
Apache Spark and RDDs Ken Birman (with help)
CS4414/5416 Lecture 23

CS4414/5416 - Lecture 20 1

Start with a close look at the MapReduce pattern:
Sharded data set

CS4414/5416 - Lecture 20 2

Leader Worker threads

Shard A Shard B Shard C

MapReduce: Map step

The leader maps some task over the n workers. This can be done in any way that
makes sense for the application.

Each worker performs its share of the work by applying the requested function to the
data in its shard.

When finished, each worker will have a list of new (key,value) pairs as its share of
the result.

CS4414/5416 - Lecture 20 3

MapReduce pattern: Sharded data set

CS4414/5416 - Lecture 20 4

Leader Worker threads

Shard A Shard B Shard C

MapReduce pattern: Map (first step)

CS4414/5416 - Lecture 20 5

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

MapReduce: Shuffle exchange

Each worker breaks its key-value result set into n parts by applying the
sharding rule to the keys.

• Now it has one subset (perhaps empty) for each other worker.
• It hands that subset to corresponding worker.

Every worker waits until it has its one message from each worker.

Now it can merge the n “pieces”, sort them, group by key

It now has a list of (key, {set-of-values}) tuples. It calls reduce one by one on these.

CS4414/5416 - Lecture 20 6

MapReduce pattern: Map (first step)

CS4414/5416 - Lecture 20 7

Leader Worker threads

Shard A Shard B Shard C

MapReduce pattern: Map (first step)

CS4414/5416 - Lecture 20 8

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result CEach has local results

MapReduce pattern: Map (hash to split data)

CS4414/5416 - Lecture 20 9

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3
Subset 2

Subset 1

Hashing the subresult
keys lets us split each
subresult into subsets,

one per worker

MapReduce pattern: Parallel behavior,
including the shuffle exchange

CS4414/5416 - Lecture 20 10

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3
Subset 2

Subset 1

Subset 3
Subset 2

Subset 1

Subset 3
Subset 2

Subset 1

MapReduce pattern: Each worker sorts its
distinct share of the subresults.

CS4414/5416 - Lecture 20 11

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3Subset 2Subset 1
Subset 3Subset 2Subset 1

Subset 3Subset 2Subset 1

After forwarding each subset to
the worker that will own it,
everyone sorts. Now they each
have DIFFERENT data: each has
a contribution from every other
worker, but each slice is unique
to the worker that owns it

MapReduce pattern: Each worker applies
reduce on its sorted portion of data

CS4414/5416 - Lecture 20 12

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Reduced results A Reduced results B Reduced results C

The reducing function runs on the
sorted data sets and each worker

ends up with its own private
share of the MapReduce results

This is in contrast with AllReduce
where everyone shares

EVERYTHING, so they end up
with identical “complete” copies

of the AllReduce results

Example: Word Count

The use case scenario: Start with standard WC for one file.

We have a large file of documents (the input elements)
Documents are words separated by whitespace.
Count the number of times each distinct word appears in the file.

… with MapReduce we can extend this concept to huge numbers of files.
CS4414/5416 - Lecture 20 13

Example: Word Count

CS4414/5416 - Lecture 20 14

Why Do We Care About Counting Words?

➢ NLP systems train on n-grams: counts of n-word sequences.

➢Word or n-gram count is challenging over massive amounts of data
○ Using a single compute node would be too time-consuming
○ Using distributed nodes requires moving data
○ Number of unique words can easily exceed available memory -- would need

to store to disk

➢Many common tasks are very similar to word count, e.g., log file analysis where
we might look for the storage devices with the highest error rates

Word Count Using MapReduce

CS4414/5416 - Lecture 20 15

map(key, value):
// key: document ID; value: text of
document

for (each word w in value)
emit(w, 1);

reduce(key, value-list):
// key: a word; value-list: a list of integers

result = 0;
for (each integer v on value-list)

result += v;
emit(key, result);

Word Count Using MapReduce

CS4414/5416 - Lecture 20 16

the cat sat on the mat

the aardvark sat on the sofa

Map & Reduce
aardvark 1

cat 1

mat 1

on 2

sat 2

sofa 1

the 4

Input
Result

Sharded Word Count: Map

CS4414/5416 - Lecture 20 17

the 1
cat 1
sat 1
on 1
the 1
mat 1

Input

the cat sat on the mat

the aardvark sat on the sofa

Map,
run on
shard 1

Map,
run on
shard 2

the 1
aardvark 1

sat 1
on 1
the 1
sofa 1

Shuffle & Sort

CS4414/5416 - Lecture 20 18

the 1
cat 1
sat 1
on 1
the 1
mat 1

the 1
aardvark 1

sat 1
on 1
the 1
sofa 1

Mapper
Output

aardvark 1
cat 1

sat 1, 1
sofa 1

Shuffle & Sort

Intermediate Data

on 1,1
mat 1

the 1,1,1,1

Keys that mapped to shard 1
are still on shard 1. The sort
was internal to shard 1

Keys that mapped to shard 2

Word Count: Reducer

CS4414/5416 - Lecture 20 19

Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

Result
aardvark 1

cat 1
sat 2
sofa 1

on 2
mat 1
the 4

aardvark 1
cat 1

sat 1, 1
sofa 1

on 1,1
mat 1

the 1,1,1,1

Notice that…
Data stays sharded at all times. At the start document names determined which
document was on which shard. Now, after the shuffle exchange, the words
themselves are the keys, and determine which shard owns that word and count

Keys are sorted and grouped shard-by-shard.
Reduce runs on (key, {v1, …. vk}) and outputs (key,reduced-value), once per key

Output is never collected to one place: We never merge and sort the full data
set. AllReduce does that and is easier to understand, but the results can be too
large to hold on a single machine, which forces use of MapReduce for big data

CS4414/5416 - Lecture 20 20

Spark Project (became launch point for the
DataBricks company in San Francisco)

Undertaken at UC Berkeley

Goal was to standardize use of MapReduce and to speed
up, focusing on efficient caching of reusable results

Part of the Berkeley “View from the clouds” vision for
cloud computing research, authored by Ion Stoica

CS4414/5416 - Lecture 20 21

Spark Ecosystem: A Unified Pipeline

22

Note: Spark is not designed for IoT real-time. The streaming layer is used for
continuous input streams like financial data from stock markets, where events occur
steadily and must be processed as they occur. But there is no sense of direct I/O
from sensors/actuators. For IoT use cases, Spark would not be suitable.

CS4414/5416 - Lecture 20

Key ideas

In Hadoop, prior to Spark, each developer tended to invent their
own mapping from data mining goal to MapReduce or AllReduce

With Spark, serious effort was invested to standardize around the
idea that in data mining, parallel code often runs for many “cycles”
or “iterations” in which a lot of reuse of information occurs. So
caching can be a big win.

Spark centers on Resilient Distributed Dataset, RDDs, that capture
the information being reused and compile to MapReduce

23CS4414/5416 - Lecture 20

How this works

You express your application as a data flow graph of RDDs.

The graph is only evaluated as needed, and they only compute the RDDs
actually needed for the output you have requested.

Then Spark can be told to cache the reuseable information either in memory, in
SSD storage or even on disk, based on when it will be needed again, how big it
is, and how costly it would be to recreate.

You write the RDD logic and control all of this via hints

24CS4414/5416 - Lecture 20

Spark Basics

25

There are two ways to manipulate data in Spark
• Spark Shell:

 Interactive – for learning or data exploration
 Python or Scala

• Spark Applications
 For large scale data processing
 Python, Scala, or Java

CS4414/5416 - Lecture 20

Spark Shell

26

The Spark Shell provides interactive data exploration
(REPL)

REPL: Repeat/Evaluate/Print Loop

CS4414/5416 - Lecture 20

Spark Fundamentals

27

•Spark Context

•Resilient Distributed
Data

•Transformations

•Actions

Example of an
application:

CS4414/5416 - Lecture 20

Spark Context (1)

28

•Every Spark application requires a spark context: the main
entry point to the Spark API

•Spark Shell provides a preconfigured Spark Context called “sc”

CS4414/5416 - Lecture 20

Spark Context (2)

29

•Standalone applications  Driver code  Spark Context
•Spark Context holds configuration information and represents
connection to a Spark cluster

Standalone Application
(Drives Computation)

CS4414/5416 - Lecture 20

Spark Context (3)

30

Spark context works as a client and represents
connection to a Spark cluster

CS4414/5416 - Lecture 20

Spark Fundamentals

31

•Spark Context

•Resilient Distributed
Data

•Transformations

•Actions

Example of an application:

CS4414/5416 - Lecture 20

Resilient Distributed Dataset (RDD)

32

The RDD (Resilient Distributed Dataset) is the fundamental unit of data in Spark:
An Immutable collection of objects (or records, or elements) that can be operated
on “in parallel” (spread across a cluster)
Resilient -- if data in memory is lost, it can be recreated

• Recover from node failures
• An RDD keeps its lineage information  it can be recreated from parent RDDs

Distributed -- processed across the cluster
• Each RDD is composed of one or more partitions  (more partitions – more parallelism)

Dataset -- initial data can come from a file or be created

CS4414/5416 - Lecture 20

RDDs

33

Key Idea: Write applications in terms of transformations
on distributed datasets. One RDD per transformation.

• Organize the RDDs into a DAG showing how data flows.
• RDD can be saved and reused or recomputed. Spark can

save it to disk if the dataset does not fit in memory
• Built through parallel transformations (map, filter, group-by,

join, etc). Automatically rebuilt on failure
• Controllable persistence (e.g. caching in RAM)

CS4414/5416 - Lecture 20

RDDs are designed to be “immutable”

34

• Create once, then reuse without changes. Spark knows
lineage  can be recreated at any time  Fault-tolerance

• Avoids data inconsistency problems (no simultaneous
updates)  Correctness

• Easily live in memory as on disk  Caching  Safe to
share across processes/tasks  Improves performance

• Tradeoff: (Fault-tolerance & Correctness) vs (Disk Memory &
CPU)

CS4414/5416 - Lecture 20

Creating a RDD

35

Three ways to create a RDD
• From a file or set of files
• From data in memory
• From another RDD

CS4414/5416 - Lecture 20

RDD COMPILES TO MAPREDUCE!

The RDD language is designed around primitives that all can
compile to the MapReduce pattern

In effect, you are doing high-level MapReduce programming, and
your code will automatically be parallelized.

By adding hints about caching, performance can be very high!

CS4414/5416 - Lecture 20 36

Example: A File-based RDD

37CS4414/5416 - Lecture 20

Spark Fundamentals

38

•Spark Context

•Resilient Distributed
Data

•Transformations

•Actions

Example of an application:

CS4414/5416 - Lecture 20

RDD Operations

39

Two types of operations
Transformations: Define a
new RDD based on current
RDD(s)
Actions: return values

CS4414/5416 - Lecture 20

RDD Transformations

40

•Set of operations on a RDD that define how they should
be transformed

•As in relational algebra, the application of a
transformation to an RDD yields a new RDD (because
RDD are immutable)

•Transformations are lazily evaluated, which allow for
optimizations to take place before execution

•Examples: map(), filter(), groupByKey(), sortByKey(),
etc.

CS4414/5416 - Lecture 20

Example: map and filter Transformations

41CS4414/5416 - Lecture 20

RDD Actions

42

•Apply transformation chains on RDDs, eventually performing
some additional operations (e.g., counting)

•Some actions only store data to an external data source (e.g.
HDFS), others fetch data from the RDD (and its transformation
chain) upon which the action is applied, and convey it to the
driver

•Some common actions
count() – return the number of elements
take(n) – return an array of the first n elements
collect()– return an array of all elements
saveAsTextFile(file) – save to text file(s)

CS4414/5416 - Lecture 20

Graph of RDDs

 A collection of RDDs can be understood as a graph

 Nodes in the graph are the RDDs, which means the code but also the actual
data object that could would create at runtime when executed on specific
parameters + data. Reminder: Hadoop is a “read only” model, so we can
“materialize” an RDD any time we like.

 Edges represent how data objects are accessed: RDD B might consume the
object created by RDD A. This gives us a directed edge A → B

CS4414/5416 - Lecture 20 43

Lazy Execution of RDDs (1)

44

Data in RDDs is not processed
until an action is performed

CS4414/5416 - Lecture 20

Lazy Execution of RDDs (2)

45

Data in RDDs is not processed
until an action is performed

CS4414/5416 - Lecture 20

Lazy Execution of RDDs (3)

46

Data in RDDs is not processed
until an action is performed

CS4414/5416 - Lecture 20

Lazy Execution of RDDs (4)

47

Data in RDDs is not processed
until an action is performed

CS4414/5416 - Lecture 20

Lazy Execution of RDDs (5)

48

Data in RDDs is not processed
until an action is performed

Output Action “triggers” computation, pull model

CS4414/5416 - Lecture 20

Opportunities This Enables

 Automated compilation to MapReduce: This is the fundamental reason we use
Spark. Instead of coding by hand we “script” parallel compute as a graph of RDDs

 On-demand optimization: Spark can behave like a compiler by first building a
potentially complex RDD graph, but then trimming away unneeded computations that
for today’s purpose, won’t be used.

 Caching for later reuse.
 Graph transformations: A significant amount of effort is going into this area. It is a lot

like compiler-managed program transformation and aims at simplifying and speeding
up the computation that will occur.

 Dynamic decisions about what to schedule and when. Concept: minimum
adequate set of input objects: RDD can run if all its inputs are ready

CS4414/5416 - Lecture 20 49

Example: Mine error logs

50

Load error messages from a log into memory, then interactively
search for various patterns:

lines = spark.textFile(“hdfs://...”) HadoopRDD

errors = lines.filter(lambda s: s.startswith(“ERROR”)) FilteredRDD

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

messages.filter(lambda s: “foo” in s).count()

Result: full-text search of Wikipedia in 0.5 sec (vs 20 sec for on-disk data)

CS4414/5416 - Lecture 20

Key feature: Elastic parallelism

RDDs operations are designed to leverage embarrassing parallelism and
are coded to view “how many workers?” as a runtime decision.

Spark will always spread the task over the full set of nodes it is allocated.
Normally this is one worker per K shards, so that the full set of shards is
mapped to the full set of workers. The resulting pattern is a highly
concurrent execution that minimizes delays: a “partitioned computation” .

If some component crashes or even is just slow, Spark simply kills that
task and launches a substitute.

51CS4414/5416 - Lecture 20

RDD and Partitions (Parallelism example)

52CS4414/5416 - Lecture 20

RDD Graph: Data Set vs Partition Views

53

Much like in Hadoop MapReduce, each RDD is associated to
(input) partitions

CS4414/5416 - Lecture 20

RDDs: Data Locality

54

•Data Locality Principle
 Keep high-value RDDs precomputed, in cache or SDD
 Run tasks that need the specific RDD with those same inputs

on the node where the cached copy resides.
 This can maximize in-memory computational performance.

Requires cooperation between your hints to Spark when you
build the RDD, Spark runtime and optimization planner, and the
underlying YARN resource manager.

CS4414/5416 - Lecture 20

RDDs -- Summary

55

RDD are partitioned, locality aware, distributed
collections
 RDD are immutable

RDD are data structures that:
 Either point to a direct data source (e.g. HDFS)
 Apply some transformations to its parent RDD(s) to

generate new data elements
Computations on RDDs
 Represented by lazily evaluated lineage DAGs composed

by chained RDDs

CS4414/5416 - Lecture 20

Lifetime of a Job in Spark

56CS4414/5416 - Lecture 20

Anatomy of a Spark Application

57

Cluster Manager
(YARN/Mesos)

CS4414/5416 - Lecture 20

Typical RDD pattern of use

Instead of doing a lot of work in each RDD, developers split
tasks into lots of small RDDs

These are then organized into a DAG.

Developer anticipates which will be costly to recompute and
hints to Spark that it should cache those.

58CS4414/5416 - Lecture 20

Why is this a good strategy?

Spark tries to run tasks that will need the same intermediary data on the
same nodes.
If MapReduce jobs were arbitrary programs, this wouldn’t help because
reuse would be very rare.
But in fact the MapReduce model is very repetitious and iterative, and often
applies the same transformations again and again to the same input files.

 Those particular RDDs become great candidates for caching.
 MapReduce programmer may not know how many iterations will occur, but

Spark itself is smart enough to evict RDDs if they don’t actually get reused.

59CS4414/5416 - Lecture 20

Iterative Algorithms: Spark vs MapReduce

60CS4414/5416 - Lecture 20

Today’s Topics

61

•Motivation
•Spark Basics
•Spark Programming

CS4414/5416 - Lecture 20

Spark Programming (1)

62

Creating RDDs
Turn a Python collection into an RDD
sc.parallelize([1, 2, 3])

Load text file from local FS, HDFS, or S3
sc.textFile(“file.txt”)
sc.textFile(“directory/*.txt”)
sc.textFile(“hdfs://namenode:9000/path/file”)

Use existing Hadoop InputFormat (Java/Scala only)
sc.hadoopFile(keyClass, valClass, inputFmt, conf)

CS4414/5416 - Lecture 20

Spark Programming (2)

63

Basic Transformations

nums = sc.parallelize([1, 2, 3])

Pass each element through a function
squares = nums.map(lambda x: x*x) // {1, 4, 9}

Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) // {4}

CS4414/5416 - Lecture 20

Spark Programming (3)

64

Basic Actions
nums = sc.parallelize([1, 2, 3])

Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

Return first K elements
nums.take(2) # => [1, 2]

Count number of elements
nums.count() # => 3

Merge elements with an associative function
nums.reduce(lambda x, y: x + y) # => 6

CS4414/5416 - Lecture 20

Spark Programming (4)

65

Working with Key-Value Pairs
Spark’s “distributed reduce” transformations operate on RDDs of key-value pairs

Python: pair = (a, b)

pair[0] # => a

pair[1] # => b

Scala: val pair = (a, b)

pair._1 // => a

pair._2 // => b

Java: Tuple2 pair = new Tuple2(a, b);

pair._1 // => a

pair._2 // => b

CS4414/5416 - Lecture 20

Spark Programming (5)

66

Some Key-Value Operations

pets = sc.parallelize([(“cat”, 1), (“dog”, 1), (“cat”, 2)])

pets.reduceByKey(lambda x, y: x + y) # => {(cat, 3), (dog, 1)}

pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}

pets.sortByKey() # => {(cat, 1), (cat, 2), (dog, 1)}

CS4414/5416 - Lecture 20

Example: Word Count

67

lines = sc.textFile(“hamlet.txt”)
counts = lines.flatMap(lambda line: line.split(“ “))

.map(lambda word: (word, 1))

.reduceByKey(lambda x, y: x + y)

CS4414/5416 - Lecture 20

Example: Spark Streaming

68

Represents streams as a series of RDDs over time
(typically sub second intervals, but it is configurable)

val spammers = sc.sequenceFile(“hdfs://spammers.seq”)
sc.twitterStream(...)

.filter(t => t.text.contains(“Santa Clara University”))

.transform(tweets => tweets.map(t => (t.user, t)).join(spammers))

.print()

CS4414/5416 - Lecture 20

Spark: Combining Libraries (Unified Pipeline)

CS4414/5416 - Lecture 20 69

Load data using Spark SQL

points = spark.sql(“select latitude, longitude from tweets”)

Train a machine learning model

model = KMeans.train(points, 10)

Apply it to a stream

sc.twitterStream(...)

.map(lambda t: (model.predict(t.location), 1))

.reduceByWindow(“5s”, lambda a, b: a + b)

Spark: Setting the Level of Parallelism

70

All the pair RDD operations take an optional second parameter
for number of tasks

words.reduceByKey(lambda x, y: x + y, 5)

words.groupByKey(5)

visits.join(pageViews, 5)

CS4414/5416 - Lecture 20

Summary

Spark is a powerful “manager” for big data computing.
It centers on a job scheduler for Hadoop (MapReduce) that is
smart about where to run each task: co-locate task with data.
The data objects are “RDDs”: a kind of recipe for generating a file
from an underlying data collection. RDD caching allows Spark to
run mostly from memory-mapped data, for speed.

71

• Online tutorials: spark.apache.org/docs/latest
CS4414/5416 - Lecture 20

SELF-STUDY QUESTIONS

Spark RDDs look very similar to Python SQL or LINQ

What are some things Spark can do that would not
automatically occur if you coded the same RDD query
as a Python SQL query and just treated the entire data
set as a single giant collection of objects?

CS4414/5416 - Lecture 20 72

SELF-STUDY QUESTIONS

Matei Zaharia thinks of Spark RDDs as a high level
programming language that compiles to MapReduce.

Research his publications on Spark RDD “transformations,”
such as this paper. What are some PL optimization
concepts that Spark is adopting when it maps RDDs to
MapReduce on sharded data?

CS4414/5416 - Lecture 20 73

https://theory.stanford.edu/%7Eaiken/publications/papers/sosp19.pdf

Self study questions

Is Spark a universal programming language for
embarrassingly parallel computing?

Try to construct an example of a task that Spark cannot be
used to solve, or at least not in a natural way.

Hint: If you know SQL, think about joins.
CS4414/5416 - Lecture 20 74

	Apache Spark and RDDs
	Start with a close look at the MapReduce pattern: Sharded data set
	MapReduce: Map step
	MapReduce pattern: Sharded data set
	MapReduce pattern: Map (first step)
	MapReduce: Shuffle exchange
	MapReduce pattern: Map (first step)
	MapReduce pattern: Map (first step)
	MapReduce pattern: Map (hash to split data)
	MapReduce pattern: Parallel behavior, including the shuffle exchange
	MapReduce pattern: Each worker sorts its distinct share of the subresults.
	MapReduce pattern: Each worker applies reduce on its sorted portion of data
	Example: Word Count
	Example: Word Count
	Word Count Using MapReduce
	Word Count Using MapReduce
	Sharded Word Count: Map
	Shuffle & Sort
	Word Count: Reducer
	Notice that…
	Spark Project (became launch point for the DataBricks company in San Francisco)
	Spark Ecosystem: A Unified Pipeline
	Key ideas
	How this works
	Spark Basics
	Spark Shell
	Spark Fundamentals
	Spark Context (1)
	Spark Context (2)
	Spark Context (3)
	Spark Fundamentals
	Resilient Distributed Dataset (RDD)
	RDDs
	RDDs are designed to be “immutable”
	Creating a RDD
	RDD COMPILES TO MAPREDUCE!
	Example: A File-based RDD
	Spark Fundamentals
	RDD Operations
	RDD Transformations
	Example: map and filter Transformations
	RDD Actions
	Graph of RDDs
	Lazy Execution of RDDs (1)
	Lazy Execution of RDDs (2)
	Lazy Execution of RDDs (3)
	Lazy Execution of RDDs (4)
	Lazy Execution of RDDs (5)
	Opportunities This Enables
	Example: Mine error logs
	Key feature: Elastic parallelism	
	RDD and Partitions (Parallelism example)
	RDD Graph: Data Set vs Partition Views
	RDDs: Data Locality
	RDDs -- Summary
	Lifetime of a Job in Spark
	Anatomy of a Spark Application
	Typical RDD pattern of use
	Why is this a good strategy?
	Iterative Algorithms: Spark vs MapReduce
	Today’s Topics
	Spark Programming (1)
	Spark Programming (2)
	Spark Programming (3)
	Spark Programming (4)
	Spark Programming (5)
	Example: Word Count
	Example: Spark Streaming
	Spark: Combining Libraries (Unified Pipeline)
	Spark: Setting the Level of Parallelism
	Summary
	SELF-STUDY QUESTIONS
	SELF-STUDY QUESTIONS
	Self study questions

