
Apache Spark and RDDs Ken Birman (with help)
CS4414/5416 Lecture 23

CS4414/5416 - Lecture 20 1



Start with a close look at the MapReduce pattern: 
Sharded data set
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Leader Worker threads

Shard A Shard B Shard C



MapReduce:  Map step

The leader maps some task over the n workers.  This can be done in any way that 
makes sense for the application.

Each worker performs its share of the work by applying the requested function to the 
data in its shard.  

When finished, each worker will have a list of new (key,value) pairs as its share of 
the result.

CS4414/5416 - Lecture  20 3



MapReduce pattern: Sharded data set
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Leader Worker threads

Shard A Shard B Shard C



MapReduce pattern: Map (first step)

CS4414/5416 - Lecture  20 5

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C



MapReduce: Shuffle exchange

Each worker breaks its key-value result set into n parts by applying the 
sharding rule to the keys.  

• Now it has one subset (perhaps empty) for each other worker.
• It hands that subset to corresponding worker.

Every worker waits until it has its one message from each worker.

Now it can merge the n “pieces”, sort them, group by key

It now has a list of (key, {set-of-values}) tuples.  It calls reduce one by one on these.
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MapReduce pattern: Map (first step)

CS4414/5416 - Lecture  20 7

Leader Worker threads

Shard A Shard B Shard C



MapReduce pattern: Map (first step)
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Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result CEach has local results



MapReduce pattern: Map (hash to split data)
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Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3
Subset 2

Subset 1

Hashing the subresult
keys lets us split each 
subresult into subsets, 

one per worker 



MapReduce pattern: Parallel behavior, 
including the shuffle exchange
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Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3
Subset 2

Subset 1

Subset 3
Subset 2

Subset 1

Subset 3
Subset 2

Subset 1



MapReduce pattern: Each worker sorts its 
distinct share of the subresults.
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Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3Subset 2Subset 1
Subset 3Subset 2Subset 1

Subset 3Subset 2Subset 1

After forwarding each subset to 
the worker that will own it, 
everyone sorts.  Now they each 
have DIFFERENT data: each has 
a contribution from every other 
worker, but each slice is unique 
to the worker that owns it



MapReduce pattern: Each worker applies 
reduce on its sorted portion of data
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Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Reduced results A Reduced results B Reduced results C

The reducing function runs on the 
sorted data sets and each worker 

ends up with its own private 
share of the MapReduce results

This is in contrast with AllReduce
where everyone shares 

EVERYTHING, so they end up 
with identical “complete” copies 

of the AllReduce results



Example: Word Count 

The use case scenario:  Start with standard WC for one file.

We have a large file of documents (the input elements) 
Documents are words separated by whitespace.
Count the number of times each distinct word appears in the file.

… with MapReduce we can extend this concept to huge numbers of files.
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Example: Word Count 
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Why Do We Care About Counting Words?

➢ NLP systems train on n-grams: counts of n-word sequences.  

➢Word or n-gram count is challenging over massive amounts of data
○ Using a single compute node would be too time-consuming
○ Using distributed nodes requires moving data
○ Number of unique words can easily exceed available memory -- would need 

to store to disk

➢Many common tasks are very similar to word count, e.g., log file analysis where 
we might look for the storage devices with the highest error rates



Word Count Using MapReduce 
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map(key, value):
// key: document ID; value: text of 
document

for (each word w in value)
emit(w, 1);

reduce(key, value-list):
// key: a word; value-list: a list of integers

result = 0;
for (each integer v on value-list)

result += v;
emit(key, result);



Word Count Using MapReduce 
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the cat sat on the mat

the aardvark sat on the sofa

Map & Reduce
aardvark 1

cat 1

mat 1

on 2

sat 2

sofa 1

the 4

Input
Result



Sharded Word Count: Map
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the 1
cat 1
sat 1
on 1
the 1
mat 1

Input

the cat sat on the mat

the aardvark sat on the sofa

Map, 
run on 
shard 1

Map, 
run on 
shard 2

the 1
aardvark 1

sat 1
on 1
the 1
sofa 1



Shuffle & Sort
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the 1
cat 1
sat 1
on 1
the 1
mat 1

the 1
aardvark 1

sat 1
on 1
the 1
sofa 1

Mapper 
Output

aardvark 1
cat 1

sat 1, 1
sofa 1

Shuffle & Sort

Intermediate Data

on 1,1
mat 1

the 1,1,1,1

Keys that mapped to shard 1 
are still on shard 1.  The sort 
was internal to shard 1

Keys that mapped to shard 2



Word Count: Reducer
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Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

Result
aardvark 1

cat 1
sat 2
sofa 1

on 2
mat 1
the 4

aardvark 1
cat 1

sat 1, 1
sofa 1

on 1,1
mat 1

the 1,1,1,1



Notice that…
Data stays sharded at all times. At the start document names determined which 
document was on which shard.  Now, after the shuffle exchange, the words 
themselves are the keys, and determine which shard owns that word and count

Keys are sorted and grouped shard-by-shard.  
Reduce runs on (key, {v1, …. vk}) and outputs (key,reduced-value), once per key

Output is never collected to one place:  We never merge and sort the full data 
set.  AllReduce does that and is easier to understand, but the results can be too 
large to hold on a single machine, which forces use of MapReduce for big data
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Spark Project (became launch point for the 
DataBricks company in San Francisco)

Undertaken at UC Berkeley

Goal was to standardize use of MapReduce and to speed 
up, focusing on efficient caching of reusable results

Part of the Berkeley “View from the clouds” vision for 
cloud computing research, authored by Ion Stoica

CS4414/5416 - Lecture  20 21



Spark Ecosystem: A Unified Pipeline

22

Note: Spark is not designed for IoT real-time.  The streaming layer is used for 
continuous input streams like financial data from stock markets, where events occur 
steadily and must be processed as they occur.  But there is no sense of direct I/O 
from sensors/actuators.  For IoT use cases, Spark would not be suitable.
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Key ideas

In Hadoop, prior to Spark, each developer tended to invent their 
own mapping from data mining goal to MapReduce or AllReduce

With Spark, serious effort was invested to standardize around the 
idea that in data mining, parallel code often runs for many “cycles” 
or “iterations” in which a lot of reuse of information occurs. So 
caching can be a big win.

Spark centers on Resilient Distributed Dataset, RDDs, that capture 
the information being reused and compile to MapReduce
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How this works

You express your application as a data flow graph of RDDs.

The graph is only evaluated as needed, and they only compute the RDDs 
actually needed for the output you have requested.

Then Spark can be told to cache the reuseable information either in memory, in 
SSD storage or even on disk, based on when it will be needed again, how big it 
is, and how costly it would be to recreate.

You write the RDD logic and control all of this via hints
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Spark Basics

25

There are two ways to manipulate data in Spark
• Spark Shell:

 Interactive – for learning or data exploration
 Python or Scala

• Spark Applications
 For large scale data processing
 Python, Scala, or Java
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Spark Shell

26

The Spark Shell provides interactive data exploration 
(REPL)

REPL: Repeat/Evaluate/Print Loop
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Spark Fundamentals

27

•Spark Context

•Resilient Distributed 
Data

•Transformations

•Actions

Example of an 
application:
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Spark Context (1)

28

•Every Spark application requires a spark context: the main 
entry point to the Spark API

•Spark Shell provides a preconfigured Spark Context called “sc”
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Spark Context (2)

29

•Standalone applications  Driver code  Spark Context
•Spark Context holds configuration information and represents 
connection to a Spark cluster

Standalone Application 
(Drives Computation)
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Spark Context (3)

30

Spark context works as a client and represents 
connection to a Spark cluster
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Spark Fundamentals

31

•Spark Context

•Resilient Distributed 
Data

•Transformations

•Actions

Example of an application:
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Resilient Distributed Dataset (RDD)

32

The RDD (Resilient Distributed Dataset) is the fundamental unit of data in Spark: 
An Immutable collection of objects (or records, or elements) that can be operated 
on “in parallel” (spread across a cluster)
Resilient -- if data in memory is lost, it can be recreated

• Recover from node failures
• An RDD keeps its lineage information  it can be recreated from parent RDDs

Distributed -- processed across the cluster
• Each RDD is composed of one or more partitions  (more partitions – more parallelism)

Dataset -- initial data can come from a file or be created
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RDDs

33

Key Idea: Write applications in terms of transformations 
on distributed datasets.  One RDD per transformation.

• Organize the RDDs into a DAG showing how data flows.
• RDD can be saved and reused or recomputed.  Spark can 

save it to disk if the dataset does not fit in memory
• Built through parallel transformations (map, filter, group-by, 

join, etc).  Automatically rebuilt on failure
• Controllable persistence (e.g. caching in RAM)
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RDDs are designed to be “immutable”

34

• Create once, then reuse without changes.  Spark knows 
lineage  can be recreated at any time  Fault-tolerance

• Avoids data inconsistency problems (no simultaneous 
updates)  Correctness

• Easily live in memory as on disk  Caching  Safe to 
share across processes/tasks  Improves performance

• Tradeoff: (Fault-tolerance & Correctness)  vs (Disk Memory & 
CPU)
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Creating a RDD

35

Three ways to create a RDD
• From a file or set of files
• From data in memory
• From another RDD
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RDD COMPILES TO MAPREDUCE!

The RDD language is designed around primitives that all can 
compile to the MapReduce pattern

In effect, you are doing high-level MapReduce programming, and 
your code will automatically be parallelized.  

By adding hints about caching, performance can be very high!
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Example: A File-based RDD
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Spark Fundamentals

38

•Spark Context

•Resilient Distributed 
Data

•Transformations

•Actions

Example of an application:
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RDD Operations

39

Two types of operations
Transformations: Define a 
new RDD based on current 
RDD(s)
Actions: return values
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RDD Transformations

40

•Set of operations on a RDD that define how they should 
be transformed

•As in relational algebra, the application of a 
transformation to an RDD yields a new RDD (because 
RDD are immutable)

•Transformations are lazily evaluated, which allow for 
optimizations to take place before execution

•Examples: map(), filter(), groupByKey(), sortByKey(), 
etc.
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Example: map and filter Transformations
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RDD Actions

42

•Apply transformation chains on RDDs, eventually performing 
some additional operations (e.g., counting)

•Some actions only store data to an external data source (e.g. 
HDFS), others fetch data from the RDD (and its transformation 
chain) upon which the action is applied, and convey it to the 
driver

•Some common actions
count() – return the number of elements
take(n) – return an array of the first n elements
collect()– return an array of all elements
saveAsTextFile(file) – save to text file(s)
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Graph of RDDs

 A collection of RDDs can be understood as a graph

 Nodes in the graph are the RDDs, which means the code but also the actual 
data object that could would create at runtime when executed on specific 
parameters + data.  Reminder: Hadoop is a “read only” model, so we can 
“materialize” an RDD any time we like.

 Edges represent how data objects are accessed: RDD B might consume the 
object created by RDD A.  This gives us a directed edge A → B
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Lazy Execution of RDDs (1)

44

Data in RDDs is not processed 
until an action is performed
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Lazy Execution of RDDs (2)

45

Data in RDDs is not processed 
until an action is performed
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Lazy Execution of RDDs (3)

46

Data in RDDs is not processed 
until an action is performed
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Lazy Execution of RDDs (4)

47

Data in RDDs is not processed 
until an action is performed
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Lazy Execution of RDDs (5)

48

Data in RDDs is not processed 
until an action is performed

Output Action “triggers” computation, pull model
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Opportunities This Enables

 Automated compilation to MapReduce:  This is the fundamental reason we use 
Spark.  Instead of coding by hand we “script” parallel compute as a graph of RDDs

 On-demand optimization: Spark can behave like a compiler by first building a 
potentially complex RDD graph, but then trimming away unneeded computations that 
for today’s purpose, won’t be used.    

 Caching for later reuse.
 Graph transformations: A significant amount of effort is going into this area.  It is a lot 

like compiler-managed program transformation and aims at simplifying and speeding 
up the computation that will occur.

 Dynamic decisions about what to schedule and when.  Concept: minimum 
adequate set  of input objects: RDD can run if all  its inputs are ready
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Example: Mine error logs

50

Load error messages from a log into memory, then interactively 
search for various patterns:

lines = spark.textFile(“hdfs://...”)  HadoopRDD

errors = lines.filter(lambda s: s.startswith(“ERROR”)) FilteredRDD

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

messages.filter(lambda s: “foo” in s).count()

Result: full-text search of Wikipedia in 0.5 sec (vs 20 sec for on-disk data)
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Key feature: Elastic parallelism

RDDs operations are designed to leverage embarrassing parallelism and 
are coded to view “how many workers?” as a runtime decision.

Spark will always spread the task over the full set of nodes it is allocated.  
Normally this is one worker per K shards, so that the full set of shards is 
mapped to the full set of workers.  The resulting pattern is a highly 
concurrent execution that minimizes delays: a “partitioned computation” .

If some component crashes or even is just slow, Spark simply kills that 
task and launches a substitute.
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RDD and Partitions (Parallelism example)

52CS4414/5416 - Lecture  20



RDD Graph: Data Set vs Partition Views

53

Much like in Hadoop MapReduce, each RDD is associated to 
(input) partitions
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RDDs: Data Locality

54

•Data Locality Principle
 Keep high-value RDDs precomputed, in cache or SDD
 Run tasks that need the specific RDD with those same inputs 

on the node where the cached copy resides.
 This can maximize in-memory computational performance.

Requires cooperation between your hints to Spark when you 
build the RDD, Spark runtime and optimization planner, and the 
underlying YARN resource manager.
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RDDs -- Summary

55

RDD are partitioned, locality aware, distributed 
collections
 RDD are immutable

RDD are data structures that:
 Either point to a direct data source (e.g. HDFS)
 Apply some transformations to its parent RDD(s) to 

generate new data elements
Computations on RDDs
 Represented by lazily evaluated lineage DAGs composed 

by chained RDDs
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Lifetime of a Job in Spark
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Anatomy of a Spark Application

57

Cluster Manager 
(YARN/Mesos)
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Typical RDD pattern of use

Instead of doing a lot of work in each RDD, developers split 
tasks into lots of small RDDs

These are then organized into a DAG.

Developer anticipates which will be costly to recompute and 
hints to Spark that it should cache those.
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Why is this a good strategy?

Spark tries to run tasks that will need the same intermediary data on the 
same nodes.
If MapReduce jobs were arbitrary programs, this wouldn’t help because 
reuse would be very rare.
But in fact the MapReduce model is very repetitious and iterative, and often 
applies the same transformations again and again to the same input files.

 Those particular RDDs become great candidates for caching.
 MapReduce programmer may not know how many iterations will occur, but 

Spark itself is smart enough to evict RDDs if they don’t actually get reused.
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Iterative Algorithms: Spark vs MapReduce
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Today’s Topics

61

•Motivation
•Spark Basics
•Spark Programming
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Spark Programming (1)

62

Creating RDDs
# Turn a Python collection into an RDD
sc.parallelize([1, 2, 3])

# Load text file from local FS, HDFS, or S3
sc.textFile(“file.txt”)
sc.textFile(“directory/*.txt”)
sc.textFile(“hdfs://namenode:9000/path/file”)

# Use existing Hadoop InputFormat (Java/Scala only)
sc.hadoopFile(keyClass, valClass, inputFmt, conf)
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Spark Programming (2)

63

Basic Transformations

nums = sc.parallelize([1, 2, 3])

# Pass each element through a function
squares = nums.map(lambda x: x*x) // {1, 4, 9}

# Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) // {4}
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Spark Programming (3)

64

Basic Actions
nums = sc.parallelize([1, 2, 3])

# Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

# Return first K elements
nums.take(2) # => [1, 2]

# Count number of elements
nums.count() # => 3

# Merge elements with an associative function
nums.reduce(lambda x, y: x + y) # => 6
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Spark Programming (4)

65

Working with Key-Value Pairs
Spark’s “distributed reduce” transformations operate on RDDs of key-value pairs

Python:  pair = (a, b)

pair[0] # => a

pair[1] # => b

Scala:   val pair = (a, b)

pair._1 // => a

pair._2 // => b

Java: Tuple2 pair = new Tuple2(a, b);

pair._1 // => a

pair._2 // => b
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Spark Programming (5)

66

Some Key-Value Operations

pets = sc.parallelize([(“cat”, 1), (“dog”, 1), (“cat”, 2)])

pets.reduceByKey(lambda x, y: x + y)    # => {(cat, 3), (dog, 1)}

pets.groupByKey()     # => {(cat, [1, 2]), (dog, [1])}

pets.sortByKey()      # => {(cat, 1), (cat, 2), (dog, 1)}
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Example: Word Count

67

lines = sc.textFile(“hamlet.txt”)
counts = lines.flatMap(lambda line: line.split(“ “))

.map(lambda word: (word, 1))

.reduceByKey(lambda x, y: x + y)
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Example: Spark Streaming

68

Represents streams as a series of RDDs over time 
(typically sub second intervals, but it is configurable)

val spammers = sc.sequenceFile(“hdfs://spammers.seq”)
sc.twitterStream(...)

.filter(t => t.text.contains(“Santa Clara University”))

.transform(tweets => tweets.map(t => (t.user, t)).join(spammers))

.print()

CS4414/5416 - Lecture  20



Spark: Combining Libraries (Unified Pipeline)
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# Load data using Spark SQL

points = spark.sql(“select latitude, longitude from tweets”)

# Train a machine learning model

model = KMeans.train(points, 10)

# Apply it to a stream

sc.twitterStream(...)

.map(lambda t: (model.predict(t.location), 1))

.reduceByWindow(“5s”, lambda a, b: a + b)



Spark: Setting the Level of Parallelism

70

All the pair RDD operations take an optional second parameter 
for number of tasks

words.reduceByKey(lambda x, y: x + y, 5)

words.groupByKey(5)

visits.join(pageViews, 5)

CS4414/5416 - Lecture  20



Summary

Spark is a powerful “manager” for big data computing.
It centers on a job scheduler for Hadoop (MapReduce) that is 
smart about where to run each task: co-locate task with data.
The data objects are “RDDs”:  a kind of recipe for generating a file 
from an underlying data collection.  RDD caching allows Spark to 
run mostly from memory-mapped data, for speed.

71

• Online tutorials: spark.apache.org/docs/latest
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SELF-STUDY QUESTIONS

Spark RDDs look very similar to Python SQL or LINQ

What are some things Spark can do that would not 
automatically occur if you coded the same RDD query 
as a Python SQL query and just treated the entire data 
set as a single giant collection of objects?
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SELF-STUDY QUESTIONS

Matei Zaharia thinks of Spark RDDs as a high level 
programming language that compiles to MapReduce.

Research his publications on Spark RDD “transformations,” 
such as this paper.  What are some PL optimization 
concepts that Spark is adopting when it maps RDDs to 
MapReduce on sharded data?
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https://theory.stanford.edu/%7Eaiken/publications/papers/sosp19.pdf


Self study questions

Is Spark a universal programming language for 
embarrassingly parallel computing?

Try to construct an example of a task that Spark cannot be 
used to solve, or at least not in a natural way.

Hint: If you know SQL, think about joins.
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