N\YFZANYIANYIANYIANTIANTY I ANY S AN

Z “ﬂQﬂ\ﬂQﬂQﬂ\ﬂ% /
NYZANYZANYZANYZANYZANYZANTZAN
ZA\YZANYZANVZANYZANYZANY/ZA\Y/
NYZANYZANYZANYZANYZANYZANTZ4N

JANVIANVIANVIANVIANVIANVIANYS

Apache Spark and RDDs | o pyan (with help)

Start with a close look at the MapReduce pattern:
Sharded data set

Leader Worker threads

sharaB LI sharac L

MapReduce: Map step

The leader maps some task over the n workers. This can be done in any way that
makes sense for the application.

Each worker performs its share of the work by applying the requested function to the
data in its shard.

When finished, each worker will have a list of new (key,value) pairs as its share of
the result.

CS4414/5416 - Lecture 20 3

MapReduce pattern: Sharded data set

Leader Worker threads

“sharac 1L

—

snard A LN sharas_IL

CS4414/5416 - Lecture 20 4

MapReduce pattern: Map (first step)

Leader Worker threads

“sharac 1L

~N

“Resuits LN Resuitc |L

AR

CS4414/5416 - Lecture 20 5

sharas L

MapReduce: Shuffle exchange

Each worker breaks its key-value result set into n parts by applying the
sharding rule to the keys.

- Now it has one subset (perhaps empty) for each other worker.

« It hands that subset to corresponding worker.

Every worker waits until it has its one message from each worker.

Now it can merge the n “pieces”, sort them, group by key

It now has a list of (key, {set-of-values}) tuples. It calls reduce one by one on these.

CS4414/5416 - Lecture 20 6

MapReduce pattern: Map (first step)

Leader Worker threads

“sharac 1L

—

snard A LN sharas_IL

CS4414/5416 - Lecture 20 7

MapReduce pattern: Map (first step)

Leader Worker threads

“sharac 1L

~N

Each has local results m“ II "

AR

CS4414/5416 - Lecture 20 8

sharas L

MapReduce pattern: Map (hash to split data)

Leader Worker threads

“sharac 1L

~N

“Resuic 1L

sharas L

Hashing the subresult

=il
keys lets us split each

one per worker Subset 1 \

subresult into subsets,

CS4414/5416 - Lecture 20 9

MapReduce pattern: Parallel behavior,
including the shuffle exchange

Leader Worker threads

“sharac 1L

~N

“Resuits LN Resuitc |L

sharas L

_ \Subsets Subset 3

Subset 2 Subset 2

ubset 1R _S;ub’set1<

CS4414/5416 - Lecture 20 10

MapReduce pattern: Each worker sorts its
distinct share of the subresults.

Leader Worker threads

“sharac 1L

N

=il

“shara o LB shara5 |

I [
After forwarding each subset to ml I

Subset 3

SOUUSEL O

the worker that will own it, / ST
everyone sorts. Now they each { Subset 1 rsaTy
have DIFFERENT data: each has |— SUDSE .'i e .
a contribution from every other

worker, but each slice is unique
to the worker that owns it

CS4414/5416 - Lecture 20 11

MapReduce pattern: Each worker applies

reduce on its sorted portion of data

Leader

The reducing function runs on the
sorted data sets and each worker
ends up with its own private
share of the MapReduce results

This is in contrast with AlIReduce
where everyone shares
EVERYTHING, so they end up
with identical “complete” copies
of the AlIReduce results

Worker threads

sharas L

Reduced results A

“sharac 1L

=il

\

=\

Resuitc 1L

Reduced results B

Reduced results C

CS4414/5416 - Lecture 20 12

Example: Word Count

The use case scenario: Start with standard WC for one file.

We have a large file of documents (the input elements)
Documents are words separated by whitespace.
Count the number of times each distinct word appears in the file.

... with MapReduce we can extend this concept to huge numbers of files.

CS4414/5416 - Lecture 20 13

Example: Word Count

Why Do We Care About Counting Words”?
NLP systems train on n-grams: counts of n-word sequences.

Word or n-gram count is challenging over massive amounts of data
Using a single compute node would be too time-consuming
Using distributed nodes requires moving data
Number of unique words can easily exceed available memory -- would need
to store to disk

Many common tasks are very similar to word count, e.g., log file analysis where
we might look for the storage devices with the highest error rates

CS4414/5416 - Lecture 20 14

Word Count Using MapReduce

map(key, value): reduce(key, value-list):
// key: document ID; value: text of // key: a word; value-list: a list of integers
document result = 0

for (each word w in value) for (each integer v on value-list)

emit(w, 1); result += v;

emit(key, result);

CS4414/5416 - Lecture 20 15

Word Count Using MapReduce

Map & Reduce

<>

Input
4 I
the cat sat on the mat
the aardvark sat on the sofa
\ /

Result

aardvark 1
cat 1
mat 1
on 2
sat 2
sofa 1
the 4

CS4414/5416 - Lecture 20 16

Sharded Word Count: Map e

fMap! \/ on 1
Input run on the

, mat1
\the cat sat on the matJ//G"hard 1) Ul .

the aardvark sat on the sofa b the1 |
\/Ma N “aardvark 1
P, .~ sat1
run on > on1
_shard 2 | the 1
sofa 1

CS4414/5416 - Lecture 20 17

Shuffle & Sort

Mapper |
Output | thet

- aardvark 1

sat 1
on 1
the 1

Shuffle & Sort

Intermediate Data

. aardvark 1 '
| Keys that mapped to shard 1
; cat 1] are still on shard 1. The sort
. sat1,1 | was internal to shard 1
. sofa 1
>
on 1,1
Keys that mapped to shard 2
mat 1 y PP

the 1,1,1,1 |

CS4414/5416 - Lecture 20 18

Word Count: Reducer

Notice that...

Data stays sharded at all times. At the start document names determined which
document was on which shard. Now, after the shuffle exchange, the words
themselves are the keys, and determine which shard owns that word and count

Keys are sorted and grouped shard-by-shard.
Reduce runs on (key, {v4, v,}) and outputs (key,reduced-value), once per key

Output is never collected to one place: We never merge and sort the full data
set. AllIReduce does that and is easier to understand, but the results can be too
large to hold on a single machine, which forces use of MapReduce for big data

CS4414/5416 - Lecture 20 20

Spark Project (hecame launch point for the
DataBricks company in San Francisco)

Undertaken at UC Berkeley

Goal was to standardize use of MapReduce and to speed
up, focusing on efficient caching of reusable results

Part of the Berkeley “View from the clouds” vision for
cloud computing research, authored by lon Stoica

CS4414/5416 - Lecture 20 21

Spark Ecosystem: A Unified Pipeline

Spark SQL+ Spark MLlib

DataFrames § Streaming machine
structured data real-time learning

Spark Core

Note: Spark is not designed for loT real-time. The streaming layer is used for
continuous input streams like financial data from stock markets, where events occur

steadily and must be processed as they occur. But there is no sense of direct I/O
from sensors/actuators. For loT use cases, Spark would not be suitable.

CS4414/5416 - Lecture 20 22

Key ideas

In Hadoop, prior to Spark, each developer tended to invent their
own mapping from data mining goal to MapReduce or AllReduce

With Spark, serious effort was invested to standardize around the
idea that in data mining, parallel code often runs for many “cycles”
or “iterations” in which a lot of reuse of information occurs. So
caching can be a big win.

Spark centers on Resilient Distributed Dataset, RDDs, that capture
the information being reused and compile to MapReduce

CS4414/5416 - Lecture 20

23

How this works

You express your application as a data flow graph of RDDs.

The graph is only evaluated as needed, and they only compute the RDDs
actually needed for the output you have requested.

Then Spark can be told to cache the reuseable information either in memory, in
SSD storage or even on disk, based on when it will be needed again, how big it
is, and how costly it would be to recreate.

You write the RDD logic and control all of this via hints

CS4414/5416 - Lecture 20

24

Spark Basics

‘ There are two ways to manipulate data in Spark
- Spark Shell:

~ Interactive — for learning or data exploration
~ Python or Scala

- Spark Applications
~ For large scale data processing
~ Python, Scala, or Java

CS4414/5416 - Lecture 20 25

Spark Shell

(REPL)

Python Shell: pyspark

Scala Shell: spark-shell

[he Spark Shell provides interactive data exploration

$ pyspark

Welcome to

/ f £
_\ "w’ ‘\/ i SRS Ak

b e e N \ version 1.3.0
;"_f

Using Python version 2.7.8 (default, Aug 27
2015 05:23:36)

SparkContext available as sc, HiveContext
available as sqlCtx.

-0 g

REPL: Repeat/Evaluate/Print Loop

$ spark-shell

Welcome to

/ /N, / /] J/\\ version 1.3.0

Using Scala version 2.10.4 (Java HotSpot(TM)
64-Bit Server VM, Java 1.7.0_6&7)

Created spark context..

Spark context available as sc.

SQL context available as sglContext.

scala>

CS4414/5416 - Lecture 20

26

Spark Fundamentals

‘Example of an

application:
*Spark Context

* Resilient Distributed
val file = sc.textFile("hdfs://...") // This is an RDD [)ata

val sc = new SparkContext ("spark://...", "MyJob", home,
jars)

val errors = file.filter(_.contains("ERROR")) // This is

an RDD e Transformations

errors.cache ()

 Actions

errors.count () // This is an action

CS4414/5416 - Lecture 20 27

Spark Context (1)

LEvery Spark application requires a spark context. the main
entry point to the Spark API

*Spark Shell provides a preconfigured Spark Context called “sc”

Using Python version 2.7.8 (default, Aug 27 2015 05:23:36)
[SparkContext available as sc,]HiveContext available as sqlCtx.
Python
>>> sc.appName
u'PySparkShell’
[Spark context available as sc.]
SQL context available as sqlContext.
Scala
scala> sc.appName
res: String = Spark shell

CS4414/5416 - Lecture 20 28

Spark Context (2)

\-Standalone applications - Driver code = Spark Context

« Spark Context holds configuration information and represents
connection to a Spark cluster

Standalone Application
(Drives Computation)

Driver Program

SparkContext

Worker Node

Executor

Cache

—
/ Task

Task

Cluster Manager

T

Worker Node l

/

Executor

Cache

¥ | Task

Task

CS4414/5416 - Lecture 20

29

Spark Context (3)

‘ Spark context works as a client and represents

connection to a Spark cluster
Spark client

(app master) Spark worker

Your program
RDD graph Cluster)
Tas
new SparkContext manaaqer
f = sc texcrilec) |- Scheduler J threads
Sy R i gy ’,
f.filter(.)
“Count () Block tracker Block
manager
- | Shuffle tracker

CS4414/5416 - Lecture 20

30

Spark Fundamentals

‘Example of an application:

val sc = new SparkContext ("spark://...",
jars)

val file = sc.textFile("hdfs://...")

val errors = file.filter(_.contains("ERROR"))
an RDD

errors.cache ()

errors.count () // This is an action

"MyJob", home,

// This is an RDD

// This 1is

* Resilient Distributed
Data

 Transformations

* Actions

CS4414/5416 - Lecture 20

31

Resilient Distributed Dataset (RDD)

The RDD (Resilient Distributed Dataset) is the fundamental unit of data in Spark:
An Immutable collection of objects (or records, or elements) that can be operated
on “in parallel” (spread across a cluster)

Resilient -- if data in memory is lost, it can be recreated

« Recover from node failures

« An RDD keeps its lineage information = it can be recreated from parent RDDs
Distributed -- processed across the cluster

- Each RDD is composed of one or more partitions = (more partitions — more parallelism)

Dataset -- initial data can come from a file or be created

CS4414/5416 - Lecture 20 32

RDDs

Key Idea: Write applications in terms of transformations
on distributed datasets. One RDD per transformation.

Organize the RDDs into a DAG showing how data flows.

RDD can be saved and reused or recomputed. Spark can
save it to disk if the dataset does not fit in memory

Built through parallel transformations (map, filter, group-by,
join, etc). Automatically rebuilt on failure

Controllable persistence (e.g. caching in RAM)

CS4414/5416 - Lecture 20 33

RDDs are designed to he “immutable”

Create once, then reuse without changes. Spark knows
lineage - can be recreated at any time - Fault-tolerance

Avoids data inconsistency problems (no simultaneous
updates) - Correctness

Easily live in memory as on disk - Caching - Safe to
share across processes/tasks = Improves performance

Tradeoff: (Fault-tolerance & Correctness) vs (Disk Memory &
CPU)

CS4414/5416 - Lecture 20 34

Creating a RDD

‘ Three ways to create a RDD
-rom a file or set of files
~-rom data in memory

-rom another RDD

CS4414/5416 - Lecture 20 35

RDD COMPILES TO MAPREDUCE!

The RDD language is designed around primitives that all can
compile to the MapReduce pattern

In effect, you are doing high-level MapReduce programming, and
your code will automatically be parallelized.

By adding hints about caching, performance can be very high!

CS4414/5416 - Lecture 20 36

Example: A File-based RDD

>

-

val mydata = sc.textFile ("purplecow.txt")

mydata.count ()

File: purplecow.txt

I"ve never seen a purple
COW .

I never hope to see one;
But I can tell you, anyhow,
I'd rather see than be one.

-

RDD: mydata

5 Z

I've never seen a purple cow.

I never hope to see one;

But I can tell you, anyhow,

I'd rather see than be one.

CS4414/5416 - Lecture 20 37

Spark Fundamentals

‘Example of an application:

val sc = new SparkContext ("spark://...", "MyJob", home,
jars)
val file = sc.textFile("hdfs://...") // This is an RDD

val errors = file.filter(_.contains("ERROR"))
an RDD

errors.cache ()

errors.count () // This is an action

// This 1is

e Transformations

 Actions

CS4414/5416 - Lecture 20

38

RDD Operations

Base RDD Mew RDD

Two types of operations 1

Transformations: Define a
new RDD based on current

RDD(S) D value

Actions: return values

val sc = new SparkContext ("spark://...", "MyJob", home,
jars)

val file = sc.textFile ("hdfs://...") // This is an RDD

val errors = file.filter(_.contains ("ERROR")) // This is
an RDD

rrrrrr .cache ()

rrrrrrrrrr () Th t

CS4414/5416 - Lecture 20 39

RDD Transformations

»Set of operations on a RDD that define how they should
be transformed

*As in relational algebra, the application of a
transformation to an RDD vyields a new RDD (because
RDD are immutable)

* Transformations are lazily evaluated, which allow for
optimizations to take place before execution

«Examples: map(), filter(), groupByKey(), sortByKey(),
etc.

Example: map and filter Transformations

I've never seen a purple cow.

I never hope to see one;

But I can tell you, anyhow,

I'd rather see than be one.

map (lambda line: line.upper())

map (line => line.toUpperCase)

N

I'VE NEVER SEEN A FUERFLE COW.

I NEVEERE HOFE TO S5EE ONE;

BOT T CAN TELL YOU, ANYHOW,

I'D RATHER SEE THAN BE ONE.

filter(lambda line: line.startswith('I'))

filter(line => line.startsWith('I"))

NS

I'VE NEVER SEEN A PURFPLE COW.

I NEVEERE HOFE TO S5EE ONE;

I'D RATHEE SEE THAN BE ONE.

CS4414/5416 - Lecture 20

41

RDD Actions

* Apply transformation chains on RDDs, eventually performing
some additional operations (e.g., counting)

*Some actions only store data to an external data source (e.qg.
HDFS), others fetch data from the RDD (and its transformation
chain) upon which the action is applied, and convey it to the

driver
*Some common actions
»count() — return the number of elements
»take(n) — return an array of the first n elements
»collect()— return an array of all elements
>saveAsTextFile(file) — save to text file(s)

CS4414/5416 - Lecture 20 42

Graph of RDDs

= A collection of RDDs can be understood as a graph

= Nodes in the graph are the RDDs, which means the code but also the actual
data object that could would create at runtime when executed on specific

parameters + data. Reminder: Hadoop is a “read only” model, so we can
“materialize” an RDD any time we like.

= Edges represent how data objects are accessed: RDD B might consume the
object created by RDD A. This gives us a directed edge A —> B

CS4414/5416 - Lecture 20 43

'Lazy Execution of RDDs (1)

Data in RDDs is not processed Pl paplacow

I've never geen a purple cow

until an action is performed e

I'd rather see than be one.

et

CS4414/5416 - Lecture 20 44

'Lazy Execution of RDDs (2)

Data in RDDs is not processed N
until an action is performed e nevr seen puie oo

> wal mydata = sc.textFile ("purplecow.txt")

CS4414/5416 - Lecture 20 45

Lazy Execution of RDDs (3)

Data in RDDs is not processed e b

I've never seen a purple cow.
I never hope to see one;

until an action is performed 2 3 o otk o, ey

RDD: mydata 5 £

> wal mydata = sc.textFile ("purplecow.txt")

> wal mydata uc = mydata.map(line =>

line. toUpperCase())

RDD: mydata_uc 4 -

CS4414/5416 - Lecture 20 46

Lazy Execution of RDDs (4)

Data in RDDs is not processed e et

I've never seen a purple cow.
I never hope to =see one;

until an action is performed Bt e e yon, e

I'd rather see than be one.

I
RDD: mydata 5 7
> wal mydata = sc.textFile("purplecow.txt")
> wal mydata uc = mydata.map(line =>
line. toUpperCase ()) % '
ROD: myd
> val mydata filt — mydata uc.filter(line myeeta ue e

=> line.startsWith("I"))

=

DD: mydata_filt N

CS4414/5416 - Lecture 20 47

'Lazy Execution of RDDs (5)

File: purplecow.txt

Data in RDDs is not processed —

until an action is performed “fj“ o

T I vE mever seen a purple cow.
val mydata = sc.textFile ("purplecow.txt") I never hope to ses one;
val mydata_uﬂ = mydata.map (line => But I can tell you, anyhow,
line. toUpperCase ()) I'd rather see than be one.

> wal mydata filt = mydata uc.filter(line RDD: mydata_uc 4 -
=>» line.startsWith{("1I")) ~[I'VE NEVER SEEN A DURPLE COW.
> mydata filt.count/() I WEVER HOPE TO SEE ONE;
3 a BUT I CAN TELL YOU, ANYHOW,
I'D RATHER SEE THAN EE ONE.
|

RDD: mydata_filt NS

I'VE HEVER SEENH A PURPLE COW.

I NEVER HOPE TO SEE ORE:

I'D RATHER SEE THAN EE OME.

A4

Output Action “triggers” computation, pull model

CS4414/5416 - Lecture 20 48

‘ Opportunities This Enables

Automated compilation to MapReduce: This is the fundamental reason we use
Spark. Instead of coding by hand we “script” parallel compute as a graph of RDDs

On-demand optimization: Spark can behave like a compiler by first building a
potentially complex RDD graph, but then trimming away unneeded computations that
for today’s purpose, won't be used.

Caching for later reuse.

Graph transformations: A significant amount of effort is going into this area. It is a lot
like compiler-managed program transformation and aims at simplifying and speeding
up the computation that will occur.

Dynamic decisions about what to schedule and when. Concept: minimum
adequate set of input objects: RDD can run if all its inputs are ready

CS4414/5416 - Lecture 20 49

'Example: Mine error logs

‘Load error messages from a log into memory, then interactively
search for various patterns:

lines = spark.textFile (“hdfs://...”) HadoopRDD
errors = lines.filter(lambda s: s.startswith (“"ERROR”)) FilteredRDD

messages = errors.map (lambda s: s.split (“\t”)[2])

messages.cache ()

messages.filter (lambda s: “foo” 1n s).count ()

Result: full-text search of Wikipedia in 0.5 sec (vs 20 sec for on-disk data)

CS4414/5416 - Lecture 20 50

Key feature: Elastic parallelism

RDDs operations are designed to leverage embarrassing parallelism and
are coded to view “how many workers?” as a runtime decision.

Spark will always spread the task over the full set of nodes it is allocated.
Normally this is one worker per K shards, so that the full set of shards is
mapped to the full set of workers. The resulting pattern is a highly

concurrent execution that minimizes delays: a “partitioned computation” .

If some component crashes or even is just slow, Spark simply kills that
task and launches a substitute.

CS4414/5416 - Lecture 20 51

RDD and Partitions (Parallelism example)

RDD 1 Partition Partition Partition Partition
1 2 3 4

Cluster
Nodes

RDD 2 Partition Partition Partition
1 2 3

CS4414/5416 - Lecture 20 52

 RDD Graph: Data Set vs Partition Views

‘Much like in Hadoop MapReduce, each RDD is associated to
(input) partitions

Worker 1 Worker 2 Worker 3 Worker 4

[AW 4 AW 4 AW 4 |
OO)= =
L. A1 |- S S
HadoopRDD H
val sc = new SparkContext ("spark://...", "MyJob", home,
jars) path = hdfs;://
val file = sc.textFile("hdfs://...") // This is an RDD
val errors = file.filter(_.contains ("ERROR")) // This is
an RDD
\J
errors.cache () FilteredRDD v v ' ‘
errors.count () // This is an action func = contains(...} "_
shouldCache = true ‘ ‘

5 |G
J__J__J

TT T

Task 1 Task 2 Task 3 Task 4

CS4414/5416 - Lecture 20 53

RDDs: Data Locality

*Data Locality Principle
> Keep high-value RDDs precomputed, in cache or SDD

> Run tasks that need the specific RDD with those same inputs
on the node where the cached copy resides.

> This can maximize in-memory computational performance.

Requires cooperation between your hints to Spark when you
build the RDD, Spark runtime and optimization planner, and the
underlying YARN resource manager.

CS4414/5416 - Lecture 20 54

RDDs -- Summary

RDD are partitioned, locality aware, distributed

collections
RDD are immutable

RDD are data structures that:
Either point to a direct data source (e.g. HDFS)

Apply some transformations to its parent RDD(s) to
generate new data elements

Computations on RDDs

Represented by lazily evaluated lineage DAGs composed
by chained RDDs

CS4414/5416 - Lecture 20 55

Lifetime of a Job in Spark

RDD Objects

~
o pemer

DAG Scheduler Task Scheduler

Cluster

e

- manager
— >
<

Worker

Threads

Block
manager

CS4414/5416 - Lecture 20

56

Anatomy of a Spark Application

allocates resources
. (cores and memory)
r‘ J
—lient e Application

Submit AEp] j. Driver - - -

{mode=cluster

- i
Spark Spark Spark Spark Spark Hl= Cluster Manager
Master Worker Worker Worker Worker | {%— (YARN/Mesos)
: U
A MName Data Data [Data Data pais
B Node [l Node | Jll Node 2 il Node 3 Jll Node 4 [l
-
= RE3 B D D c
/large/file

CS4414/5416 - Lecture 20 57

Typical RDD pattern of use

‘ Instead of doing a lot of work in each RDD, developers split
tasks into lots of small RDDs

These are then organized into a DAG.

Developer anticipates which will be costly to recompute and
hints to Spark that it should cache those.

CS4414/5416 - Lecture 20 58

‘Why is this a good strategy?

Spark tries to run tasks that will need the same intermediary data on the
same nodes.

If MapReduce jobs were arbitrary programs, this wouldn’t help because
reuse would be very rare.

But in fact the MapReduce model is very repetitious and iterative, and often
applies the same transformations again and again to the same input files.

» Those particular RDDs become great candidates for caching.

» MapReduce programmer may not know how many iterations will occur, but
Spark itself is smart enough to evict RDDs if they don’t actually get reused.

CS4414/5416 - Lecture 20 59

| Iterative Algorithms: Spark vs MapReduce

K-means Clustering

'. 4.1 ‘ ‘ = Spark

121 “ Hadoop MR
*
o) 50 100 150 sec

Logistic Regression

II 0.96 ‘ ‘ ‘ ‘ ® Spark

80 “ Hadoop MR
W

0 20 40 60 80 100 sec

CS4414/5416 - Lecture 20

60

‘Toduy’s Topics
|

*Spark Programming

CS4414/5416 cture 20 61

| Spark Programming (1)

‘Creating RDDs

Turn a Python collection into an RDD

sc.parallelize([1, 2, 3])

Load text file from local FS, HDFS, or S3
sc.textFile (M file.txt”)

sc.textFile (“directory/*.txt”)

sc.textFile (“hdfs://namenode:9000/path/file”)

Use existing Hadoop InputFormat (Java/Scala only)
sc.hadoopFile (keyClass, valClass, 1nputFmt, conf)

CS4414/5416 - Lecture 20 62

Spark Programming (2)

Basic Transformations

nums = sc.parallelize([1l, 2, 3])

Pass each element through a function
squares = nums.map (lambda x: x*x) // {1, 4, 9}

Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) // {4}

CS4414/5416 - Lecture 20 63

-Spark Programming (3)

‘Basic Actions

nums = sc.parallelize([1l, 2, 3])

Retrieve RDD contents as a local collection
nums.collect () # => [1, 2, 3]

Return first K elements
nums.take (2) # => [1, 2]

Count number of elements
nums.count () # => 3

Merge elements with an associative function
nums .reduce (lambda x, y: X + vy) # => 6

CS4414/5416 - Lecture 20 64

Spark Programming (4)

orking with Key-Value Pairs

Spark’s “distributed reduce” transformations operate on RDDs of key-value pairs

Python: pair = (a, b)
pair[0] # => a
pair[1l] # => b

Scala: val pair = (a, b)
pair. 1 // => a
pair. 2 // => Db

Java: Tuple2 pair = new Tuple2(a, b);

pair. 1 // => a
pair. 2 // => Db

CS4414/5416 - Lecture 20 65

| Spark Programming (5)

Some Key-Value Operations

pets = sc.parallelize ([(“cat”, 1), (“dog”, 1), (“cat”, 2)1)
pets.reduceByKey (lambda x, y: x + V) # => {(cat, 3), (dog, 1)}
pets.groupByKey () # => {(cat, [1, 2]), (dog, [1])}

pets.sortByKey () # => {(cat, 1), (cat, 2), (dog, 1)}

CS4414/5416 - Lecture 20 66

Example: Word Count

‘lines = sc.textFile (Yhamlet.txt”)

counts = lines.flatMap(lambda line: line.split (™ %))

.map (lambda word:
.reduceByKey (lambda x, v:

Iil.tO!!

“to be or’ —— O€
ilor!!

Hr.]o.t!!

Ilno.t .to be!! “tO”
Elbe”

(word, 1))
X + vy)
Ett?e’ 11)) (e, 2)
(or,,ﬂ (not, 1)
o0 L0

be, 1) (to, 2)

CS4414/5416 - Lecture 20

67

- Example: Spark Streaming
|

Time
> Time
RDD RDD RDD RDD RDD RDD

Represents streams as a series of RDDs over time
(typically sub second intervals, but it is configurable)

val spammers = sc.sequencefFile (“hdfs://spammers.seq”)
sc.twitterStream(...)
.filter(t => t.text.contains (“Santa Clara University”))
.transform(tweets => tweets.map(t => (t.user, t)).join (spammers))

.print ()

CS4414/5416 - Lecture 20 68

Spark: Combining Libraries (Unified Pipeline)

Load data using Spark SQL

poilints = spark.sgl (“select latitude, longitude from tweets”)

Train a machine learning model

model = KMeans.train (points, 10)

Apply it to a stream
sc.twitterStream(...)
.map (lambda t: (model.predict(t.location), 1))

.reduceByWindow (“5s”, lambda a, b: a + b)

CS4414/5416 - Lecture 20 69

- Spark: Setting the Level of Parallelism

{AII the pair RDD operations take an optional second parameter
for number of tasks

words.reduceByKey (lambda x, y: x + vy, 9)
words.groupByKey (5)

visits.jolin (pageViews, 5)

CS4414/5416 - Lecture 20 70

‘Summary

Spark is a powerful “manager” for big data computing.

It centers on a job scheduler for Hadoop (MapReduce) that is
smart about where to run each task: co-locate task with data.

The data objects are “RDDs": a kind of recipe for generating a file
from an underlying data collection. RDD caching allows Spark to
run mostly from memory-mapped data, for speed.

 Online tutorials: spark.apache.org/docs/latest

CS4414/5416 - Lecture 20

71

SELF-STUDY QUESTIONS

Spark RDDs look very similar to Python SQL or LINQ

What are some things Spark can do that would not
automatically occur if you coded the same RDD query
as a Python SQL query and just treated the entire data
set as a single giant collection of objects?

SELF-STUDY QUESTIONS

Matei Zaharia thinks of Spark RDDs as a high level
programming language that compiles to MapReduce.

]

Research his publications on Spark RDD “transformations,’
such as this paper. What are some PL optimization
concepts that Spark is adopting when it maps RDDs to
MapReduce on sharded data”

https://theory.stanford.edu/%7Eaiken/publications/papers/sosp19.pdf

Self study questions

Is Spark a universal programming language for
embarrassingly parallel computing?

Try to construct an example of a task that Spark cannot be
used to solve, or at least not in a natural way.

Hint: If you know SQL, think about joins.

	Apache Spark and RDDs
	Start with a close look at the MapReduce pattern: Sharded data set
	MapReduce: Map step
	MapReduce pattern: Sharded data set
	MapReduce pattern: Map (first step)
	MapReduce: Shuffle exchange
	MapReduce pattern: Map (first step)
	MapReduce pattern: Map (first step)
	MapReduce pattern: Map (hash to split data)
	MapReduce pattern: Parallel behavior, including the shuffle exchange
	MapReduce pattern: Each worker sorts its distinct share of the subresults.
	MapReduce pattern: Each worker applies reduce on its sorted portion of data
	Example: Word Count
	Example: Word Count
	Word Count Using MapReduce
	Word Count Using MapReduce
	Sharded Word Count: Map
	Shuffle & Sort
	Word Count: Reducer
	Notice that…
	Spark Project (became launch point for the DataBricks company in San Francisco)
	Spark Ecosystem: A Unified Pipeline
	Key ideas
	How this works
	Spark Basics
	Spark Shell
	Spark Fundamentals
	Spark Context (1)
	Spark Context (2)
	Spark Context (3)
	Spark Fundamentals
	Resilient Distributed Dataset (RDD)
	RDDs
	RDDs are designed to be “immutable”
	Creating a RDD
	RDD COMPILES TO MAPREDUCE!
	Example: A File-based RDD
	Spark Fundamentals
	RDD Operations
	RDD Transformations
	Example: map and filter Transformations
	RDD Actions
	Graph of RDDs
	Lazy Execution of RDDs (1)
	Lazy Execution of RDDs (2)
	Lazy Execution of RDDs (3)
	Lazy Execution of RDDs (4)
	Lazy Execution of RDDs (5)
	Opportunities This Enables
	Example: Mine error logs
	Key feature: Elastic parallelism	
	RDD and Partitions (Parallelism example)
	RDD Graph: Data Set vs Partition Views
	RDDs: Data Locality
	RDDs -- Summary
	Lifetime of a Job in Spark
	Anatomy of a Spark Application
	Typical RDD pattern of use
	Why is this a good strategy?
	Iterative Algorithms: Spark vs MapReduce
	Today’s Topics
	Spark Programming (1)
	Spark Programming (2)
	Spark Programming (3)
	Spark Programming (4)
	Spark Programming (5)
	Example: Word Count
	Example: Spark Streaming
	Spark: Combining Libraries (Unified Pipeline)
	Spark: Setting the Level of Parallelism
	Summary
	SELF-STUDY QUESTIONS
	SELF-STUDY QUESTIONS
	Self study questions

