FANVIANYVIANYVIANYVIANYI/ANYIAN

; Qﬂ%ﬂ\ﬂ\ﬂ“ﬂ%ﬂ& /
NYZANYZANYZANYZANYZANYZANTZAN
ZAN\YZANYZANVZANVZANYZANYZ4\Y7
NYZANYZANYZANYZANYZANYZANTZ4N

JANVIANVIANVIANVIANVIANVIANYS

Ken Birman
ApaChe TOOIS | Cg4414l54a116 Lecture 22

PUTTING IT ALL TOGETHER

Reminder: Apache Hadoop Ecosystem (bottom to top)

> HDFS (Distributed File System, implemented as a sharded KVS)

> HBase (Distributed NoSQL Database -- distributed map)

> YARN (Resource Manager)

> MapReduce (Data Processing Framework)

> Zookeeper (Monitoring and configuration management).

> ... any many more elements, each an entire distributed program. Too many to
discuss all of them in CS4414/5416 this year.

CS4414/5416 - Fall 2025 2

| Hadoop Ecosystem: Processing

Processing

~
[Map Other | Spark
i Reduce Applications | Stream

Yet Another Resource | Data Ingest
Negotiator (YARN) : Systems
e.g.,
et e Apache

Database (HBase)

Hadoop Distributed Hadoop NoSQL | Flume, etc
File System (HDFS)

I

I

I

e N\ | Kafka,
I

I

|

CS4414/5416 - Fall 2025 3

|Apache Hive: SQL on MapReduce

Hive is an abstraction layer on top of Hadoop (MapReduce/Spark)

Use Cases: N\
~HIVE

» Data Preparation

» Extraction-Transformation-Loading Jobs (Data Warehousing)
» Data Mining

CS4414/5416 - Fall 2025 4

Apache Hive: SQL on MapReduce

Hive is an abstraction layer on top of Hadoop (MapReduce/Spark)

> Hive uses a SQL-like language called HiveQL

> Facilitates reading, writing, and managing large datasets residing in
distributed storage using SQL-like queries

> Hive executes queries using MapReduce (and also using Spark)
o HiveQL queries — Hive — MapReduce Jobs

CS4414/5416 - Fall 2025 5

ApaChe Hlve 1 IVE
Structure is applied to data at time of read — No need to worry about
formatting the data at the time when it is stored in the Hadoop cluster
Data can be read using any of a variety of formats:
Unstructured flat files with comma or space-separated text
Semi-structured JSON files (a web standard for event-oriented data such

as news feeds, stock quotes, weather warnings, etc)
Structured HBase tables

> Hive is not designed for online transaction processing. Hive should be
used for “data warehousing” tasks, not arbitrary transactions.

CS4414/5416 - Fall 2025 6

Apache Pig: Scripting on MapReduce

Pig is an abstraction layer on top of Hadoop (MapReduce/Spark)

> Use Cases:

o Data Preparation
o ETL Jobs (Data Warehousing)
o Data Mining

CS4414/5416 - Fall 2025 7

Apache Pig: Scripting on MapReduce

Pig is an abstraction layer on top of Hadoop (MapReduce/Spark)

> Code is written in Pig Latin “script” language (a data flow language)
> Facilitates reading, writing, and managing large datasets residing in
distributed storage

> Pig executes queries using MapReduce (and also using Spark)
o Pig Latin scripts —» Pig — MapReduce Jobs

CS4414/5416 - Fall 2025 8

Apache Hive & ApachePig

> |nstead of writing Java code to implement MapReduce, one can opt
between Pig Latin and Hive SQL to construct MapReduce programs

> Much fewer lines of code compared to MapReduce, which reduces
the overall development and testing time

CS4414/5416 - Fall 2025 9

Apache Hive vs

> Declarative SQL-like language
(HiveQL)

> QOperates on the server side of any
cluster

> Better for structured Data

> Easy to use, specifically for
generating reports

> Data Warehousing tasks

> Facebook

Apache Pig

> Procedural data flow language (Pig Latin)
> Runs on client side of any cluster
> Best for semi structured data

> Better for creating data pipelines
o allows developers to decide where to
checkpoint data in the pipeline

> |Incremental changes to large data sets
and also better for streaming
> Yahoo

CS4414/5416 - Fall 2025 10

Apache Hive vs

> Declarative SQL-like language
(HiveQL)

> Operates on the server side of

any cluster
> Better for structured Data
> Easy to use, specifically for
generating reports
> Data Warehousing tasks
> Facebook

Apache Pig

> Procedural data flow language (Pig Latin)

> Runs on client side of any cluster

> Best for semi structured data

> Better for creating data pipelines
o allows developers to decide where to
checkpoint data in the pipeline

> |ncremental changes to large data sets
and also better for streaming
> Yahoo

CS4414/5416 - Fall 2025 11

Comment: “client side”??

When we say “runs on client side” we don’t mean “runs on the
IPhone”. Here the client is any application using Hadoop.

So the “client side” is just “the code that consumes the Pig
output”. But a developer like you might write that code.

In contrast, the “server side” lives “inside the Hive/HDFS layer

CS4414/5416 - Fall 2025 12

| Apache Hive vs ApachePig: example

Job: Get data from sources users and clicks is to be joined and filtered, and then joined

to data from a third source geoinfo and aggregated and finally stored into a table
ValuableClicksPerDMA

insert into ValuableClicksPerDMA Users = load 'users' as (name, age, ipaddr);

select dma, count (*) Clicks = load 'clicks' as (user, url, value);

from geoinfo join (ValuableClicks = filter Clicks by wvalue > 0;

select name, ipaddr UserClicks = join Users by name, ValuableClicks by user;
from users join clicks on Geoinfo = load 'geoinfo' as (ipaddr, dma);

(users.name = clicks.user) UserGeo = join UserClicks by ipaddr, Geoinfo by ipaddr;
where value > 0; ByDMA = group UserGeo by dma;

) using ipaddr ValuableClicksPerDMA = foreach ByDMA generate group,
group by dma; COUNT (UserGeo) ;

store ValuableClicksPerDMA into 'ValuableClicksPerDMA';

CS4414/5416 - Fall 2025 13

| Hadoop Ecosystem: Data Ingestion

~
I 12l - : Other : Spark
I[Reduce } Pig [Applications]i Stream

|
Yet Another Resource | Data Ingest
' Negotiator (YARN) - Syestgems
| g.,
: e .. Apache
e N | Kafka,
| [Hadoop Distributed } [Hadoop NoSQL } I Flume, etc
, File System (HDFS) Database (HBase) E
|
|

CS4414/5416 - Fall 2025 14

Data Ingestion Systems/Tools (1)

Hadoop typically ingests data from many sources and in many formats:

> Traditional data management systems, e.g. databases
> Logs and other machine generated data (event data)
> e.g., Apache Sqoop, Apache Fume, Apache Kafka (focus of this class)

4 R

C HBase)
Data Ingest , Storage
Systems ' [HDES }

N)

CS4414/5416 - Fall 2025 15

Data Ingestion Systems/Tools (2)

> Apache Sqoop
o High speed import to HDFS from Relational Database (and vice versa)

o Suppc;rts many database systems,
e.g. Mongo, MySQL, Teradata, Oracle

> Apache Flume
o Distributed service for ingesting streaming data
o ldeally suited for event data from multiple systems, for example, log files

CS4414/5416 - Fall 2025 16

Kafka: Apache’s “Publish-Subscribe” tool

The Apache ecosystem is pretty elaborate. It has many “tools”,
and several are implemented as separate py-services.

The p-services run in pools: we configure the cloud to
automatically add instances if the load rises, reduce if it drops

So how can individual instances belonging to a pool cooperate?

CS4414/5416 - Fall 2025 17

Brief recap: models of
communication we’ve learned about

By now we actually know about a lot of ways that separate
programs can communicate with one-another

» Build your own solution on TCP or a more basic protocol (UDP)
» The “web services” layer built over HTTPS web pages
» Goggle GRPC (or other vendor-supplied RPC solutions)

» Atomic multicast, best-effort “reliable broadcast”, Paxos with
replicated persistent logs of all messages

CS4414/5416 - Fall 2025 18

Some come with computing
“models” as well

For example, virtual synchrony allows the application members to form a
“process group” and reports updates when the “current membership view”
changes due to joining/leaving/failures

Derecho goes further and also allows sharded subgroups, and automatically
“maps” the view to the desired “layout”. Each process learns its role by
looking itself up in the view.

Zookeeper only tracks membership, via a file, but you can still use it to
implement similar functionality to Derecho and virtual synchrony

CS4414/5416 - Fall 2025 19

Concept: “Publish-Subscribe” tool

This is a model in which we provide message queuing/storage
middleware to glue requestors to workers, with looser coupling.

The requests arrive as “published messages”, on “topics”

The workers monitor topics (“subscribe”).

CS4414/5416 - Fall 2025 20

Apache Kafka g

Functions like a distributed publish-subscribe messaging system (or a
distributed streaming platform)

A high throughput, scalable messaging system

Distributed, reliable publish-subscribe system

Design as a message queue & Implementation as a distributed log service

Originally developed by LinkedIn, now widely popular
Features: Durability, Scalability, High Availability, High Throughput

Check out the awesome Kafka “intro” video here.

CS4414/5416 - Fall 2025 21

https://youtu.be/06iRM1Ghr1k

Two variants

Publish subscribe often has a “broadcast” behavior, usually called “data
dissemination service” or DDS mode.

Every subscriber sees every message, but only starting when
it joined (subscribed). Older messages are invisible to it (like Zoom chat).

Very fast, no permanent logging. Kafka DDS works this way,

There is also a more transactional approach to allow one random subscriber
to consume a request, process it, and send a resulta

CS4414/5416 - Fall 2025 22

Two variants

The second option is more like a ticketing system

Incoming requests will be handled by a single worker, picked at
random if there are many free workers waiting for tasks to do.

It uses a stored message approach (just like a ticketing system):
new tasks are first queued and logged, then assigned.

CS4414/5416 - Fall 2025 23

Transactions in this context

With a pool of instances, who should handle a new request?

>

>
>
>

In Kafka, the transactional mode is used in most microservices

Kafka itself picks one currently “ready” subscriber to handle each new
request. It will perform the task, then respond.

This runs as a form of transaction. If the worker crashes, some
other worker will be assigned to “take over” and retry it.

Assigned tasks are not visible to other service instances while
being processed.

CS4414/5416 - Fall 2025 24

What is Apache Kafka used for? (1)

> The original use case (@LinkedIn):
o To track user behavior on websites.

o Site activity (page views, searches, or other actions users might take) is
published to central topics, with one topic per activity type.

> Effective for two broad classes of applications:
o Building real-time streaming data pipelines that reliably get data between
systems or applications
o Building real-time streaming applications that transform or react to the
streams of data

CS4414/5416 - Fall 2025 25

What is Apache Kafka used for? (2)

> Lets you publish and subscribe to streams of records, similar to a
message gueue or enterprise messaging system

> Lets you store streams of records in a fault-tolerant way

> Lets you process streams of records as they occur

> Lets you have both offline and online message consumption

CS4414/5416 - Fall 2025 26

Apache Kafka: Fundamentals

> Kafka is run as a cluster on one or more servers
> The Kafka cluster stores streams of records in categories called topics

> Each record (or message) consists of a key, a value, and a timestamp

> Kafka does NOT use Point-to-Point: Messages persisted in a queue, a
particular message is consumed by a maximum of one consumer only

> Publish-Subscribe: Messages are persisted in a topic, consumers can
subscribe to one or more topics and consume all the messages in that topic

CS4414/5416 - Fall 2025 27

Apache Kafka: Components

Logical Components:

> Topic: The named destination of partition
> Partition: One Topic can have multiple partitions and it is an unit of parallelism
> Record or Message: Key/Value pair (+ Timestamp)

Physical Components:

> Producer: The role to send message to broker

> Consumer: The role to receive message from broker

> Broker: One node of Kafka cluster

> ZooKeeper: Coordinator of Kafka cluster and consumer groups

CS4414/5416 - Fall 2025 28

Apache Kafka: Topics & Partitions (1)

> A stream of messages belonging to a particular category is called a
topic (or a feed name to which records are published)

> Data is stored in topics.

> Topics in Kafka are always multi-subscriber -- a topic can have
zero, one, or many consumers that subscribe to the data written to it

> Topics are split into partitions. Topics may have many partitions, so
it can handle an arbitrary amount of data

CS4414/5416 - Fall 2025 29

Apache Kafka: Topics & Partitions (2)

> For each topic, the Kafka cluster > Each partition is an ordered,

maintains a partitioned log that immutable sequence of records
looks like this: that is continually appended to -- a

Anatomy of a Topic structured commit log.

Partition il1 1:

> Partition offset: The records in the
0 O11 (2314|567 (8|9

oj1]2; partitions are each assigned a
y \Wrms sequential id number called the

Partition
.1

offset that uniquely identifies each

rattion o1 |2 |alals|6|7 |8 |o|]]] ;i record within the partition.

—

Oid = [ew

CS4414/5416 - Fall 2025 30

Apache Kafka: Topics & Partitions (3)

> The only metadata retained on a per-

consumer basis is the offset or Producers
- . it
position of that consumer in the log. l_W” es
i i 1111,
> This offset is controlled by the 01112(3]|4]5(6|78]|9](q]p
consumer -- normally a consumer will /reads\
advance its offset linearly as it reads Consumer A Consumer B

records (but it can also consume (offset=9) (offset=11)
records in any order it likes)

CS4414/5416 - Fall 2025 31

Apache Kafka: Topics & Partitions (4)

The partitions in the log serve several purposes:
> Allow the log to scale beyond a size that will fit on a single server.
> Handles an arbitrary amount of data -- a topic may have many partitions

> Acts as the unit of parallelism

CS4414/5416 - Fall 2025 32

Apache Kafka: Distribution of Partitions(1)

> The partitions are distributed over the servers in the Kafka cluster and each
partition is replicated for fault tolerance

> Each partition has one server acts as the “leader” (broker) and zero or more
servers act as “followers” (brokers).

> The leader handles all read and write requests for the partition

> The followers passively replicate the leader. If the leader fails, one of the
followers will automatically become the new leader.

> Load Balancing: Each server acts as a leader for some of its partitions and a
follower for others within the cluster.

CS4414/5416 - Fall 2025 33

Apache Kafka: Distribution of Partitions (2)

- Kafka Brokers

Here, a topic is configured into gt g _
three partitions. e [t | commeron

Partition 1

if

caredenebl 1B :
i p - "4 consumeri | .

Partition 1 has two offset factors 0 0 1

| | produceri T |
and 1. | Partition 2 5 || Sever2

Partition 2 has four offset factors 0, T 0123 0

producer2 .
1, 2, and 3. | ST .
' T : Server 3

Partition 3 has one offset factor 0. CE— 0 3 'E’j |

Rlead data | .
reesyeeseecnes Consumer2 |

v Consumer3 |

oid ... New

The id of the replica is same as the
id of the server that hosts it.

CS4414/5416 - Fall 2025 34

Apache Kafka: Components

Logical Components:

> Topic: The named destination of partition
> Partition: One Topic can have multiple partitions and it is an unit of parallelism
> Record or Message: Key/Value pair (+ Timestamp)

Physical Components:

> Producer: The role to send message to broker

> Consumer: The role to receive message from broker

> Broker: One node of Kafka cluster

> ZooKeeper: Coordinator of Kafka cluster and consumer groups

CS4414/5416 - Fall 2025 35

Apache Kafka: Producers

> Producers publish data to the topics of their choice.

> The producer is responsible for choosing which record to assign to
which partition within the topic.

> Record to Topic: In a round-robin fashion simply to balance load or
can be done according to some semantic partition function

CS4414/5416 - Fall 2025 36

Apache Kafka: Consumers

> Consumer group: Balance consumers to partitions
> Consumers label themselves with a consumer group name

> Each record published to a topic is delivered to one consumer
iInstance within each subscribing consumer group

> |f all the consumer instances have the same consumer group, then the
records will effectively be load balanced over the consumer instances.

> |f all the consumer instances have different consumer groups, then
each record will be broadcast to all the consumer processes.

CS4414/5416 - Fall 2025 37

Apache Kafka: Producers & Consumers

Kafka Cluster
Example: Server 1 Server 2
rPD PB_‘ P1 F’E_‘
A two server Kafka cluster hosting four FOREN N
partitions (PO to P3) with two consumer // \\
groups (A & B). Consumer group A has L‘ L W A
C1 c2 C3 C4 C5 C6

two consumer instances (C1 & C2) and
group B has four (C3 to C6).

~-Gonsumer Group A- Consumer Group B———

CS4414/5416 - Fall 2025 38

Apache Kafka: Design Guarantees (1)

> Records (or Messages) sent by a producer to a particular topic partition
will be appended in the order they are sent.

> A consumer instance sees records in the order they are stored in the log.

> For a topic with replication factor N, we will tolerate up to N-1 server
failures without losing any records committed to the log.

CS4414/5416 - Fall 2025 39

Apache Kafka: Design Guarantees (2)

Message Delivery Semantics:
> At most once: Messages may be lost but are never redelivered.
> At least once: Messages are never lost but may be redelivered.

> Exactly once: Each message is delivered once and only once

CS4414/5416 - Fall 2025 40

Apache Kafka: Four Core APIs (1)

Producer API: Allows an application to publish a

_ Producers
stream of records to one or more Kafka topics

App App App

Consumer API: Allows an application to
subscribe to one or more topics and process the
stream of records produced to them

m\ l // i
Connectors rafka Stream
Cluster Processors

=N

Streams API: Allows an application to act as a
stream processor -- consuming an input stream il I B I s
from one or more topics and producing an output Consumers
stream to one or more output topics

CS4414/5416 - Fall 2025 41

Apache Kafka: Four Core APIs (2)

Connector API: Producers
Allows building and running producers or App || Ap || Aep
consumers that connect Kafka topics to existing — \ l / A
ol e

pplications or data systems. c t Kafka Stream

_ Oni& Cluster |- Processors

For example, a connector to a relational / l \\ -
database might capture every change to a table.

App App App

Consumers

CS4414/5416 - Fall 2025 42

Kafka < Messaging + Storage + Streaming

> Messaging:
o The consumer group allows you to divide up processing over a
collection of processes (as a queue)

o Allows you to broadcast messages to multiple consumer groups (as
with publish-subscribe).

> Storage: Data written to Kafka is written to disk and replicated for fault-
tolerance.

> Streaming: Takes continuous streams of data from input topics —
Processing — Produces continuous streams of data to output topics.

CS4414/5416 - Fall 2025 43

Cascade DDS (built with Derecho) versus Kafka
Direct DDS. Not shown: Cascade DDS has
higher throughput. This graph focuses on delay

107 -
1 © CascadeDDS 1 replica

6

5

]

5 J
o

1 % =¥

Smaller is better

10

=
o

=
o

Tighter is better

=
o

End-to-End Latency (us)

=
o

Logarithmic Y axis

=
o
o

End-to-End latency: CascadeDDS vs KafkaDirect

=

o
—
1

4§ CascadeDDS 3 replicas
© KafkaDirect 1 replica
¥ KafkaDirect 3 replicas

1 16 256
Message Size (KiB)

CS4414/5416 - Fall 2025 44

Cascade DDS (built with Derecho) versus Kafka
Direct DDS. Not shown: Cascade DDS has
higher throughput. This graph focuses on delay

107 5
] © CascadeDDS 1 replica

] I CascadeDDS 3 replicas
106 -

] I KafkaDirect 3 replica

Smaller is better

Tighter is better

End-to-End Latency (us)

Logarithmic Y axis

=
o
o

End-to-End latency: CascadeDDS vs KafkaDirect

=
o
u

=
o
=

=
o
w

=
o
[a¥]

=

o
—
1

KafkaDirect 1 replica

v il

Kafka delays can be
1000x larger than the
median delay!

1 16 256
Message Size (KiB)

CS4414/5416 - Fall 2025 45

What did this tell us?

Much like Zookeeper, Kafka is actually rather slow and balky

The performance issues reflect the way it implements the atomic
multicast protocol it uses, and from the way it does batching.

Recall that Derecho has an optimal atomic multicast and does
opportunistic batching. That paid off with lower latency and fewer
long delays, yet the throughput of Derecho is actually much higher

CS4414/5416 - Fall 2025 46

SUMMARY

Many big data systems are built using the standard Apache tools.
We’ve now seen a number of them.

The resulting systems are large and complex, often have many
“moving parts”, and manage themselves. They can be slow, but
despite that are very widely used.

CS4414/5416 - Fall 2025 47

Self-Test: None for today!

We will not be testing on the slides in Lecture 22, so we have no
self-test questions today.

But these tools are still important to know about! Almost
everyone uses Kafka or Zookeeper (or both) from time to time!

Many of the Apache tools are incredibly useful (and easy to use,
too!) and this is why they are so widely popular.

CS4414/5416 - Fall 2025 48

	Apache Tools
	PUTTING IT ALL TOGETHER
	Hadoop Ecosystem: Processing
	Apache Hive: SQL on MapReduce
	Apache Hive: SQL on MapReduce
	Apache Hive
	Apache Pig: Scripting on MapReduce
	Apache Pig: Scripting on MapReduce
	Apache Hive & ApachePig
	Apache Hive vs Apache Pig
	Apache Hive vs Apache Pig
	Comment: “client side”??
	Apache Hive vs ApachePig: example
	Hadoop Ecosystem: Data Ingestion
	Data Ingestion Systems/Tools (1)
	Data Ingestion Systems/Tools (2)
	Kafka: Apache’s “Publish-Subscribe” tool
	Brief recap: models of communication we’ve learned about
	Some come with computing “models” as well
	Concept: “Publish-Subscribe” tool
	Apache Kafka
	Two variants
	Two variants
	Transactions in this context
	What is Apache Kafka used for? (1)
	What is Apache Kafka used for? (2)
	Apache Kafka: Fundamentals
	Apache Kafka: Components
	Apache Kafka: Topics & Partitions (1)
	Apache Kafka: Topics & Partitions (2)
	Apache Kafka: Topics & Partitions (3)
	Apache Kafka: Topics & Partitions (4)
	Apache Kafka: Distribution of Partitions(1)
	Apache Kafka: Distribution of Partitions (2)
	Apache Kafka: Components
	Apache Kafka: Producers
	Apache Kafka: Consumers
	Apache Kafka: Producers & Consumers
	Apache Kafka: Design Guarantees (1)
	Apache Kafka: Design Guarantees (2)
	Apache Kafka: Four Core APIs (1)
	Apache Kafka: Four Core APIs (2)
	Kafka ← Messaging + Storage + Streaming
	Cascade DDS (built with Derecho) versus Kafka Direct DDS. Not shown: Cascade DDS has higher throughput. This graph focuses on delay
	Cascade DDS (built with Derecho) versus Kafka Direct DDS. Not shown: Cascade DDS has higher throughput. This graph focuses on delay
	What did this tell us?
	SUMMARY
	Self-Test: None for today!

