
APACHE ECOSYSTEM Ken Birman (with help)
CS4144/5416 – Lecture 21

CS4414/5416 - Lecture 21 1

IDEA MAP FOR TODAY

CS4414/5416 - LECTURE 21 2

Large data sets (including things like collections of emails or insurance filings) are
sharded to scale them out across key-value storage

To train an ML on this kind of data, we need to perform basic operations like
destemming, tokenizing, extracting the most relevant information, etc.

Key insight: many simple ML tasks are “always sharded and batched, even the results!”

How can we leverage Apache? And how does it avoid needing to temporarily copy
all the data to a single machine (which wouldn’t work: it won’t fit!)

Apache is a free, open-source, and very widely used platform for computations of this kind.

TERMINOLOGY REMINDER

Sharded: big storage systems like key-value stores are split into smaller chunks
(shards), replicated for fault-tolerance.

 The key for an object is hashed to find the right shard
 The object can be anything as long as we can treat it as a vector of bytes

 Allows one-hop lookups and scales really well for in-memory compute

 Batched: we often take different tasks, create a list
 (a batch), and compute on the whole batch in one shot,
 obtaining a list of results, one per task.

CS4414/5416 - LECTURE 21 3

Cupcakes are cheaper
by the dozen

WHY BATCH?

It centers on amortization of costs: we often can avoid doing the same data
preparation or other overhead steps multiple times, winning for all the tasks.

For example, ML and other big-data tasks often reduce to generalized matrix
multiplication, short acronym GEMM computations.

 Most ML comes down to matrix multiply and a few related tasks

 Matrix multiply scales sublinearly in the size of the “input” matrix: n
 row • matrix ops cost much more than one n-rows • matrix op
 This is true for many non-numerical computations too!

CS4414/5416 - LECTURE 21 44

Cupcakes are cheaper
by the dozen

OPPORTUNISTIC BATCHING: USED WHEN ML
RUNS AS A SERVICE
Batching can adds delay, and this can be an issue for item-by-item queries when
an ML is being “served” (deployed for question/answer tasks)

 The issue is that the first query in a new batch has to wait until the
 batch fills up, like being the first person to get on a car-rental bus at
 the airport: it might not leave until it is full.

 That first request waits, yet the “airport rental shuttle” efficiency is higher

 In ML serving, we often do “opportunistic” batching instead. We batch if
 there is a backlog, but then compute immediately even with just 1 query

CS4414/5416 - LECTURE 21 5

A BIG DATA SYSTEM FOR BATCHED,
SHARDED WORKLOADS

CS4414/5416 - Lecture 21 6

Data Storage (File Systems, Database, etc.)

Resource Manager (Workload Manager, Task Scheduler, etc.)

Batch
Processing

Analytical
SQL

Stream
Processing

Machine
Learning

Other
Applications

Data
Ingestion
Systems

Popular BigData Systems: Apache Hadoop, Apache Spark

A BIG DATA SYSTEM FOR BATCHED,
SHARDED WORKLOADS

CS4414/5416 - Lecture 21 7

Data Storage (File Systems, Database, etc.)

Resource Manager (Workload Manager, Task Scheduler, etc.)

Batch
Processing

Analytical
SQL

Stream
Processing

Machine
Learning

Other
Applications

Data
Ingestion
Systems

Popular BigData Systems: Apache Hadoop, Apache Spark, Databricks

SEVERAL MODELS EMPLOYED

Kafka: Scalable message queuing middleware. Like an email system, but
process to process (or more often, process to µ-service).

Databases: They receive updates and hold data and support full SQL.

File systems: They hold documents, web pages, etc. You use a file system API.

Key-value stores: They hold (key,value) tuples, perhaps with versioning (logs
with one record per version). They use the NoSQL model.

CS4414/5416 - LECTURE 21 8

UNIFYING IDEAS

All are built in similar ways. In Apache, all are structured “around”
Zookeeper. Each is optimized for a particular style of use.

All use sharding for scalability.

And in fact all are accessible through similar APIs – most Apache tools
support more than one kind of API (for example, as a file system, or as a
DHT – but with the same contents in both cases).

CS4414/5416 - LECTURE 21 9

APACHE HAS MULTIPLE VERSIONS OF SOME
ELEMENTS. FOR EXAMPLE, “FILE SYSTEMS”
Before we discuss Zookeeper, let’s think about file systems. Clouds have
many! One is for bulk storage: some form of “global file system” or GFS.

 At Google, it is actually called GFS. HDFS (which we will study) is an
 open-source version of GFS.

 At Amazon, S3 plays this role.

 Azure uses “Azure storage fabric”

 KVS systems like DynamoDB, CosmosDB, Cassandra, RocksDB, Cascade…

CS4414/5416 - LECTURE 21 10

HOW DO THEY (ALL) WORK?

 A “Name Node” service runs, fault-tolerantly, and tracks file meta-data
 (like a Linux inode): Name, create/update time, size, seek pointer, etc.
 The name node also tells your application which data nodes hold the file.
 Very common to use a simple DHT scheme to fragment the NameNode
 into subsets, hopefully spreading the work around. DataNodes are
 hashed at the block level (large blocks)
 Some form of primary/backup scheme for fault-tolerance, like chain
 replication. Writes are automatically forwarded from the primary
 to the backup.

CS4414/5416 - LECTURE 21 11

HOW DO THEY WORK?

CS4414/5416 - LECTURE 21 12

File
MetaData

NameNode

DataNode
DataNode

DataNode
DataNode

DataNode
DataNode

DataNode
DataNode

open

Copy of metadata

read

File data

Metadata: file owner, access permissions, time
of creation, …

Plus: Which DataNodes hold its data blocks

MANY FILE SYSTEMS THAT SCALE REALLY WELL
AREN’T GREAT FOR LOCKING/CONSISTENCY

The majority of sharded and scalable file systems turn out to be slow or
incapable of supporting consistency via file locking, for many reasons.

So many application use two file systems: one for bulk data, and
Zookeeper for configuration management, coordination, failure sensing.

This permits some forms of consistency even if not everything.

CS4414/5416 - LECTURE 21 13

APACHE ZOOKEEPER AND µ-SERVICES
Zookeeper can manage information
in your system

IP addresses, version numbers, and
other configuration information of
your µ-services.

The health of the µ-service.

The step count for an iterative
calculation.

Group membership
CS4414/5416 - LECTURE 21 14

ZOOKEEPER USE CASES

The need in many systems is for a place to store configuration, parameters, lists
of which machines are running, which nodes are “primary” or “backup”, etc.

We desire a file system interface, but “strong, fault-tolerant semantics”

Zookeeper is widely used in this role. Stronger guarantees than GFS.
 Data lives in (small) files. Versioning is automatic (it can keep every version,
 or just the most recent version).
 Zookeeper is quite slow and not very scalable. Facebook has reimplemented it
 and has a faster, API-compliant version in-house.

CS4414/5416 - LECTURE 21 15

MOST POPULAR ZOOKEEPER API?

They offer a novel form of “conditional file replace”

 Exactly like the conditional “put” operation in Cascade.

 Files have version numbers in Zookeeper.

 A program can read version 5, update it, and tell the system to replace
 the file creating version 6. But this can fail if there was a race and you
 lost the race. You could would just loop and retry from version 6.

 It avoids the need for locking and this helps Zookeeper scale better.

CS4414/5416 - LECTURE 21 16

THE ZOOKEEPER SERVICE

ZooKeeper Service is replicated over a set of machines, usually 5 or 7.

All machines store a copy of the data in memory (!). Checkpointed to disk if you wish.

A leader is elected on service startup

Clients only connect to a single ZooKeeper server & maintains a TCP connection.

Client can read from any Zookeeper server.

Writes go through the leader & need majority consensus.
https://cwiki.apache.org/confluence/display/ZOOKEEPER/ProjectDescription

Each µ-service has
a leader that talks
to Zookeeper. Its
other nodes have
connections too, but
just passive (for
fault detection)

Zookeeper is itself an
interesting distributed
system

CS4414/5416 - LECTURE 21 17

IS ZOOKEEPER USING PAXOS?

Early work on Zookeeper actually did use Paxos, but it was too slow

They settled on a model that uses atomic multicast with dynamic
membership management and in-memory data (like virtual synchrony).

But they also checkpoint Zookeeper every 5s if you like (you can control
the frequency), so if it crashes it won’t lose more than 5s of data.

CS4414/5416 - LECTURE 21 18

REST OF THE APACHE HADOOP ECOSYSTEM

19

Yet Another Resource
Negotiator (YARN)

Map
Reduce Hive

Spark
Stream

Other
Applications

Data Ingest
Systems

e.g., Apache
Kafka, Flume,

etc

Hadoop NoSQL Database (HBase)

Hadoop Distributed File System (HDFS)

Pig

Cluster

CS4414/5416 - LECTURE 21

HADOOP DISTRIBUTED FILE SYSTEM (HDFS)

HDFS is the storage layer for Hadoop BigData System

HDFS is based on the Google File System (GFS)

Fault-tolerant distributed file system

Designed to turn a computing cluster (a large collection of loosely
connected compute nodes) into a massively scalable pool of storage

Provides redundant storage for massive amounts of data -- scales up to
100PB and beyond

20CS4414/5416 - LECTURE 21

HDFS: SOME LIMITATIONS

Files can be created, deleted, and you can write to the end, but not
update them in the middle.

A big update might not be atomic (if your application happens to crash
while writes are being done)

Not appropriate for real-time, low-latency processing -- have to close
the file immediately after writing to make data visible, hence a real
time task would be forced to create too many files

Centralized metadata storage -- multiple single points of failures

21

Name node is a scaling (and potential reliability) weak spot.
CS4414/5416 - LECTURE 21

HADOOP DATABASE (HBASE) IS A THIN LAYER
DIRECTLY OVER HDFS

HBASE is used like a NoSQL database. It maps directly to HDFS

It holds tables. One table can have thousands of columns

Supports very large amounts of data and high throughput

HBase has a weak consistency model, but there are ways to use it safely

Random access, low latency

22CS4414/5416 - LECTURE 21

HBASE

The Hbase design actually is based on Google’s Bigtable

Designed for Distribution, Scale, and Speed

Full relational Database (RDBMS) vs NoSQL Database:

 RDBMS → vertical scaling (expensive) → not appropriate for BigData

 NoSQL → horizontal scaling / sharding (cheap)  better for BigData

23CS4414/5416 - LECTURE 21

REMINDER: SQL VS NOSQL (1)

24

•Full RDMS systems support SQL, but Jim Gray’s analysis applies

• So at scale we shard (the BASE methodology), lose ACID:
 RDBMS (ACID): Atomicity, Consistency, Isolation, Durability

 NoSQL (BASE): Basically Available Soft state Eventually consistency

• Giving up ACID enables availability, performance, and scalability
 Most Apache subsystems call themselves “eventually consistent”,

meaning that updates are eventually propagated to all nodes

CS4414/5416 - LECTURE 21

RDBMS VS NOSQL (2)

25

•NoSQL (e.g., CouchDB, HBase) is a good choice for 100
Millions/Billions of rows

•RDBMS (e.g., mysql) is a good choice for a few
thousand/millions of rows

•HBase is a NoSQL table store and actually is “consistent”
but only if used in specific ways.

CS4414/5416 - LECTURE 21

HBASE: DATA MODEL (1)

26CS4414/5416 - LECTURE 21

HBASE: DATA MODEL (2)

27

•Sorted rows: support billions of rows

•Columns: Supports millions of columns

•Cell: intersection of row and column
 Can have multiple values (which are time-stamped)

 Can be empty. No storage/processing overheads

CS4414/5416 - LECTURE 21

HBASE: TABLE

28CS4414/5416 - LECTURE 21

HBASE: HORIZONTAL SPLITS (REGIONS)

29CS4414/5416 - LECTURE 21

HBASE ARCHITECTURE (REGION SERVER)

30CS4414/5416 - LECTURE 21

Sharding is automatic

HBASE ARCHITECTURE

31CS4414/5416 - LECTURE 21

HBASE ARCHITECTURE: COLUMN FAMILY (1)

32CS4414/5416 - LECTURE 21

HBASE ARCHITECTURE: COLUMN FAMILY
(2)

33CS4414/5416 - LECTURE 21

HBASE ARCHITECTURE: COLUMN FAMILY (3)

34

•Data (column families) stored in separate files (Hfiles)

•Tune Performance
 In-memory

 Compression

•Needs to be specified by the user

CS4414/5416 - LECTURE 21

HBASE ARCHITECTURE (1)

35

Region Server:

 Clients communicate with RegionServers
(workers) directly for accessing data

 Serves data for reads and writes.

 These region servers are assigned to the
HDFS data nodes to preserve data
locality.

HBase is composed of three types of servers in a leader/worker
type of architecture: Region Server, Hbase Master, ZooKeeper.

CS4414/5416 - LECTURE 21

Leader
Servers

Worker
Servers

HBASE ARCHITECTURE (2)

36

HBase Leader (HMaster): coordinates region servers, handles
DDL (create, delete tables) operations.

Zookeeper: HBase uses ZooKeeper as a distributed coordination
service to maintain server state in the cluster.

CS4414/5416 - LECTURE 21

HDFS USES ZOOKEEPER AS ITS COORDINATOR

37

Maintains region server state in the cluster

Provides server failure notification

Uses consensus to guarantee common shared state

CS4414/5416 - LECTURE 21

HOW DO THESE COMPONENTS WORK TOGETHER?

38

Region servers and the active HBase Leaders connect with a session to ZooKeeper

A special HBase Catalog table “META table”  Holds the location of the regions in
the cluster.

ZooKeeper stores the location of the META table.

CS4414/5416 - LECTURE 21

HBASE: META TABLE

39

The META table is an HBase table that keeps a list of all regions in the system.

This META table is like a B Tree

CS4414/5416 - LECTURE 21

HBASE: READS/WRITES

40

The client gets the Region server that hosts the META table from ZooKeeper

The client will query (get/put) the META server to get the region server
corresponding to the rowkey it wants to access

It will get the Row from the corresponding Region Server.

CS4414/5416 - LECTURE 21

HBASE: SOME LIMITATIONS

CS4414/5416 - LECTURE 21 41

Not ideal for large objects (>50MB per cell), e.g., videos -- the
problem is “write amplification” -- when HDFS reorganizes data to
compact large unchanging data, extensive copying occurs

Not ideal for storing data chronologically (time as primary index),
e.g., machine logs organized by time-stamps cause write hot-spots.

HBASE VS HDFS

42

Hbase is a way of “talking to” HDFS. We use it for massive tables that
wouldn’t fit into a single HDFS file.

HDFS
• Stores data as flat files
• Optimized for streaming access of large

files -- doesn’t support random read/write
• Follows write-once read-many model
• Supports log-style files (append-only).

HBase
• Stores data as key-value objs in column-families.

Records in HBase are stored according to the
rowkey and sequential search is common

• Provides low latency access to small amounts of
data from within a large data set

• Provides flexible data model

CS4414/5416 - LECTURE 21

HADOOP RESOURCE MANAGEMENT

CS4414/5416 - Lecture 21 43

Yet Another Resource Negotiator (YARN)

➢ YARN is a core component of Hadoop, manages all the resources of a Hadoop cluster
(CPUs, memory, GPUs, networking connections, etc).

➢ Using selectable criteria such as fairness, it effectively allocates resources of Hadoop
cluster to multiple data processing jobs
○ Batch jobs (e.g., MapReduce, Spark)
○ Streaming Jobs (e.g., Spark streaming)
○ Analytics jobs (e.g., Impala, Spark)

HADOOP ECOSYSTEM (RESOURCE MANAGER)

CS4414/5416 - Lecture 21 44

Yet Another Resource
Negotiator (YARN)

Map
Reduce Hive

Spark
Stream

Other
Applications

Data Ingest
Systems

e.g., Apache
Kafka, Flume,

etcHadoop NoSQL
Database (HBase)

Hadoop Distributed
File System (HDFS)

Pig

Resource
manager

YARN CONCEPTS (1)

CS4414/5416 - Lecture 21 45

Container:

➢ YARN uses an abstraction of resources called a container for managing resources --
an unit of computation of a resource node, i.e., a certain amount of CPU, Memory,
Disk, etc., ASIC resources. Tied to Mesos container model.

➢ A single job may run in one or more containers – a set of containers would be used
to encapsulate highly parallel Hadoop jobs.

➢ The main goal of YARN is effectively allocating containers to multiple data
processing jobs.

YARN CONCEPTS (2)

CS4414/5416 - Lecture 21 46

Three Main components of YARN:

Application Leader, Node Manager, and Resource Manager (a.k.a. YARN Daemon
Processes)

➢ Application Leader:
○ Single instance per job.
○ Spawned within a container when a new job is submitted by a client
○ Requests additional containers for handling of any sub-tasks.

➢ Node Manager: Single instance per worker node. Responsible for monitoring and
reporting on local container status (all containers on worker node).

YARN CONCEPTS (3)

CS4414/5416 - Lecture 21 47

Three Main components of YARN: Application Master, Node Manager, and Resource
Manager (aka The YARN Daemon Processes)

➢ Resource Manager: arbitrates system resources between competing jobs. It has two main
components:
○ Scheduler (Global scheduler): Responsible for allocating resources to the jobs subject

to familiar constraints of capacities, queues etc.
○ Application Manager: Responsible for accepting job-submissions and provides the

service for restarting the ApplicationMaster container on failure.

YARN CONCEPTS (4)

CS4414/5416 - Lecture 21 48

How do the components
of YARN work together?

Image source: http://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/YARN.html

HADOOP ECOSYSTEM (PROCESSING LAYER)

CS4414/5416 - Lecture 21 49

Yet Another Resource
Negotiator (YARN)

Map
Reduce Hive

Spark
Stream

Other
Applications

Data Ingest
Systems

e.g., Apache
Kafka, Flume,

etcHadoop NoSQL
Database (HBase)

Hadoop Distributed
File System (HDFS)

Pig
Processing

HADOOP DATA PROCESSING FRAMEWORKS

CS4414/5416 - Lecture 21 50

Hadoop data processing (software) framework:

➢ Abstracts the complexity of distributed programming
➢ For easily writing applications which process vast amounts of data in-

parallel on large clusters

Two popular implementations:

➢MapReduce: used for individual batch (long running) jobs
➢ Spark: All of the same, plus streaming, interactive, and iterative batch jobs

MAPREDUCE (“JUST A TASTE”)

CS4414/5416 - Lecture 21 51

MapReduce allows a style of parallel programming designed for:

➢ Distributing (parallelizing) a task easily across multiple nodes of a cluster
○ Allows programmers to describe processing in terms of simple map and reduce

operations, which are inherently parallel

➢ Invisible management of hardware and software failures
➢ Easy management of very large-scale data

MAPREDUCE: TERMINOLOGY

CS4414/5416 - Lecture 21 52

➢ A MapReduce job starts with a collection of input elements of a single type
-- technically, all types are key-value pairs

➢ A MapReduce job/application is a complete execution of Mappers and
Reducers over a dataset
○ Mapper applies the map functions to a single input element
○ Application of the reduce function to one key and its list of values is a Reducer

➢Many mappers/reducers grouped in a Map/Reduce task (the unit of
parallelism)

MAPREDUCE: PHASES

CS4414/5416 - Lecture 21 53

Map

➢ Each Map task (typically) operates on a single HDFS block -- Map tasks (usually) run on the node
where the block is stored

➢ The output of the Map function is a set of 0, 1, or more key-value pairs

Shuffle and Sort

➢ Sorts and consolidates intermediate data from all mappers -- sorts all the key-value pairs by key,
forming key-(list of values) pairs.

➢ Happens as Map tasks complete and before Reduce tasks start

Reduce

➢ Operates on shuffled/sorted intermediate data (Map task output) -- the Reduce function is
applied to each key-(list of values). Produces final output.

EXAMPLE: WORD COUNT (1)

The use case scenario: Start with standard WC for one file.

We have a large file of documents (the input elements)

Documents are words separated by whitespace.

Count the number of times each distinct word appears in the file.

… with MapReduce we can extend this concept to huge numbers of files.

CS4414/5416 - LECTURE 21 54

EXAMPLE: WORD COUNT (2)

CS4414/5416 - Lecture 21 55

Why Do We Care About Counting Words?

➢Word count is challenging over massive amounts of data
○ Using a single compute node would be too time-consuming
○ Using distributed nodes requires moving data
○ Number of unique words can easily exceed available memory -- would

need to store to disk
➢Many common tasks are very similar to word count, e.g., log file

analysis

WORD COUNT USING MAPREDUCE (1)

CS4414/5416 - Lecture 21 56

map(key, value):
// key: document ID; value: text of
document
 FOR (each word w IN value)
 emit(w, 1);

reduce(key, value-list):
// key: a word; value-list: a list of integers
 result = 0;
 FOR (each integer v on value-list)
 result += v;
 emit(key, result);

WORD COUNT USING MAPREDUCE (2)

CS4414/5416 - Lecture 21 57

the cat sat on the mat

the aardvark sat on the sofa

Map & Reduce
aardvark 1

cat 1

mat 1

on 2

sat 2

sofa 1

the 4

Input
Result

WORD COUNT: MAPPER

CS4414/5416 - Lecture 21 58

the 1
cat 1
sat 1
on 1
the 1
mat 1

Input

the cat sat on the mat

the aardvark sat on the sofa

Map,
run on
shard 1

Map,
run on
shard 2

the 1
aardvark 1

sat 1
on 1
the 1
sofa 1

WORD COUNT: SHUFFLE & SORT

CS4414/5416 - Lecture 21 59

the 1
cat 1
sat 1
on 1
the 1
mat 1

the 1
aardvark 1

sat 1
on 1
the 1
sofa 1

Mapper
Output

aardvark 1
cat 1
mat 1
on 1,1
sat 1,1
sofa 1

the 1,1,1,1

Shuffle & Sort

Intermediate Data

WORD COUNT: REDUCER

CS4414/5416 - Lecture 21 60

aardvark 1
cat 1
mat 1
on 1,1
sat 1,1
sofa 1

the 1,1,1,1

Intermediate Data

Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

aardvark 1

cat 1

mat 1

on 2

sat 2

sofa 1

the 4

Reducer Output

aardvark 1

cat 1

mat 1

on 2

sat 2

sofa 1

the 4

Result

THE SLIDE WAS A LIE!

In fact the reducer output might never be combined into a single file, the
way the right-hand side of that slide made it seem.

With MapReduce we often start with sharded data, then “transform” it via
one or more map-reduce stages, but end up with a sharded result.

The reason is that often the result itself is also a massive object. It might
be far too big to fit into any single machine. So we keep it sharded!

CS4414/5416 - LECTURE 21 61

COPING WITH FAILURES

CS4414/5416 - Lecture 21 62

➢MapReduce is designed to deal with compute nodes failing to execute a
Map task or Reduce task.

➢ Re-execute failed tasks, not whole jobs/applications.
➢ Key point: MapReduce tasks produce no visible output until the entire set

of tasks is completed. If a task or sub task somehow completes more
than once, only the earliest output is retained.

➢ Thus, we can restart a Map task that failed without fear that a Reduce
task has already used some output of the failed Map task.

MORE BIG DATA STUFF

Apache has many more tools that we haven’t discussed today (and won’t
cover in CS5412 – they belong in a “big data” course, not CS5412).

They include software for automatically extracting structured data from
unstructured web pages or documents, ways to treat files as massive
databases or spreadsheets but for limited kinds of retrieval and search
tasks, etc. Names include HBASE, RocksDB, PIG, HIVE, etc.

Many of them are implemented “over” Hadoop

CS4414/5416 - LECTURE 21 63

SUMMARY
With really huge data sets, or changing data collected from huge numbers
of clients, it often is not practical to use a classic database model where
each incoming event triggers its own updates.

So we shift towards batch processing, highly parallel: many updates and
many “answers” all computed as one task.

Then cache the results to enable fast tier-one/two reactions later.

CS4414/5416 - LECTURE 21 64

SELF-TEST QUESTIONS

If fault-tolerance in the Apache ecosystem depends on Zookeeper, what
would happen if a failure “takes out” the entire set of Zookeeper servers?

 What would happen, in “high level terms”?

 What concretely would you look for if you were in charge of a service
 built on Apache and you suspected an issue such as this?

 Would you worry about if you were only using Kafka, and not the
 rest of the Apache framework?

CS4414/5416 - LECTURE 21 65

SELF-TEST QUESTIONS

A lot of the Apache framework seems to be about data ingestion and big-
data preprocessing, followed by data mining

Our CS4414 and CS5416 focus is really on LLM/LRM training and later,
hosting the trained models

Does data ingestion, preprocessing and data mining arise at any stage of
LLM or LRM training or execution?

CS4414/5416 - LECTURE 21 66

SELF-TEST QUESTIONS

In lecture we mentioned that people are starting to use LLMs to extract
information from data sources like logs and ticketing systems

Suppose that your data is huge and initially sharded into Apache HDFS.
Now you are designing a script that will launch your favorite LLM tool to
do this form of knowledge extraction and preparation.

How does the HDFS data storage structure (sharding) impact your
expectations for performance of the LLM extraction task? What might you
look for ways to do in order to ensure the highest possible speed?

CS4414/5416 - LECTURE 21 67

	Apache Ecosystem
	Idea map for today
	Terminology reminder
	Why batch?
	Opportunistic batching: Used when ML runs as a service
	A Big Data System for batched, Sharded workloads
	A Big Data System for batched, Sharded workloads
	Several models employed
	Unifying ideas
	Apache has multiple versions of some elements. For example, “file Systems”
	How do they (all) work?
	How do they work?
	Many file systems that scale really well aren’t great for locking/consistency
	Apache Zookeeper and -services
	Zookeeper use cases
	Most popular Zookeeper API?
	The ZooKeeper Service
	Is Zookeeper using Paxos?
	Rest of the Apache Hadoop Ecosystem
	Hadoop Distributed File System (HDFS)
	HDFS: Some Limitations
	Hadoop Database (HBase) is a thin layer directly over HDFS
	HBase
	Reminder: SQL vs NoSQL (1)
	RDBMS vs NoSQL (2)
	HBase: Data Model (1)
	HBase: Data Model (2)
	HBase: Table
	HBase: Horizontal Splits (Regions)
	Hbase Architecture (Region Server)
	HBase Architecture
	HBase Architecture: Column Family (1)
	HBase Architecture: Column Family (2)
	HBase Architecture: Column Family (3)
	HBase Architecture (1)
	HBase Architecture (2)
	HDFS uses ZooKeeper as its coordinator
	�How do these components work together?
	HBase: Meta table
	HBase: Reads/Writes��
	HBase: Some Limitations
	HBase vs HDFS
	Hadoop Resource Management
	Hadoop Ecosystem (Resource Manager)
	YARN Concepts (1)
	YARN Concepts (2)
	YARN Concepts (3)
	YARN Concepts (4)
	Hadoop Ecosystem (Processing Layer)
	Hadoop Data Processing Frameworks
	MapReduce (“Just a taste”)
	MapReduce: Terminology
	MapReduce: Phases
	Example: Word Count (1)
	Example: Word Count (2)
	Word Count Using MapReduce (1)
	Word Count Using MapReduce (2)
	Word Count: Mapper
	Word Count: Shuffle & Sort
	Word Count: Reducer
	The slide was a lie!
	Coping With Failures
	More Big Data stuff
	SUMMARY
	Self-Test Questions
	Self-Test Questions
	Self-Test QUestions

