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IDEA MAP FOR TODAY
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Large data sets (including things like collections of emails or insurance filings) are 
sharded to scale them out across key-value storage

To train an ML on this kind of data, we need to perform basic operations like 
destemming, tokenizing, extracting the most relevant information, etc.

Key insight: many simple ML tasks are “always sharded and batched, even the results!”

How can we leverage Apache?  And how does it avoid needing to temporarily copy 
all the data to a single machine (which wouldn’t work: it won’t fit!)

Apache is a free, open-source, and very widely used platform for computations of this kind.  



TERMINOLOGY REMINDER

Sharded:  big storage systems like key-value stores are split into smaller chunks 
(shards), replicated for fault-tolerance.   

  The key for an object is hashed to find the right shard
  The object can be anything as long as we can treat it as a vector of bytes

  Allows one-hop lookups and scales really well for in-memory compute

 Batched: we often take different tasks, create a list 
 (a batch), and compute on the whole batch in one shot, 
 obtaining a list of results, one per task.
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Cupcakes are cheaper
by the dozen



WHY BATCH?

It centers on amortization of costs: we often can avoid doing the same data 
preparation or other overhead steps multiple times, winning for all the tasks.

For example, ML and other big-data tasks often reduce to generalized matrix 
multiplication, short acronym GEMM computations.

  Most ML comes down to matrix multiply and a few related tasks

  Matrix multiply scales sublinearly in the size of the “input” matrix: n
    row • matrix ops cost much more than one n-rows • matrix op
 This is true for many non-numerical computations too!
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Cupcakes are cheaper
by the dozen



OPPORTUNISTIC BATCHING: USED WHEN ML 
RUNS AS A SERVICE
Batching can adds delay, and this can be an issue for item-by-item queries when 
an ML is being “served” (deployed for question/answer tasks)

 The issue is that the first query in a new batch has to wait until the 
    batch fills up, like being the first person to get on a car-rental bus at
    the airport: it might not leave until it is full.

  That first request waits, yet the “airport rental shuttle” efficiency is higher

 In ML serving, we often do “opportunistic” batching instead.  We batch if
 there is a backlog, but then compute immediately even with just 1 query
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A BIG DATA SYSTEM FOR BATCHED, 
SHARDED WORKLOADS
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A BIG DATA SYSTEM FOR BATCHED, 
SHARDED WORKLOADS
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SEVERAL MODELS EMPLOYED

Kafka:  Scalable message queuing middleware.  Like an email system, but 
process to process (or more often, process to µ-service).

Databases: They receive updates and hold data and support full SQL.

File systems: They hold documents, web pages, etc.  You use a file system API.

Key-value stores:  They hold (key,value) tuples, perhaps with versioning (logs 
with one record per version).  They use the NoSQL model.
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UNIFYING IDEAS

All are built in similar ways.  In Apache, all are structured “around” 
Zookeeper.  Each is optimized for a particular style of use.

All use sharding for scalability.

And in fact all are accessible through similar APIs – most Apache tools 
support more than one kind of API (for example, as a file system, or as a 
DHT – but with the same contents in both cases).

CS4414/5416 - LECTURE 21 9



APACHE HAS MULTIPLE VERSIONS OF SOME 
ELEMENTS.  FOR EXAMPLE, “FILE SYSTEMS”
Before we discuss Zookeeper, let’s think about file systems.  Clouds have 
many! One is for bulk storage: some form of “global file system” or GFS.

  At Google, it is actually called GFS.  HDFS (which we will study) is an 
    open-source version of GFS.

  At Amazon, S3 plays this role.  

  Azure uses “Azure storage fabric”

  KVS systems like DynamoDB, CosmosDB, Cassandra, RocksDB, Cascade…       
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HOW DO THEY (ALL) WORK?

  A “Name Node” service runs, fault-tolerantly, and tracks file meta-data 
    (like a Linux inode): Name, create/update time, size, seek pointer, etc.
  The name node also tells your application which data nodes hold the file. 
  Very common to use a simple DHT scheme to fragment the NameNode 
    into subsets, hopefully spreading the work around.  DataNodes are 
    hashed at the block level (large blocks)
  Some form of primary/backup scheme for fault-tolerance, like chain 
    replication.  Writes are automatically forwarded from the primary 
    to the backup.
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HOW DO THEY WORK?
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MANY FILE SYSTEMS THAT SCALE REALLY WELL 
AREN’T GREAT FOR LOCKING/CONSISTENCY

The majority of sharded and scalable file systems turn out to be slow or 
incapable of supporting consistency via file locking, for many reasons.

So many application use two file systems: one for bulk data, and 
Zookeeper for configuration management, coordination, failure sensing.

This permits some forms of consistency even if not everything.
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APACHE ZOOKEEPER AND µ-SERVICES
Zookeeper can manage information 
in your system

IP addresses, version numbers, and 
other configuration information of 
your µ-services.

The health of the µ-service.

The step count for an iterative 
calculation.

Group membership
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ZOOKEEPER USE CASES

The need in many systems is for a place to store configuration, parameters, lists 
of which machines are running, which nodes are “primary” or “backup”, etc.

We desire a file system interface, but “strong, fault-tolerant semantics”

Zookeeper is widely used in this role.  Stronger guarantees than GFS.
  Data lives in (small) files.  Versioning is automatic (it can keep every version, 
    or just the most recent version).  
   Zookeeper is quite slow and not very scalable. Facebook has reimplemented it 
     and has a faster, API-compliant version in-house.
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MOST POPULAR ZOOKEEPER API?

They offer a novel form of “conditional file replace”

  Exactly like the conditional “put” operation in Cascade.

  Files have version numbers in Zookeeper.

  A program can read version 5, update it, and tell the system to replace 
    the file creating version 6. But this can fail if there was a race and you
    lost the race.  You could would just loop and retry from version 6.

  It avoids the need for locking and this helps Zookeeper scale better.
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THE ZOOKEEPER SERVICE

ZooKeeper Service is replicated over a set of machines, usually 5 or 7.

All machines store a copy of the data in memory (!).  Checkpointed to disk if you wish.

A leader is elected on service startup

Clients only connect to a single ZooKeeper server & maintains a TCP connection.

Client can read from any Zookeeper server.

Writes go through the leader & need majority consensus.
https://cwiki.apache.org/confluence/display/ZOOKEEPER/ProjectDescription

Each µ-service has 
a leader that talks 
to Zookeeper.  Its 
other nodes have 
connections too, but 
just passive (for 
fault detection)

Zookeeper is itself an 
interesting distributed 
system
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IS ZOOKEEPER USING PAXOS?

Early work on Zookeeper actually did use Paxos, but it was too slow

They settled on a model that uses atomic multicast with dynamic 
membership management and in-memory data (like virtual synchrony).

But they also checkpoint Zookeeper every 5s if you like (you can control 
the frequency), so if it crashes it won’t lose more than 5s of data.

CS4414/5416 - LECTURE 21 18



REST OF THE APACHE HADOOP ECOSYSTEM

19
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HADOOP DISTRIBUTED FILE SYSTEM (HDFS)

HDFS is the storage layer for Hadoop BigData System

HDFS is based on the Google File System (GFS)

Fault-tolerant distributed file system 

Designed to turn a computing cluster (a large collection of loosely 
connected compute nodes) into a massively scalable pool of storage

Provides redundant storage for massive amounts of data -- scales up to 
100PB and beyond
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HDFS: SOME LIMITATIONS

Files can be created, deleted,  and you can write to the end, but not 
update them in the middle.

A big update might not be atomic (if your application happens to crash 
while writes are being done)

Not appropriate for real-time, low-latency processing -- have to close 
the file immediately after writing to make data visible, hence a real 
time task would be forced to create too many files 

Centralized metadata storage -- multiple single points of failures

21

Name node is a scaling (and potential reliability) weak spot.
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HADOOP DATABASE (HBASE) IS A THIN LAYER 
DIRECTLY OVER HDFS

HBASE is used like a NoSQL database.  It maps directly to HDFS

It holds tables.  One table can have thousands of columns

Supports very large amounts of data and high throughput

HBase has a weak consistency model, but there are ways to use it safely

Random access, low latency
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HBASE

The Hbase design actually is based on Google’s Bigtable

Designed for Distribution, Scale, and Speed 

Full relational Database (RDBMS) vs NoSQL Database:

 RDBMS → vertical scaling (expensive) → not appropriate for BigData

 NoSQL → horizontal scaling / sharding (cheap)  better for BigData
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REMINDER: SQL VS NOSQL (1)

24

•Full RDMS systems support SQL, but Jim Gray’s analysis applies

• So at scale we shard (the BASE methodology), lose ACID:
 RDBMS (ACID): Atomicity, Consistency, Isolation, Durability

 NoSQL (BASE): Basically Available Soft state Eventually consistency

• Giving up ACID enables availability, performance, and scalability
 Most Apache subsystems call themselves “eventually consistent”, 

meaning that updates are eventually propagated to all nodes
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RDBMS VS NOSQL (2)

25

•NoSQL (e.g., CouchDB, HBase) is a good choice for 100 
Millions/Billions of rows

•RDBMS (e.g., mysql) is a good choice for  a few 
thousand/millions of rows

•HBase is a NoSQL table store and actually is “consistent” 
but only if used in specific ways.
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HBASE: DATA MODEL (1) 
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HBASE: DATA MODEL (2) 

27

•Sorted rows: support billions of rows

•Columns: Supports millions of columns

•Cell: intersection of row and column
 Can have multiple values (which are time-stamped)

 Can be empty. No storage/processing overheads
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HBASE: TABLE

28CS4414/5416 - LECTURE 21



HBASE: HORIZONTAL SPLITS (REGIONS) 
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HBASE ARCHITECTURE (REGION SERVER) 
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Sharding is automatic



HBASE ARCHITECTURE
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HBASE ARCHITECTURE: COLUMN FAMILY (1)
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HBASE ARCHITECTURE: COLUMN FAMILY 
(2)
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HBASE ARCHITECTURE: COLUMN FAMILY (3)

34

•Data (column families) stored in separate files (Hfiles)

•Tune Performance
 In-memory

 Compression

•Needs to be specified by the user
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HBASE ARCHITECTURE (1)

35

Region Server: 

 Clients communicate with RegionServers
(workers) directly for accessing data

 Serves data for reads and writes. 

 These region servers  are assigned to the 
HDFS data nodes to preserve data 
locality.

HBase is composed of three types of servers in a leader/worker 
type of architecture: Region Server, Hbase Master, ZooKeeper.
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HBASE ARCHITECTURE (2) 

36

HBase Leader (HMaster): coordinates region servers, handles 
DDL (create, delete tables) operations.

Zookeeper: HBase uses ZooKeeper as a distributed coordination 
service to maintain server state in the cluster. 
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HDFS USES ZOOKEEPER AS ITS COORDINATOR

37

Maintains region server state in the cluster

Provides server failure notification

Uses consensus to guarantee common shared state

CS4414/5416 - LECTURE 21



HOW DO THESE COMPONENTS WORK TOGETHER? 

38

Region servers and the active HBase Leaders connect with a session to ZooKeeper

A special HBase Catalog table “META table”  Holds the location of the regions in 
the cluster. 

ZooKeeper stores the location of the META table.
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HBASE: META TABLE

39

The META table is an HBase table that keeps a list of all regions in the system.

This META table is like a B Tree
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HBASE: READS/WRITES

40

The client gets the Region server that hosts the META table from ZooKeeper

The client will query (get/put) the META server to get the region server 
corresponding to the rowkey it wants to access

It will get the Row from the corresponding Region Server.
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HBASE: SOME LIMITATIONS
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Not ideal for large objects (>50MB per cell), e.g., videos -- the 
problem is “write amplification” -- when HDFS reorganizes data to 
compact large unchanging data, extensive copying occurs

Not ideal for storing data chronologically (time as primary index), 
e.g., machine logs organized by time-stamps cause write hot-spots.



HBASE VS HDFS

42

Hbase is a way of “talking to” HDFS.  We use it for massive tables that
wouldn’t fit into a single HDFS file. 

HDFS
• Stores data as flat files
• Optimized for streaming access of large 

files -- doesn’t support random read/write 
• Follows write-once read-many model
• Supports log-style files (append-only).

HBase
• Stores data as key-value objs in column-families. 

Records in HBase are stored according to the 
rowkey and sequential search is common

• Provides low latency access to small amounts of 
data from within a large data set

• Provides flexible data model
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HADOOP RESOURCE MANAGEMENT
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Yet Another Resource Negotiator (YARN)

➢ YARN is a core component of Hadoop, manages all the resources of a Hadoop cluster 
(CPUs, memory, GPUs, networking connections, etc). 

➢ Using selectable criteria such as fairness, it effectively allocates resources of Hadoop 
cluster to multiple data processing jobs
○ Batch jobs (e.g., MapReduce, Spark)
○ Streaming Jobs (e.g., Spark streaming)
○ Analytics jobs (e.g., Impala, Spark)



HADOOP ECOSYSTEM (RESOURCE MANAGER)
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YARN CONCEPTS (1)
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Container:

➢ YARN uses an abstraction of resources called a container for managing resources -- 
an unit of computation of a resource node, i.e., a certain amount of CPU, Memory, 
Disk, etc., ASIC resources.  Tied to Mesos container model.

➢ A single job may run in one or more containers – a set of containers would be used 
to encapsulate highly parallel Hadoop jobs. 

➢ The main goal of YARN is effectively allocating containers to multiple data 
processing jobs.

    



YARN CONCEPTS (2)
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Three Main components of YARN: 

Application Leader, Node Manager, and Resource Manager (a.k.a. YARN Daemon 
Processes)

➢ Application Leader: 
○ Single instance per job. 
○ Spawned within a container when a new job is submitted by a client
○ Requests additional containers for handling of any sub-tasks.

➢ Node Manager: Single instance per worker node. Responsible for monitoring and 
reporting on local container status (all containers on worker node).

    



YARN CONCEPTS (3)
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Three Main components of YARN: Application Master, Node Manager, and Resource 
Manager (aka The YARN Daemon Processes)

➢ Resource Manager: arbitrates system resources between competing jobs. It has two main 
components:
○ Scheduler (Global scheduler): Responsible for allocating resources to the jobs subject 

to familiar constraints of capacities, queues etc.
○ Application Manager:  Responsible for accepting job-submissions and provides the 

service for restarting the ApplicationMaster container on failure.



YARN CONCEPTS (4)
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How do the components 
of YARN work together?

    

Image source: http://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/YARN.html



HADOOP ECOSYSTEM (PROCESSING LAYER)
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HADOOP DATA PROCESSING FRAMEWORKS 
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Hadoop data processing (software) framework:

➢ Abstracts the complexity of distributed programming
➢ For easily writing applications which process vast amounts of data in-

parallel on large clusters

Two popular implementations:

➢MapReduce: used for individual batch (long running) jobs
➢ Spark: All of the same, plus streaming, interactive, and iterative batch jobs



MAPREDUCE (“JUST A TASTE”)
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MapReduce allows a style of parallel programming designed for:

➢ Distributing (parallelizing) a task easily across multiple nodes of a cluster
○ Allows programmers to describe processing in terms of simple map and reduce 

operations, which are inherently parallel

➢ Invisible management of hardware and software failures
➢ Easy management of very large-scale data



MAPREDUCE: TERMINOLOGY
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➢ A MapReduce job starts with a collection of input elements of a single type 
-- technically, all types are key-value pairs

➢ A MapReduce job/application is a complete execution of Mappers and 
Reducers over a dataset
○ Mapper applies the map functions to a single input element
○ Application of the reduce function to one key and its list of values is a Reducer

➢Many mappers/reducers grouped in a Map/Reduce task (the unit of 
parallelism)



MAPREDUCE: PHASES
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Map

➢ Each Map task (typically) operates on a single HDFS block -- Map tasks (usually) run on the node 
where the block is stored

➢ The output of the Map function is a set of 0, 1, or more key-value pairs

Shuffle and Sort

➢ Sorts and consolidates intermediate data from all mappers -- sorts all the key-value pairs by key, 
forming key-(list of values) pairs.

➢ Happens as Map tasks complete and before Reduce tasks start

Reduce

➢ Operates on shuffled/sorted intermediate data (Map task output)  -- the Reduce function is 
applied to each key-(list of values). Produces final output.



EXAMPLE: WORD COUNT (1)

The use case scenario:  Start with standard WC for one file.

We have a large file of documents (the input elements) 

Documents are words separated by whitespace.

Count the number of times each distinct word appears in the file.

… with MapReduce we can extend this concept to huge numbers of files.
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EXAMPLE: WORD COUNT (2)
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Why Do We Care About Counting Words?

➢Word count is challenging over massive amounts of data
○ Using a single compute node would be too time-consuming
○ Using distributed nodes requires moving data
○ Number of unique words can easily exceed available memory -- would 

need to store to disk
➢Many common tasks are very similar to word count, e.g., log file 

analysis



WORD COUNT USING MAPREDUCE (1)
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map(key, value):
// key: document ID; value: text of 
document
 FOR (each word w IN value)
  emit(w, 1);

reduce(key, value-list):
// key: a word; value-list: a list of integers
 result = 0;
 FOR (each integer v on value-list)
  result += v;
 emit(key, result);



WORD COUNT USING MAPREDUCE (2)
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WORD COUNT: MAPPER
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WORD COUNT: SHUFFLE & SORT
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WORD COUNT: REDUCER
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THE SLIDE WAS A LIE!

In fact the reducer output might never be combined into a single file, the 
way the right-hand side of that slide made it seem.

With MapReduce we often start with sharded data, then “transform” it via 
one or more map-reduce stages, but end up with a sharded result.

The reason is that often the result itself is also a massive object.  It might 
be far too big to fit into any single machine.  So we keep it sharded!
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COPING WITH FAILURES
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➢MapReduce is designed to deal with compute nodes failing to execute a 
Map task or Reduce task.

➢ Re-execute failed tasks, not whole jobs/applications.  
➢ Key point: MapReduce tasks produce no visible output until the entire set 

of tasks is completed.  If a task or sub task somehow completes more 
than once, only the earliest output is retained.

➢ Thus, we can restart a Map task that failed without fear that a Reduce 
task has already used some output of the failed Map task.



MORE BIG DATA STUFF

Apache has many more tools that we haven’t discussed today (and won’t 
cover in CS5412 – they belong in a “big data” course, not CS5412).

They include software for automatically extracting structured data from 
unstructured web pages or documents, ways to treat files as massive 
databases or spreadsheets but for limited kinds of retrieval and search 
tasks, etc.  Names include HBASE, RocksDB, PIG, HIVE, etc.

Many of them are implemented “over” Hadoop
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SUMMARY
With really huge data sets, or changing data collected from huge numbers 
of clients, it often is not practical to use a classic database model where 
each incoming event triggers its own updates.

So we shift towards batch processing, highly parallel: many updates and 
many “answers” all computed as one task.

Then cache the results to enable fast tier-one/two reactions later.
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SELF-TEST QUESTIONS

If fault-tolerance in the Apache ecosystem depends on Zookeeper, what 
would happen if a failure “takes out” the entire set of Zookeeper servers?

  What would happen, in “high level terms”?

  What concretely would you look for if you were in charge of a service
    built on Apache and you suspected an issue such as this?

  Would you worry about if you were only using Kafka, and not the
    rest of the Apache framework?
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SELF-TEST QUESTIONS

A lot of the Apache framework seems to be about data ingestion and big-
data preprocessing, followed by data mining

Our CS4414 and CS5416 focus is really on LLM/LRM training and later, 
hosting the trained models

Does data ingestion, preprocessing and data mining arise at any stage of 
LLM or LRM training or execution?
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SELF-TEST QUESTIONS

In lecture we mentioned that people are starting to use LLMs to extract 
information from data sources like logs and ticketing systems

Suppose that your data is huge and initially sharded into Apache HDFS.  
Now you are designing a script that will launch your favorite LLM tool to 
do this form of knowledge extraction and preparation.

How does the HDFS data storage structure (sharding) impact your 
expectations for performance of the LLM extraction task?  What might you 
look for ways to do in order to ensure the highest possible speed?
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