potentially be shared over
the RDMA network and accessed from any other machine.

RDMA had never been used outside of supercomputers

CORNELL CS4414 - SPRING 2023 20

Server - Initiator Server - Target

THEIR APPROACH

Purchase a new hardware unit from Mellanox that runs RDMA on
RoCE cables. Microsoft didn’t want to use Infiniband.

Create a pool of FaRM servers, which would hold the storage.
Stands for “Fast Remote Memory”

The servers don’t really do very much work. The clients do the
real work using RDMA for reading and writing.

CORNELL €S4414 - SPRING 2023
2

... BUT COMPLICATIONS ENSUED

A “rocky’’ road!

The hardware didn’t work very well, at first.

» Getting RDMA to work on normal ethernet was unexpectedly hard.
RoCE is pronounced “rocky”, perhaps for this reason.

» Solving the problem involved major hardware upgrades to the
datacenter routers and switches, which now have to carry both RDMA
and normal TCP/IP packets.

It cost millions of dollars, but now Microsoft has RDMA everywhere.

CORNELL CS4414 - SPRING 2023 22

IT IS EASY TO LOSE THE BENEFIT OF RDMA

One idea was to build a protocol like GRPC over RDMA.

When Microsoft’s FARM people tried this, it added too much
overhead. RDMA lost its advantage.

To leverage RDMA, we want server S to say to its client, A, “you may
read and write directly in my memory”. Then A can just put data
info S’s memory, or read it out.

CORNELL (54414 - SPRING 2023 23

DUE TO INTEREST FROM USERS, THEY ADDED
A KEY-VALUE “DISTRIBUTED HASH TABLE”

The Bing developers requested a put/get model, which seems like
a match with RDMA except for the object sizes involved.

They didn’t request transactions on multiple distinct objects
(multiple keys), but they do need put and get atomicity.

CORNELL CS4414 - SPRING 2023 24

THEY DECIDED TO IMPLEMENT A FAST
SHARED MEMORY

The plan was to use the direct-memory access form of RDMA.

> Write(addr,object) by A on server S would just reach into the
memory of S and write the object there.

> Read(addr) would reach out and fetch the object.

A FaRM address is a pair: 32-bits to identify the server, and 32-
bits giving the offset to a cche line inside its memory (64 bytes).

CORNELL CS4414 - SPRING 2023 25

HOW DO WE KNOW WHERE THESE CHUNKS LIVE?

Farm has a meta-data service, like the one in Ceph.

The object key lets us look up the list of servers and cache lines
where the small chunks are hosted, including the address of each

in that server’s memory.

To select this address Farm uses a form of O(1) search for free
cache line cells in a bit vector of “in use” bits, one for each

server.

CORNELL CS4414 - SPRING 2023 26

50...

When an object is first written, the creator process asks the
metadata service to find space for it. Then the first write and
subsequent reads will use this list of servers and cache lines.

If an object changes size, the previous meta data would have to
be deleted and then a new meta data record can be created.
(Probably FaRM then notifies any process that knew the old
mapping in case it cached it for reuse.)

CORNELL CS4414 - SPRING 2023 27

... THEY ALSO HANDLE COMPLEX OBJECTS

This approach can handle complicated objects, like a JSON file
with many fields.

We simply serialize the object as a byte vector.

So in this lecture, we focus on chunks, but arbitrary KV objects
can be hosted in FaRM.

CORNELL CS4414 - SPRING 2023 28

A PROBLEM ARISES!

What if two processes on different machines access the same
data? One might be updating it when the other is reading it.

Or they might both try to update the object at the same time.

These issues are rare, but we can’t risk buggy behavior. FaRM
needs a form of critical section.

CORNELL CS4414 - SPRING 2023 29

... MORE PROBLEMS

They also will turn out to have some (infrequent) cases where A
and B end up writing to the same locations

They want to avoid “A smashes B” scenarios if the objects are in
fact not the same

CORNELL CS4414 - SPRING 2023 30

LOCKING OR MONITORS?

In a C++ process with multiple threads, we use mutex locks and
monitors for cases like these.

But in FaRM the processes are on different machines.

Distributed locking is just too expensive. They do support it, but
decided to avoid needing to use it.

CORNELL CS4414 - SPRING 2023 31

DOWN TO BASICS: BING DOES NEED ATOMICITY

We learned about C++ atomics. Atomicity can be defined for a set
of updates, too:

> We need them to occur in an all or nothing manner. [ordering]

> If two threads try to update the same thing, one should run
before the other (and finish) before the other can run. [isolation]

» Data shouldn’t be lost if something crashes. [durability]

CORNELL (54414 - SPRING 2023 32

CONCEPT: A TRANSACTIONAL WRITE

We say that an operation is an atomic transaction if it combines a
series of reads and updates into a single indivisible action.

The transaction has multiple steps (the individual reads and writes, or
get and puts). Software creates an illusion that they occur all at once.

Readers always see the system as if no updates were underway.
Updates seem to occur one by one.

CORNELL CS4414 - SPRING 2023 33

FARM TRANSACTIONS

They decided to support two kinds of transactions

1. An atomic read that will read a series of key-value pairs all
as a single atomic operation.

2. An atomic update that will replace a series of key-value
pairs with a new set of key-value pairs.

CORNELL CS4414 - SPRING 2023 34

FARM VARIANT

Whereas a normal KV system needs to find its data in each
server each time, and requires software help for this, FARM can
short circuit that.

Once an object is placed, it remembers the location of each of
its chunk, so it can just read or write chunks directly.

35
CORNELL CS4414 - SPRING 2023

FARM VARIANT

Chunk
goes here

Whesaasanarmall 2ach
ser S 1RM can
shor

On

its

Chunk’) of
goes here

FaRM on my machine

CORNELL (54414 - SPRING 2023

COMPLICATING FACTORS THEY CONSIDERED

Lots of processes running concurrently that share the FaORM

Distributed locking is complex and slow, so they are only using it
for transactions that need strong atomicity.

They wanted to optimize FaRM for their expected workload

CORNELL CS4414 - SPRING 2023 37

HOW THEY SOLVED THIS

Microsoft came up with a way to write large objects without
needing locks.

They also found a hashed data structure that has very limited
needs for locking.

CORNELL (54414 - SPRING 2023 38

FIRST, THE TRANSACTION MODEL

Let’s first deal with the “many updates done as an atomic
transaction” aspect.

Then we will worry about how multiple machines can safely
write into a server concurrently without messing things up.

CORNELL CS4414 - SPRING 2023 39

THE TRANSACTIONAL WRITE IDEA

Suppose that some object requires k updates. FaRM breaks the
data into chunks of size 60 bytes, adds a 4-byte “version id” to each
update, in a hidden field (a “header”), obtaining 64-byte records.

version update, version update, version update,

64 bytes 64 bytes...

In FaRM the version number is a hash of who did the write and the
transaction id. The end user will never see this number.

CORNELL CS4414 - SPRING 2023 40

THE TRANSACTION WRITE IDEA, CONTINUED

The basic algorithm FaRM uses is this:

To write X, A first tags each update with a version number
Now it writes all its updates.

Then A goes back to check that the version numbers at the
end are the same as the version numbers it wrote

Same if some process reads the data

CORNELL CS4414 - SPRING 2023 41

A TRANSACTIONAL WRITE

A does 4 updates with version numbers Time —

A

ST
(A1 23,update,) ‘ (A123,update,)
S2

(A:123,update,) (A:123,update,)

CORNELL (54414 - SPRING 2023 42

| A TRANSACTIONAL WRITE: NORMAL CASE

A writes 4 updates with version numbers A rechecks version numbers: Success! lime =

AN S
NN

(A:123 Updqteo) (A:123 upda’re3)

(A:123,update,)(A:123,update,)

CORNELL (54414 - SPRING 2023 43

| A TRANSACTIONAL WRITE: CONFLICT CASE

A writes 4 updates with version numbers Version validation fails: B:97 Time —

AN/

‘ (A:123,update;)
A: 123 up da're

A-123updeate,} (A:123,update,)

(B:97,update,) CORNELL (54414 - SPRING 2023 44

BASIC RULE

If the version numbers all match, the object is intact.

If the version numbers don’t match, something disrupted A’s read
or write, and it must retry the same request.

CORNELL CS4414 - SPRING 2023 45

WHY COULD THEY FAIL TO MATCH?

If A and B write at the same time, they use different version
numbers. There are three possible cases:

1. A writes first, then B. Version numbers match but are the
ones B wrote.

2. B writes first, then A. Same, but now we see A’s versions.

3. They overlapped, leaving some unmatched version numbers.

CORNELL CS4414 - SPRING 2023 46

IF AORB IS “SURPRISED” BY THE RESULT

Pick a random small number, delay by this amount of time.

They will pause by different amounts: A “random backoff”.
Perhaps, A doesn’t pause at all, but B waits 2us

FaRM should rarely see conflict. When a conflict does occur, A
retries instantly. B pauses, then later will wake up and do its write.

CORNELL (54414 - SPRING 2023 47

WHY ISN'T LOCKING NEEDED?

FaRM does not require any locks for reads or writes provided
that conflicts occur rarely.

This is because the validation step will usually succeed, and the
backoff step will rarely even need to run.

But there are a few objects where conflicts are more common.

CORNELL CS4414 - SPRING 2023 48

LOCKING

For heavily contended-for objects, or for cases where an
overwrite should not be allowed, they implemented per-key
locking using a new RDMA test-and-set feature.

These “lock objects” allow Bing to get true mutual exclusion if
genuinely needed, but Bing developers were urged to use them
very rarely — they harm performance otherwise.

CORNELL CS4414 - SPRING 2023 49

HOW A UPDATES SOME RECORD IN $

A prepares the 64-byte object.
Now A figures out which server to talk to: a first hashing step.

And then A figures out which array element to access: a second
hash and modulus operation, modulo the size of the table in S.
A uses RDMA to read or write directly into this memory region.

CORNELL CS4414 - SPRING 2023 50

WHAT IF A AND B “COLLIDE” AT THIS STEP?

For a single 64-byte record, RDMA itself handles atomicity.

Either A will “win” and go first, and B will run second, or vice
versa. The hardware does it and FaRM has no need for any
kind of special logic.

If the update is part of a multi-write transaction, the transaction
logic we saw on slides 32-25 will resolve any conflicts.

CORNELL (54414 - SPRING 2023 51

HASH COLLISIONS

Another puzzle is this.

Suppose that A and B are accessing S using different keys. The
objects are different. No conflict has arisen here.

Yet those keys could hash to the identical slot in memory. This is
called a hash collision. We don’t want the objects to overwrite
one-another: we need a way to keep both!

CORNELL CS4414 - SPRING 2023 52

HOPSCOTCH HASHING

Hopscotch hashing is done by the metadata service when FaRM initially
places an object, after it knows which storage servers will hold the chunks of
a particular (key,update) pair.

FaRM hashes to find the slot an item should go into, but first reads the slot to
see if it is full. It asks: are we updating a value or inserting some other key?

Replacement can occur in place. To insert a different key,FaRM scans the
region “around” the slot. The new item goes into the closest empty slot.

CORNELL CS4414 - SPRING 2023 53

HOW TO DO A READ OR WRITE?

Once FaRM decides where the chunks will live, it doesn’t have to
repeat the hopscotch search again.

By keeping that information in the metadata service, any user of
that object can find the chunks.

This is really exactly like Ceph and its way of striping data over
the storage server layer.

CORNELL CS4414 - SPRING 2023 54

OUTCOME?

Now A and B can treat the pool of storage servers as a NUMA
memory unit. In fact keys are like memory addresses.

S helps with RDMA setup, but then A and B can read/write
concurrently without help from 3.

The algorithm is lock-free except for high-contention objects.
Those use the mutex locks.

CORNELL CS4414 - SPRING 2023 55

FARM PERFORMANCE:

FaRM Uni: FaRM with 120M (k,v)

pairs, accessed uniformly at random.

FaRM YCSB: Items accessed according
to the YCSB benchmark popularity pattern.

TCP: FaRM running over a hand-tuned
TCP-based protocol, similar to GRPC

TCP 1ms: FaRM on TCP with a Tms
response time guarantee

LOOKUP RATE

LrFarm Uni 4O Farm YC5B A TCP < TCP 1ms
160
140
120

[
=
=

&0
60
40
20

Lookups / s

SErYEers

https:/ /www.usenix.org /system /files /conference /nsdi14 /nsdil 4-paper-dragojevic.pdf CORNELL (54414 - SPRING 2023 56

FARM PERFORMANCE: DELAY TO DO LOOKUP

FaRM Uni: FaRM with 120M (k,v) OFarm Uni -O-Farm YCSB & TCP -0-TCP 1ms
pairs, accessed uniformly at random. 10000 e T — —_—r E— A
FaRM YCSB: Items accessed according E o P T S A S G
to the YCSB benchmark popularity pattern. i 100

s OGO g
TCP: FaRM running over a hand-tuned 310
TCP-based protocol, similar to GRPC

' 2345 i 12 16 20

TCP Tms: FaRM on TCP with a 1ms Servers

response time guarantee

CORNELL CS4414 - SPRING 2023 57

FARM PERFORMANCE: TRANSACTIONAL READ

S TCP m=50 O TCP m=100

FaRM Uni: FaRM with 120M (k,v)

pairs, accessed uniformly at random.

FaRM YCSB: Items accessed according
to the YCSB benchmark popularity pattern.

TCP: FaRM running over a hand-tuned
TCP-based protocol, similar to GRPC

TCP 1ms: FaRM on TCP with a Tms
response time guarantee

150

(=
—
=

Lookups / Jis
L
=

Figure 13: Key-value store: multi-get scalability

CORNELL CS4414 - SPRING 2023 58

BACKUP

Bing also needed some form of backup.

Obijects can be lost, rarely, but for some special objects Bing
wants the data to be there after a server crashes, then restarts.

For these cases, Microsoft decided to build an ultra fast write-
ahead log. Speed matters because it could slow down updates.

CORNELL CS4414 - SPRING 2023 59

30 XPoint™ Technology:
nnovative, High-Density Design

3-D XPOINT MEMORY

Normal memory will be lost in the event of a crash. Replication only
helps if the backup doesn’t crash, too. Some Bing uses need more.

The FaRM project decided to experiment with a new form of
memory called 3-D XPoint, based on phase-change memory
hardware (a novel layered semiconductor technology)

The idea was that anything in the FORM memory would survive
crashes and just be “in memory” on restart!

CORNELL CS4414 - SPRING 2023 60

3D XPoint™ Technology:
An Innovative, High-Density Design

Cross Point Structure . Stackable
Ferpendicular wires connect SUBmicrosoopic : These thin layers of memory can be
colurmns. An inddual memory csll can be Slacked b Puriher oS dersiny.
addressed by selecting its top and bottom wire -

Selector
. wirereas DRAM reguines. a rarsisio
Non-Volatile at aach memory cell—making it big
10 XPoint™ Technology is . ard expeniave—ibe amourt of
rion-wolatle—stikch means youw data viiage sent to each 30 XPsnt™

HOEs't PO Away when your pawer goes Technology selector enables @
B T F | o ' 2
i 5 T
away—making it a greal chaice Tor storags. memcry Cell 10 be wiitten 1o or reacd
waill ol rECLing a bransiston

High Endurance
Uniioe other storage memory technologies, 30 XPodnt™ ; Mem ory Ce “

lechnolopy s not significantty impactad by tha numiber i Fach memory cell can store & single
af write Cycles it can endure, making it more duraible. it o daka.

CORNELL (54414 - SPRING 2023 61

... NO LUCK

3-D XPoint took years longer than expected to reach the market.

Sample units were much slower than expected when used as memory,
although they were impressive as disks. (Slow DMA transfer rates)

Even today, this technology can’t just be used like normal memory!

CORNELL CS4414 - SPRING 2023 62

FALLBACK: WRITE-BEFORE LOG ON SOME
FORM OF DISK

FaRM was forced to use a fallback: storage drives based on a fast
form of flash memory (similar to a USB)

The FaRM servers watch for updated portions of the key-value
store and log them to the server in a continuous stream.

CORNELL CS4414 - SPRING 2023 63

FALLBACK: WRITE-BEFORE LOGGING

For sensitive data that cannot be lost, FORM has a way to pause
the writer to wait until the log is written to disk.

Called “write-before logging”: First log the update, then finalize
it and allow readers to see the data.

This way, a writer can be sure the data won’t be lost.

CORNELL (54414 - SPRING 2023 64

IT WAS TOO SLOW!

< himblestorage

250TB for only $500,000...

NAND storage speeds are surprisingly variable: some
operations are fast, some slow.

Microsoft realized that write-ahead logging would emerge as o
bottleneck if they didn’t find a solution to this.

CORNELL CS4414 - SPRING 2023 65

THEY ADDED TWO OPTIONS

Some Bing uses only need high availability, not persistence. For
these, they replicated FaRM.

Data is still held purely in memory, but now there is a copy in an
active replica server: two copies of each item. If that machine
doesn’t depend on the same hardware in any way, it shouldn’t

crash even if the primary copy goes down.

CORNELL CS4414 - SPRING 2023 66

BATTERY-BACKED CACHE FOR FLASH DRIVES

A second option was to use a NAND storage unit that has a battery-
backed RAM cache in front of the flash-memory storage.

A DMA write first goes into the battery-backed memory: a very fast
transfer. Now the data is “safe”.

The write to flash memory occurs soon after, but no need to pause
unless the RAM memory cache fills up. Even if power is lost, the
battery-backup will allow the device to finish the writes.

CORNELL CS4414 - SPRING 2023 67

THIS IDEA IS OPTIMIZED FOR LOAD BURSTS

With a steady rate of persisted writes, the solution would saturate
when the DRAM buffer fills up and would be as slow as the flash
memory.

But FORM workloads are bursts and writes that need logging are
rare. So there is time to persist the write ahead records in the
pauses between requests to the unit.

We end up with fault tolerance but RDMA memory speeds!

CORNELL CS4414 - SPRING 2023 68

BING REALLY USES FARM. COPILOT WILL BE
USING IT TOO (OR ALREADY IS).

Not every “academic research” project has impact on big
corporate products like Bing. FaRM is unusually impactful.

But normal Azure users can’t access FORM (yet) and RDMA is
used only by special services like FARM — not you and me!

CORNELL CS4414 - SPRING 2023 69

NOTICE THE SIMILARITY TO C++ IDEASIN A
SINGLE COMPUTER!

Many of these same concepts are relevant to C++ with threads.

In fact, this is deliberate. The FORM team members are C++
developers and wanted FaRM to feel natural.

People always prefer the same ideas in new settings... not new
ideas, unless there is no choice!

CORNELL CS4414 - SPRING 2023 70

SUMMARY

Modern applications often run into big-data uses

Microsoft created FORM as an RDMA-enabled shared memory. Later
it evolved for Bing: the developers preferred a key-value model.

The extreme efficiency of FORM comes from the mapping to RDMA
hardware, and inspired Derecho, which we heard about in lecture 14.
But getting the full benefit of this cutting-edge hardware was hard!

CORNELL CS4414 - SPRING 2023 Al

	Leveraging RDMA
	A brief history of RDMA
	Context: Evolution of network interface cards
	Key idea one: Get the �kernel off the path
	Key idea two: Move�data using DMA
	Key idea three: Modified user code
	It worked!
	Infiniband versus Ethernet
	Infiniband Credit
	Routed Infiniband?
	RDMA is a new U-Net but layered over Infiniband
	Remote read and write
	Comparison?
	RDMA on Ethernet: RoCE
	Today?
	Microsoft’s FaRM Key-Value Store
	Idea Map For This part of our lecture
	Microsoft’s Goals with FaRM
	Big objects
	A few observations they made
	Their Approach
	… but complications ensued
	It is easy to lose the benefit of RDMA
	Due to interest from users, they added a key-value “distributed hash table”
	They decided to implement a Fast shared memory
	How do we know where these chunks live?
	So…
	… They also handle complex objects
	A problem arises!
	… more problems
	Locking or monitors?
	Down to basics: Bing does need Atomicity
	Concept: A transactional write
	FaRM Transactions
	FarM variant
	FarM variant
	Complicating factors they considered
	How they solved this
	First, the transaction model
	The transactional write idea
	The transaction write idea, continued
	A transactional write
	A transactional write: Normal Case
	A transactional write: Conflict case
	Basic rule
	Why could they fail to match?
	If A or B is “surprised” by the result
	Why isn’t locking needed?
	Locking
	How A updates some record in S
	What if A and B “collide” at this step?
	Hash collisions
	Hopscotch hashing
	How to do a read or write?
	Outcome?
	FaRM Performance: Lookup rate
	FaRM Performance: Delay to do lookup
	FaRM Performance: Transactional read
	Backup
	3-D Xpoint memory
	Slide Number 61
	… no luck
	Fallback: Write-before log on some form of disk
	Fallback: Write-before logging
	It was too slow!
	They added two options
	Battery-backed Cache for Flash Drives
	This idea is optimized for load bursts
	Bing really uses FaRM. Copilot will be using it too (or already is).
	Notice the similarity to C++ ideas in a single computer!
	Summary

