
Apache Tools Ken Birman
CS4414/5416 Lecture 22

CS4414/5416 - Fall 2025 1

PUTTING IT ALL TOGETHER

Reminder: Apache Hadoop Ecosystem (bottom to top)

➢ HDFS (Distributed File System, implemented as a sharded KVS)
➢ HBase (Distributed NoSQL Database -- distributed map)
➢ YARN (Resource Manager)
➢ MapReduce (Data Processing Framework)
➢ Zookeeper (Monitoring and configuration management).
➢ … any many more elements, each an entire distributed program. Too many to

discuss all of them in CS4414/5416 this year.

CS4414/5416 - Fall 2025 2

Hadoop Ecosystem: Processing

CS4414/5416 - Fall 2025 3

Yet Another Resource
Negotiator (YARN)

Map
Reduce Hive

Spark
Stream

Other
Applications

Data Ingest
Systems

e.g.,
Apache
Kafka,

Flume, etcHadoop NoSQL
Database (HBase)

Hadoop Distributed
File System (HDFS)

PigProcessing

Apache Hive: SQL on MapReduce

CS4414/5416 - Fall 2025 4

Hive is an abstraction layer on top of Hadoop (MapReduce/Spark)

Use Cases:

 Data Preparation
 Extraction-Transformation-Loading Jobs (Data Warehousing)
 Data Mining

Apache Hive: SQL on MapReduce

CS4414/5416 - Fall 2025 5

Hive is an abstraction layer on top of Hadoop (MapReduce/Spark)

➢ Hive uses a SQL-like language called HiveQL

➢ Facilitates reading, writing, and managing large datasets residing in
distributed storage using SQL-like queries

➢ Hive executes queries using MapReduce (and also using Spark)
○ HiveQL queries → Hive → MapReduce Jobs

Apache Hive

CS4414/5416 - Fall 2025 6

➢ Structure is applied to data at time of read → No need to worry about
formatting the data at the time when it is stored in the Hadoop cluster

➢ Data can be read using any of a variety of formats:
○ Unstructured flat files with comma or space-separated text
○ Semi-structured JSON files (a web standard for event-oriented data such

as news feeds, stock quotes, weather warnings, etc)
○ Structured HBase tables

➢ Hive is not designed for online transaction processing. Hive should be
used for “data warehousing” tasks, not arbitrary transactions.

Apache Pig: Scripting on MapReduce

CS4414/5416 - Fall 2025 7

Pig is an abstraction layer on top of Hadoop (MapReduce/Spark)

➢Use Cases:
○ Data Preparation
○ ETL Jobs (Data Warehousing)
○ Data Mining

Apache Pig: Scripting on MapReduce

CS4414/5416 - Fall 2025 8

Pig is an abstraction layer on top of Hadoop (MapReduce/Spark)

➢ Code is written in Pig Latin “script” language (a data flow language)
➢ Facilitates reading, writing, and managing large datasets residing in

distributed storage
➢ Pig executes queries using MapReduce (and also using Spark)

○ Pig Latin scripts → Pig → MapReduce Jobs

Apache Hive & ApachePig

CS4414/5416 - Fall 2025 9

➢ Instead of writing Java code to implement MapReduce, one can opt
between Pig Latin and Hive SQL to construct MapReduce programs

➢Much fewer lines of code compared to MapReduce, which reduces
the overall development and testing time

Apache Hive vs Apache Pig

CS4414/5416 - Fall 2025 10

➢ Declarative SQL-like language
(HiveQL)

➢ Operates on the server side of any
cluster

➢ Better for structured Data
➢ Easy to use, specifically for

generating reports
➢ Data Warehousing tasks
➢ Facebook

➢ Procedural data flow language (Pig Latin)
➢ Runs on client side of any cluster
➢ Best for semi structured data
➢ Better for creating data pipelines

○ allows developers to decide where to
checkpoint data in the pipeline

➢ Incremental changes to large data sets
and also better for streaming

➢ Yahoo

Apache Hive vs Apache Pig

CS4414/5416 - Fall 2025 11

➢ Declarative SQL-like language
(HiveQL)

➢ Operates on the server side of
any cluster

➢ Better for structured Data
➢ Easy to use, specifically for

generating reports
➢ Data Warehousing tasks
➢ Facebook

➢ Procedural data flow language (Pig Latin)
➢ Runs on client side of any cluster
➢ Best for semi structured data
➢ Better for creating data pipelines

○ allows developers to decide where to
checkpoint data in the pipeline

➢ Incremental changes to large data sets
and also better for streaming

➢ Yahoo

Comment: “client side”??

When we say “runs on client side” we don’t mean “runs on the
iPhone”. Here the client is any application using Hadoop.

So the “client side” is just “the code that consumes the Pig
output”. But a developer like you might write that code.

In contrast, the “server side” lives “inside the Hive/HDFS layer”

12CS4414/5416 - Fall 2025

Apache Hive vs ApachePig: example

CS4414/5416 - Fall 2025 13

insert into ValuableClicksPerDMA
select dma, count(*)
from geoinfo join (
select name, ipaddr
from users join clicks on
(users.name = clicks.user)
where value > 0;
) using ipaddr
group by dma;

Users = load 'users' as (name, age, ipaddr);
Clicks = load 'clicks' as (user, url, value);
ValuableClicks = filter Clicks by value > 0;
UserClicks = join Users by name, ValuableClicks by user;
Geoinfo = load 'geoinfo' as (ipaddr, dma);
UserGeo = join UserClicks by ipaddr, Geoinfo by ipaddr;
ByDMA = group UserGeo by dma;
ValuableClicksPerDMA = foreach ByDMA generate group,
COUNT(UserGeo);
store ValuableClicksPerDMA into 'ValuableClicksPerDMA';

Job: Get data from sources users and clicks is to be joined and filtered, and then joined
to data from a third source geoinfo and aggregated and finally stored into a table
ValuableClicksPerDMA

Hadoop Ecosystem: Data Ingestion

CS4414/5416 - Fall 2025 14

Yet Another Resource
Negotiator (YARN)

Map
Reduce Hive

Spark
Stream

Other
Applications

Data Ingest
Systems

e.g.,
Apache
Kafka,

Flume, etcHadoop NoSQL
Database (HBase)

Hadoop Distributed
File System (HDFS)

Pig

Data Ingestion Systems/Tools (1)

CS4414/5416 - Fall 2025 15

Hadoop typically ingests data from many sources and in many formats:

➢ Traditional data management systems, e.g. databases
➢ Logs and other machine generated data (event data)
➢ e.g., Apache Sqoop, Apache Fume, Apache Kafka (focus of this class)

StorageData Ingest
Systems

HBase

HDFS

Data Ingestion Systems/Tools (2)

CS4414/5416 - Fall 2025 16

➢ Apache Sqoop
○ High speed import to HDFS from Relational Database (and vice versa)
○ Supports many database systems,

e.g. Mongo, MySQL, Teradata, Oracle

➢ Apache Flume
○ Distributed service for ingesting streaming data
○ Ideally suited for event data from multiple systems, for example, log files

Kafka: Apache’s “Publish-Subscribe” tool

The Apache ecosystem is pretty elaborate. It has many “tools”,
and several are implemented as separate μ-services.

The μ-services run in pools: we configure the cloud to
automatically add instances if the load rises, reduce if it drops

So how can individual instances belonging to a pool cooperate?

17CS4414/5416 - Fall 2025

Brief recap: models of
communication we’ve learned about
By now we actually know about a lot of ways that separate
programs can communicate with one-another
 Build your own solution on TCP or a more basic protocol (UDP)
 The “web services” layer built over HTTPS web pages
 Goggle GRPC (or other vendor-supplied RPC solutions)
 Atomic multicast, best-effort “reliable broadcast”, Paxos with

replicated persistent logs of all messages

18CS4414/5416 - Fall 2025

Some come with computing
“models” as well
For example, virtual synchrony allows the application members to form a
“process group” and reports updates when the “current membership view”
changes due to joining/leaving/failures

Derecho goes further and also allows sharded subgroups, and automatically
“maps” the view to the desired “layout”. Each process learns its role by
looking itself up in the view.

Zookeeper only tracks membership, via a file, but you can still use it to
implement similar functionality to Derecho and virtual synchrony

19CS4414/5416 - Fall 2025

Concept: “Publish-Subscribe” tool

This is a model in which we provide message queuing/storage
middleware to glue requestors to workers, with looser coupling.

The requests arrive as “published messages”, on “topics”

The workers monitor topics (“subscribe”).

20CS4414/5416 - Fall 2025

Apache Kafka

CS4414/5416 - Fall 2025 21

➢ Functions like a distributed publish-subscribe messaging system (or a
distributed streaming platform)
○ A high throughput, scalable messaging system
○ Distributed, reliable publish-subscribe system
○ Design as a message queue & Implementation as a distributed log service

➢Originally developed by LinkedIn, now widely popular

➢ Features: Durability, Scalability, High Availability, High Throughput

➢ Check out the awesome Kafka “intro” video here.

https://youtu.be/06iRM1Ghr1k

Two variants

Publish subscribe often has a “broadcast” behavior, usually called “data
dissemination service” or DDS mode.
 Every subscriber sees every message, but only starting when

it joined (subscribed). Older messages are invisible to it (like Zoom chat).
 Very fast, no permanent logging. Kafka DDS works this way,

There is also a more transactional approach to allow one random subscriber
to consume a request, process it, and send a resulta

CS4414/5416 - Fall 2025 22

Two variants

The second option is more like a ticketing system

Incoming requests will be handled by a single worker, picked at
random if there are many free workers waiting for tasks to do.

It uses a stored message approach (just like a ticketing system):
new tasks are first queued and logged, then assigned.

CS4414/5416 - Fall 2025 23

Transactions in this context

With a pool of instances, who should handle a new request?
 In Kafka, the transactional mode is used in most microservices
 Kafka itself picks one currently “ready” subscriber to handle each new

request. It will perform the task, then respond.
 This runs as a form of transaction. If the worker crashes, some

other worker will be assigned to “take over” and retry it.
 Assigned tasks are not visible to other service instances while

being processed.

CS4414/5416 - Fall 2025 24

What is Apache Kafka used for? (1)

CS4414/5416 - Fall 2025 25

➢ The original use case (@LinkedIn):
○ To track user behavior on websites.

○ Site activity (page views, searches, or other actions users might take) is
published to central topics, with one topic per activity type.

➢ Effective for two broad classes of applications:
○ Building real-time streaming data pipelines that reliably get data between

systems or applications
○ Building real-time streaming applications that transform or react to the

streams of data

What is Apache Kafka used for? (2)

CS4414/5416 - Fall 2025 26

➢ Lets you publish and subscribe to streams of records, similar to a
message queue or enterprise messaging system

➢ Lets you store streams of records in a fault-tolerant way

➢ Lets you process streams of records as they occur

➢ Lets you have both offline and online message consumption

Apache Kafka: Fundamentals

CS4414/5416 - Fall 2025 27

➢ Kafka is run as a cluster on one or more servers

➢ The Kafka cluster stores streams of records in categories called topics

➢ Each record (or message) consists of a key, a value, and a timestamp

➢ Kafka does NOT use Point-to-Point: Messages persisted in a queue, a
particular message is consumed by a maximum of one consumer only

➢ Publish-Subscribe: Messages are persisted in a topic, consumers can
subscribe to one or more topics and consume all the messages in that topic

Apache Kafka: Components

CS4414/5416 - Fall 2025 28

Logical Components:
➢ Topic: The named destination of partition
➢ Partition: One Topic can have multiple partitions and it is an unit of parallelism
➢ Record or Message: Key/Value pair (+ Timestamp)

Physical Components:
➢ Producer: The role to send message to broker
➢ Consumer: The role to receive message from broker
➢ Broker: One node of Kafka cluster
➢ ZooKeeper: Coordinator of Kafka cluster and consumer groups

Apache Kafka: Topics & Partitions (1)

CS4414/5416 - Fall 2025 29

➢ A stream of messages belonging to a particular category is called a
topic (or a feed name to which records are published)

➢ Data is stored in topics.
➢ Topics in Kafka are always multi-subscriber -- a topic can have

zero, one, or many consumers that subscribe to the data written to it
➢ Topics are split into partitions. Topics may have many partitions, so

it can handle an arbitrary amount of data

Apache Kafka: Topics & Partitions (2)

CS4414/5416 - Fall 2025 30

➢ For each topic, the Kafka cluster
maintains a partitioned log that
looks like this:

➢ Each partition is an ordered,
immutable sequence of records
that is continually appended to -- a
structured commit log.

➢ Partition offset: The records in the
partitions are each assigned a
sequential id number called the
offset that uniquely identifies each
record within the partition.

Apache Kafka: Topics & Partitions (3)

CS4414/5416 - Fall 2025 31

➢ The only metadata retained on a per-
consumer basis is the offset or
position of that consumer in the log.

➢ This offset is controlled by the
consumer -- normally a consumer will
advance its offset linearly as it reads
records (but it can also consume
records in any order it likes)

Apache Kafka: Topics & Partitions (4)

CS4414/5416 - Fall 2025 32

The partitions in the log serve several purposes:
➢ Allow the log to scale beyond a size that will fit on a single server.

➢ Handles an arbitrary amount of data -- a topic may have many partitions

➢ Acts as the unit of parallelism

Apache Kafka: Distribution of Partitions(1)

CS4414/5416 - Fall 2025 33

➢ The partitions are distributed over the servers in the Kafka cluster and each
partition is replicated for fault tolerance

➢ Each partition has one server acts as the “leader” (broker) and zero or more
servers act as “followers” (brokers).

➢ The leader handles all read and write requests for the partition

➢ The followers passively replicate the leader. If the leader fails, one of the
followers will automatically become the new leader.

➢ Load Balancing: Each server acts as a leader for some of its partitions and a
follower for others within the cluster.

Apache Kafka: Distribution of Partitions (2)

CS4414/5416 - Fall 2025 34

Here, a topic is configured into
three partitions.

Partition 1 has two offset factors 0
and 1.

Partition 2 has four offset factors 0,
1, 2, and 3.

Partition 3 has one offset factor 0.

The id of the replica is same as the
id of the server that hosts it.

Apache Kafka: Components

CS4414/5416 - Fall 2025 35

Logical Components:
➢ Topic: The named destination of partition
➢ Partition: One Topic can have multiple partitions and it is an unit of parallelism
➢ Record or Message: Key/Value pair (+ Timestamp)

Physical Components:
➢ Producer: The role to send message to broker
➢ Consumer: The role to receive message from broker
➢ Broker: One node of Kafka cluster
➢ ZooKeeper: Coordinator of Kafka cluster and consumer groups

Apache Kafka: Producers

CS4414/5416 - Fall 2025 36

➢ Producers publish data to the topics of their choice.

➢ The producer is responsible for choosing which record to assign to
which partition within the topic.

➢ Record to Topic: In a round-robin fashion simply to balance load or
can be done according to some semantic partition function

Apache Kafka: Consumers

CS4414/5416 - Fall 2025 37

➢ Consumer group: Balance consumers to partitions

➢ Consumers label themselves with a consumer group name

➢ Each record published to a topic is delivered to one consumer
instance within each subscribing consumer group

➢ If all the consumer instances have the same consumer group, then the
records will effectively be load balanced over the consumer instances.

➢ If all the consumer instances have different consumer groups, then
each record will be broadcast to all the consumer processes.

Apache Kafka: Producers & Consumers

CS4414/5416 - Fall 2025 38

Example:
A two server Kafka cluster hosting four
partitions (P0 to P3) with two consumer
groups (A & B). Consumer group A has
two consumer instances (C1 & C2) and
group B has four (C3 to C6).

Apache Kafka: Design Guarantees (1)

CS4414/5416 - Fall 2025 39

➢ Records (or Messages) sent by a producer to a particular topic partition
will be appended in the order they are sent.

➢ A consumer instance sees records in the order they are stored in the log.

➢ For a topic with replication factor N, we will tolerate up to N-1 server
failures without losing any records committed to the log.

Apache Kafka: Design Guarantees (2)

CS4414/5416 - Fall 2025 40

Message Delivery Semantics:
➢ At most once: Messages may be lost but are never redelivered.

➢ At least once: Messages are never lost but may be redelivered.

➢ Exactly once: Each message is delivered once and only once

Apache Kafka: Four Core APIs (1)

CS4414/5416 - Fall 2025 41

Producer API: Allows an application to publish a
stream of records to one or more Kafka topics

Consumer API: Allows an application to
subscribe to one or more topics and process the
stream of records produced to them

Streams API: Allows an application to act as a
stream processor -- consuming an input stream
from one or more topics and producing an output
stream to one or more output topics

Apache Kafka: Four Core APIs (2)

CS4414/5416 - Fall 2025 42

Connector API:
Allows building and running producers or
consumers that connect Kafka topics to existing
applications or data systems.

For example, a connector to a relational
database might capture every change to a table.

Kafka ← Messaging + Storage + Streaming

CS4414/5416 - Fall 2025 43

➢ Messaging:

○ The consumer group allows you to divide up processing over a
collection of processes (as a queue)

○ Allows you to broadcast messages to multiple consumer groups (as
with publish-subscribe).

➢ Storage: Data written to Kafka is written to disk and replicated for fault-
tolerance.

➢ Streaming: Takes continuous streams of data from input topics →
Processing → Produces continuous streams of data to output topics.

Cascade DDS (built with Derecho) versus Kafka
Direct DDS. Not shown: Cascade DDS has
higher throughput. This graph focuses on delay

CS4414/5416 - Fall 2025 44

Smaller is better

Tighter is better

Logarithmic Y axis

Cascade DDS (built with Derecho) versus Kafka
Direct DDS. Not shown: Cascade DDS has
higher throughput. This graph focuses on delay

CS4414/5416 - Fall 2025 45

Smaller is better

Tighter is better

Logarithmic Y axis Kafka delays can be
1000x larger than the

median delay!

What did this tell us?

Much like Zookeeper, Kafka is actually rather slow and balky

The performance issues reflect the way it implements the atomic
multicast protocol it uses, and from the way it does batching.

Recall that Derecho has an optimal atomic multicast and does
opportunistic batching. That paid off with lower latency and fewer
long delays, yet the throughput of Derecho is actually much higher

CS4414/5416 - Fall 2025 46

SUMMARY

Many big data systems are built using the standard Apache tools.

We’ve now seen a number of them.

The resulting systems are large and complex, often have many
“moving parts”, and manage themselves. They can be slow, but
despite that are very widely used.

CS4414/5416 - Fall 2025 47

Self-Test: None for today!

We will not be testing on the slides in Lecture 22, so we have no
self-test questions today.

But these tools are still important to know about! Almost
everyone uses Kafka or Zookeeper (or both) from time to time!

Many of the Apache tools are incredibly useful (and easy to use,
too!) and this is why they are so widely popular.

CS4414/5416 - Fall 2025 48

	Apache Tools
	PUTTING IT ALL TOGETHER
	Hadoop Ecosystem: Processing
	Apache Hive: SQL on MapReduce
	Apache Hive: SQL on MapReduce
	Apache Hive
	Apache Pig: Scripting on MapReduce
	Apache Pig: Scripting on MapReduce
	Apache Hive & ApachePig
	Apache Hive vs Apache Pig
	Apache Hive vs Apache Pig
	Comment: “client side”??
	Apache Hive vs ApachePig: example
	Hadoop Ecosystem: Data Ingestion
	Data Ingestion Systems/Tools (1)
	Data Ingestion Systems/Tools (2)
	Kafka: Apache’s “Publish-Subscribe” tool
	Brief recap: models of communication we’ve learned about
	Some come with computing “models” as well
	Concept: “Publish-Subscribe” tool
	Apache Kafka
	Two variants
	Two variants
	Transactions in this context
	What is Apache Kafka used for? (1)
	What is Apache Kafka used for? (2)
	Apache Kafka: Fundamentals
	Apache Kafka: Components
	Apache Kafka: Topics & Partitions (1)
	Apache Kafka: Topics & Partitions (2)
	Apache Kafka: Topics & Partitions (3)
	Apache Kafka: Topics & Partitions (4)
	Apache Kafka: Distribution of Partitions(1)
	Apache Kafka: Distribution of Partitions (2)
	Apache Kafka: Components
	Apache Kafka: Producers
	Apache Kafka: Consumers
	Apache Kafka: Producers & Consumers
	Apache Kafka: Design Guarantees (1)
	Apache Kafka: Design Guarantees (2)
	Apache Kafka: Four Core APIs (1)
	Apache Kafka: Four Core APIs (2)
	Kafka ← Messaging + Storage + Streaming
	Cascade DDS (built with Derecho) versus Kafka Direct DDS. Not shown: Cascade DDS has higher throughput. This graph focuses on delay
	Cascade DDS (built with Derecho) versus Kafka Direct DDS. Not shown: Cascade DDS has higher throughput. This graph focuses on delay
	What did this tell us?
	SUMMARY
	Self-Test: None for today!

