FANVIANYVIANYVIANYIANYI/ANYI/AN

/ QﬂQﬂ\ﬂQﬂQﬂQﬂQ /
\YZANYZANYZANYZANYZANYZANYZAN
ZANYZANYZANYZ/ANYZANYZANY/ZA\Y/
\YZANYZANYZANYZANYZANYZANYZA\

FJANVIANVIANVIANVIANVIANVIANYS

APACHE ECOSYSTEM | “““““““““ e Lo

IDEA MAP FOR TODAY

Large data sets (including things like collections of emails or insurance filings) are
sharded to scale them out across key-value storage

To train an ML on this kind of data, we need to perform basic operations like

destemming, tokenizing, extracting the most relevant information, etc.

Apache is a free, open-source, and very widely used platform for computations of this kind.

How can we leverage Apache? And how does it avoid needing to temporarily copy

all the data to a single machine (which wouldn’t work: it won't fitl)

Key insight: many simple ML tasks are “always sharded and batched, even the results

(54414/5416 - LECTURE 21 2

TERMINOLOGY REMINDER

Sharded: big storage systems like key-value stores are split into smaller chunks
(shards), replicated for fault-tolerance.

> The key for an object is hashed to find the right shard
» The object can be anything as long as we can treat it as a vector of bytes

> Allows one-hop lookups and scales really well for in-memory compute

Batched: we often take different tasks, create a list
(a batch), and compute on the whole batch in one shot,
obtaining a list of results, one per task.

Cupcakes are cheaper
by the dozen

WHY BATCH?

Cupcakes are cheaper
by the dozen

It centers on amortization of costs: we often can avoid doing the same data
preparation or other overhead steps multiple times, winning for all the tasks.

For example, ML and other big-data tasks often reduce to generalized matrix
multiplication, short acronym GEMM computations.

> Most ML comes down to matrix multiply and a few related tasks

> Matrix multiply scales sublinearly in the size of the “input” matrix: n
row * matrix ops cost much more than one n-rows * matrix op

» This is true for many non-numerical computations too!

(54414/5416 - LECTURE 21 4

OPPORTUNISTIC BATCHING: USED WHEN ML
RUNS AS A SERVICE

Batching can adds delay, and this can be an issue for item-by-item queries when
an ML is being “served” (deployed for question/answer tasks)

» The issue is that the first query in a new batch has to wait until the
batch fills up, like being the first person to get on a car-rental bus at
the airport: it might not leave until it is full.

» That first request waits, yet the “airport rental shuttle” efficiency is higher

In ML serving, we often do “opportunistic” batching instead. We batch if
there is a backlog, but then compute immediately even with just 1 query

(54414/5416 - LECTURE 21 5

A BIG DATA SYSTEM FOR BATCHED,
SHARDED WORKLOADS

ata
Ingestion
Systems

Popular BigData Systems: Apache Hadoop, Apache Spark

A BIG DATA SYSTEM FOR BATCHED,
SHARDED WORKLOADS

P
Batch Analytical Stream Machine Other
5 Processing SQL Processing Learning Applications

4 D
Resource M-

Zookeeper: Used to “manage’” the entire
o

structure including for subsystems in it.
9N
Systems
;_—-‘
.

Popular BigData Systems: Apache Hadoop, Apache Spark, Databricks

CS4414/5416 - Lecture 21 7

SEVERAL MODELS EMPLOYED

Kafka: Scalable message queuing middleware. Like an email system, but
process to process (or more often, process to [L-service).

Databases: They receive updates and hold data and support full SQL.
File systems: They hold documents, web pages, etc. You use a file system API.

Key-value stores: They hold (key,value) tuples, perhaps with versioning (logs
with one record per version). They use the NoSQL model.

(54414/5416 - LECTURE 21 8

UNIFYING IDEAS

All are built in similar ways. In Apache, all are structured “around”
Lookeeper. Each is optimized for a particular style of use.

All use sharding for scalability.

And in fact all are accessible through similar APls — most Apache tools
support more than one kind of API (for example, as a file system, or as a
DHT — but with the same contents in both cases).

(54414/5416 - LECTURE 21 9

APACHE HAS MULTIPLE VERSIONS OF SOME
ELEMENTS. FOR EXAMPLE, “FILE SYSTEMS”™

Before we discuss Zookeeper, let’s think about file systems. Clouds have
many! One is for bulk storage: some form of “global file system” or GFS.

>

>
>

At Google, it is actually called GFS. HDFS (which we will study) is an
open-source version of GFS.

At Amazon, S3 plays this role.

Azure uses “Azure storage fabric”

KVS systems like DynamoDB, CosmosDB, Cassandra, RocksDB, Cascade...

(54414/5416 - LECTURE 21 10

HOW DO THEY (ALL) WORK?

> A “Name Node” service runs, fault-tolerantly, and tracks file meta-data
(like a Linux inode): Name, create /update time, size, seek pointer, etc.

» The name node also tells your application which data nodes hold the file.

> Very common to use a simple DHT scheme to fragment the NameNode

into subsets, hopefully spreading the work around. DataNodes are
hashed at the block level (large blocks)

> Some form of primary/backup scheme for fault-tolerance, like chain

replication. Writes are automatically forwarded from the primary
to the backup.

(54414/5416 - LECTURE 21 11

HOW DO THEY WORK?

Metadata: file owner, access permissions, time
open of creation, ...
— File
Plus: Which DataNodes hold its data blocks
MetaData

Copy of metadata

(54414/5416 - LECTURE 21 12

MANY FILE SYSTEMS THAT SCALE REALLY WELL
AREN’T GREAT FOR LOCKING/CONSISTENCY

The majority of sharded and scalable file systems turn out to be slow or
incapable of supporting consistency via file locking, for many reasons.

So many application use two file systems: one for bulk data, and
Lookeeper for configuration management, coordination, failure sensing.

This permits some forms of consistency even if not everything.

(54414/5416 - LECTURE 21 13

APACHE ZOOKEEPER AND L-SERVICES

Zookeeper can manage information
in your system

IP addresses, version numbers, and
other configuration information of
your |Ll-services.

The health of the Li-service.

The step count for an iterative
calculation.

Group membership

ZOOKEEPER USE CASES

The need in many systems is for a place to store configuration, parameters, lists
of which machines are running, which nodes are “primary” or “backup”, etc.

We desire a file system interface, but “strong, faulttolerant semantics”

Lookeeper is widely used in this role. Stronger guarantees than GFS.

» Data lives in (small) files. Versioning is automatic (it can keep every version,
or just the most recent version).

» Zookeeper is quite slow and not very scalable. Facebook has reimplemented it
and has a faster, APl-compliant version in-house.

(54414/5416 - LECTURE 21 15

MOST POPULAR ZOOKEEPER API?

They offer a novel form of “conditional file replace”

» Exactly like the conditional “put” operation in Cascade.
> Files have version numbers in Zookeeper.

> A program can read version 5, update it, and tell the system to replace
the file creating version 6. But this can fail if there was a race and you
lost the race. You could would just loop and retry from version 6.

> It avoids the need for locking and this helps Zookeeper scale better.

(54414/5416 - LECTURE 21 16

THE ZOOKEEPER SERVICE

Each p-service has

a leader that talks
Zookeeper is itself an

to Zookeeper. lts
interesting distributed

other nodes have
system

connections too, but

just passive (for
fault detection)

— | Client Client Client Client Client Client Client Client

ZooKeeper Service is replicated over a set of machines, usually 5 or 7.

All machines store a copy of the data in memory (!). Checkpointed to disk if you wish.
A leader is elected on service startup

Clients only connect to a single ZooKeeper server & maintains a TCP connection.

Client can read from any Zookeeper server

Writes go through the leader & need majority consensus.

https: / /cwiki.apache.org /confluence /display /ZOOKEEPER /ProjectDescription UK ERED 17

IS ZOOKEEPER USING PAXOS?

Early work on Zookeeper actually did use Paxos, but it was too slow

They settled on a model that uses atomic multicast with dynamic
membership management and in-memory data (like virtual synchrony).

But they also checkpoint Zookeeper every 5s if you like (you can control
the frequency), so if it crashes it won’t lose more than 5s of data.

(54414/5416 - LECTURE 21 18

| REST OF THE APACHE HADOOP ECOSYSTEM

Other
Applications

Data Ingest
Systems
e.g., Apache

Kafka, Flume,

i i etc

\ /

(54414/5416 - LECTURE 21 19

HADOOP DISTRIBUTED FILE SYSTEM (HDFS)

HDFS is the storage layer for Hadoop BigData System
HDFS is based on the Google File System (GFS)

Fault-tolerant distributed file system

Designed to turn a computing cluster (a large collection of loosely
connected compute nodes) into a massively scalable pool of storage

Provides redundant storage for massive amounts of data -- scales up to
100PB and beyond

(54414/5416 - LECTURE 21 20

HDFS: SOME LIMITATIONS

Files can be created, deleted, and you can write to the end, but not
update them in the middle.

A big update might not be atomic (if your application happens to crash
while writes are being done)

Not appropriate for real-time, low-latency processing -- have to close
the file immediately after writing to make data visible, hence a real
time task would be forced to create too many files

Centralized metadata storage -- multiple single points of failures

Name node is a scaling (and potential reliability) weak spot.

(54414/5416 - LECTURE 21 21

HADOOP DATABASE (HBASE) IS A THIN LAYER
DIRECTLY OVER HDFS

HBASE is used like a NoSQL database. It maps directly to HDFS
It holds tables. One table can have thousands of columns
Supports very large amounts of data and high throughput

HBase has a weak consistency model, but there are ways to use it safely

Random access, low latency

(54414/5416 - LECTURE 21 72

HBASE

The Hbase design actually is based on Google’s Bigtable
Designed for Distribution, Scale, and Speed

Full relational Database (RDBMS) vs NoSQL Database:
RDBMS — vertical scaling (expensive) — not appropriate for BigData

NoSQL — horizontal scaling / sharding (cheap) = better for BigData

(54414/5416 - LECTURE 21 23

REMINDER: SQL VS NOSQL (1)

*Full RDMS systems support SQL, but Jim Gray’s analysis applies

* So at scale we shard (the BASE methodology), lose ACID:
» RDBMS (ACID): Atomicity, Consistency, Isolation, Durability
» NoSQL (BASE): Basically Available Soft state Eventually consistency

* Giving up ACID enables availability, performance, and scalability

» Most Apache subsystems call themselves “eventually consistent”,
meaning that updates are eventually propagated to all nodes

(54414/5416 - LECTURE 21 24

RDBMS VS NOSQL (2)

*NoSQL (e.g., CouchDB, HBase) is a good choice for 100
Millions /Billions of rows

*RDBMS (e.g., mysql) is a good choice for a few
thousand /millions of rows

*HBase is a NoSQL table store and actually is “consistent”
but only if used in specific ways.

(54414/5416 - LECTURE 21 25

HBASE: DATA MODEL (1)

Columns

Data model -

comp:base comp:stocks

Row keys

(54414/5416 - LECTURE 21 26

HBASE: DATA MODEL (2)

*Sorted rows: support billions of rows
*Columns: Supports millions of columns

*Cell: intersection of row and column
» Can have multiple values (which are time-stamped)

» Can be empty. No storage/processing overheads

(54414/5416 - LECTURE 21 27

HBASE: TABLE

Unique id Mame price weight storel store? store3
“1000000" snickers 59.99 40z Yes Yes Yes
“3000000" almonds | 59.99 80z Yes No Yes
“8000000" coke 59.99 16 Oz Yes Yes Yes
“4000000" foo 534.63 16 Oz No Yes Yes
5000000 bar 522.54 16 Oz Yes Yes Yes
“9000000" newl 52.5 16 Oz Yes Yes Yes
“7000000" new?2 56.4 16 Oz Yes Yes Yes
“2000000" new3 56.4 16 Oz Yes Yes Yes

(54414/5416 - LECTURE 21

28

HBASE: HORIZONTAL SPLITS (REGIONS)

[", “S000000")

Row Key Mame brand price weight storel store2 store3
1000000 snickers XK 59.99 40z Yes Yes Yes
“ 2000000 new3 XHK 56.4 16 Oz Yes Yes Yes
“3000000" almonds XHK 59,99 8 0z Yes No Yes
“4000000" foo XXX 534.63 16 Oz Mo Yes Yes

[“50000007, ")

Row Key Mame brand price weight storel store2 store3
“S000000" bar XHXK 522.54 16 Oz Yes Yes Yes
7000000 new? XHK 56.4 16 Oz Yes Yes Yes
“ 8000000 coke XXX 59.99 16 Oz Yes Yes Yes
“9000000" newl XXX 52.5 16 Oz Yes Yes Yes

(54414/5416 - LECTURE 21 29

HBASE ARCHITECTURE (REGION SERVER)

Row Key Name price weight
“1000000" snickers %9.99 4 0z
“2000000" new3 $6.4 16 Oz — Server 12
“3000000" almonds | $9.99 8 Oz
“4000000" foo $34.63 | 160z

Sharding is automatic

Row Key Name price weight
“S000000" bar $22.54 | 160z
“7000000" new?2 56.4 16 Oz — Server 7
"8000000" coke $9.99 | 160z
“8000000" newl 52.5 16 Oz

(54414/5416 - LECTURE 21 30

HBASE ARCHITECTURE

Unique id Mame price weight storel store? store3
“1000000" snickers 59.99 4 0z Yes Yes Yes
“3000000" almonds | 59.99 80z Yes Mo Yes
“8000000" coke 59.99 16 Oz Yes Yes Yes
“4000000" foo 534.63 16 Oz No Yes Yes
“S000000" bar 522.54 16 Oz Yes Yes Yes
“9000000" newl 52.5 16 Oz Yes Yes Yes
“7000000" new?2 56.4 16 Oz Yes Yes Yes
2000000 new3 56.4 16 Oz Yes Yes Yes

(54414/5416 - LECTURE 21 31

HBASE ARCHITECTURE: COLUMN FAMILY (1)

Row Key info: info: info: availability: availability: availability:
name price weight storel store2 store3
“1000000" snickers 59.99 40z Yes Yes Yas
“ 2000000 new3 56.4 16 Oz Yes Yes Yas
“3000000" almonds 59.99 80z Yes Mo Yes
“4000000" foo 534.63 16 Oz No Yes Yes
“S000000" bar 522.54 16 Oz Yes Yes Yes
“7000000" new?2 $6.4 16 Oz Yes Yes Yes
“2000000" coke 59.99 16 Oz Yes Yes Yes
“9000000" newl 52.5 16 Oz Yes Yes Yes

(54414/5416 - LECTURE 21 32

 HBASE ARCHITECTURE: COLUMN FAMILY

Region
Column Column
Family Family
info: info: info: available: | available: | available:
name price | weight storel store2 store3
“1000000" snickers 59.99 40z “1000000" Yes Yes Yes
“2000000" new3 %6.4 | 160z “2000000" Yes Yes Yes
"3000000" almonds 59.99 80z "3000000" Yes No Yes

(54414/5416 - LECTURE 21

33

HBASE ARCHITECTURE: COLUMN FAMILY (3)

*Data (column families) stored in separate files (Hfiles)

*Tune Performance
» In-memory

» Compression

*Needs to be specified by the user

(54414/5416 - LECTURE 21 34

HBASE ARCHITECTURE (1)

HBase is composed of three types of servers in a leader/worker
type of architecture: Region Server, Hbase Master, ZooKeeper.

L T HMaster Lead
J‘.K..-Pr H master eaaer
=S ZooKeeper active Servers

Region g Worker

Region Server:

Clients communicate with RegionServers
(workers) directly for accessing data

Serves data for reads and writes.

These region servers are assigned to the
HDFS data nodes to preserve data

Servers

locality.

(54414/5416 - LECTURE 21 35

HBASE ARCHITECTURE (2)

HBase Leader (HMaster): coordinates region servers, handles
DDL (create, delete tables) operations.

Lookeeper: HBase uses ZooKeeper as a distributed coordination
service to maintain server state in the cluster.

(54414/5416 - LECTURE 21 36

HDFS USES ZOOKEEPER AS ITS COORDINATOR

Maintains region server state in the cluster

Provides server failure notification

Uses consensus to guarantee common shared state

ZooKeeper is a distributed
coordination service |e = '
. F . Inactive
|’ zookeeper HMaster
—hearlheal f
i
Region Data Node i Data Node
Server Region Region Server Region Region
[Key | coe | coc: [Key | com | coic | | Key | o | corc [Key | cole | conc |
wval wal wal wal wal wal wal wval

val vl vl val El = w El - w

(54414/5416 - LECTURE 21 37

HOW DO THESE COMPONENTS WORK TOGETHER?

Region servers and the active HBase Leaders connect with a session to ZooKeeper

A special HBase Catalog table “META table” = Holds the location of the regions in

the cluster.

LooKeeper stores the location of the META table.

is stored in
ooEeeper
| leta table location

4 ZooKeeper

MetaCa:heP Client =

| Put or Get Row 1
Region Region
Server Server

Data Node Data Node

(54414/5416 - LECTURE 21 38

HBASE: META TABLE

The META table is an HBase table that keeps a list of all regions in the system.

This META table is like a B Tree
META table

META table is used 1o find the Row key Value ![3 tree
Region for a given Table key
Region
Server

table key.region region server
| l I
Server Server

Region

wal
wal

wal
wal

(54414/5416 - LECTURE 21 39

HBASE: READS/WRITES

The client gets the Region server that hosts the META table from ZooKeeper

The client will query (get/put) the META server to get the region server
corresponding to the rowkey it wants to access

It will get the Row from the corresponding Region Server.

Tables are horizontally
partitioned into key
ranges (regions)

Regions are assigned
to Region Servers

Client
Region starkey startiey
Region Server Region Region
| Key | oo | coic | [Key | oot | coic
m wal = I k- m val = LI val val
[o TR Bl = = EY - =
1GB 1GB 1GEB

(54414/5416 - LECTURE 21

40

HBASE: SOME LIMITATIONS

Not ideal for large objects (>50MB per cell), e.g., videos -- the
problem is “write amplification” -- when HDFS reorganizes data to
compact large unchanging data, extensive copying occurs

Not ideal for storing data chronologically (time as primary index),
e.g., machine logs organized by time-stamps cause write hot-spots.

(54414/5416 - LECTURE 21 41

Hbase is a way of “talking to” HDFS. We use it for massive tables that

| HBASE VS HDFS

wouldn’t fit into a single HDFS file.

-~

HBase \\\

Stores data as key-value objs in column-families.
Records in HBase are stored according to the
rowkey and sequential search is common
Provides low latency access to small amounts of
data from within a large data set

Provides flexible data model /

/

HDFS

Stores data as flat files

Optimized for streaming access of large
files -- doesn’t support random read/write

Follows write-once read-many model

K. Supports log-style files (append-only). /

~

(54414/5416 - LECTURE 21

42

HADOOP RESOURCE MANAGEMENT

Yet Another Resource Negotiator (YARN)

> YARN is a core component of Hadoop, manages all the resources of a Hadoop cluster
(CPUs, memory, GPUs, networking connections, etc).
> Using selectable criteria such as fairness, it effectively allocates resources of Hadoop

cluster to multiple data processing jobs
O Batch jobs (e.g., MapReduce, Spark)
O Streaming Jobs (e.g., Spark streaming)

O Analytics jobs (e.g., Impala, Spark)

CS4414/5416 - Lecture 21 43

| HADOOP ECOSYSTEM (RESOURCE MANAGER)

e e e R '

Map)) Other | Spark
Hive Pig N
Reiluce Applications | - Stream
[

I

I

| a N
Resource | Data Ingest
manager | Systems

! e.g., Apache

| : Kafka, Flume,

[Hadoop Distributed Hadoop NoSQL I etc

i File System (HDFS) Database (HBase) .

| ! N\ /

I .

CS4414/5416 - Lecture 21 44

YARN CONCEPTS (1)

Container:

> YARN uses an abstraction of resources called a container for managing resources --
an unit of computation of a resource node, i.e., a certain amount of CPU, Memory,
Disk, etc., ASIC resources. Tied to Mesos container model.

> A single job may run in one or more containers — a set of containers would be used
to encapsulate highly parallel Hadoop jobs.

> The main goal of YARN is effectively allocating containers to multiple data

processing jobs.

CS4414/5416 - Lecture 21 45

YARN CONCEPTS (2)

Three Main components of YARN:

Application Leader, Node Manager, and Resource Manager (a.k.a. YARN Daemon

Processes)

> Application Leader:
O Single instance per job.
O Spawned within a container when a new job is submitted by a client
O Requests additional containers for handling of any sub-tasks.
> Node Manager: Single instance per worker node. Responsible for monitoring and

reporting on local container status (all containers on worker node).

CS4414/5416 - Lecture 21 46

YARN CONCEPTS (3)

Three Main components of YARN: Application Master, Node Manager, and Resource
Manager (aka The YARN Daemon Processes)

> Resource Manager: arbitrates system resources between competing jobs. It has two main
components:
O Scheduler (Global scheduler): Responsible for allocating resources to the jobs subject
to familiar constraints of capacities, queues etc.
O Application Manager: Responsible for accepting job-submissions and provides the

service for restarting the ApplicationMaster container on failure.

CS4414/5416 - Lecture 21 47

| YARN CONCEPTS (4)

How do the components Yy
of YARN work together?

MapReduce Status ————#

Job Submission ------ >
MNode Status 1 e e >
Resource Request -......... =

Image source: http://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/YARN.html CS4414/5416 - Lecture 21 45

| HADOOP ECOSYSTEM (PROCESSING LAYER)

Other
i Applications
" r " mmm n [
|
: Yet Another Resource ' /D A
I . I ata Ingest
) Negotiator (YARN) I Systems
! e L e.g., Apache
! - N qukq,TFIume,
[Hadoop Distributed Hadoop NoSQL I =it
' File System (HDFS) Database (HBase) :
! | g J
|- -

CS4414/5416 - Lecture 21 49

HADOOP DATA PROCESSING FRAMEWORKS

Hadoop data processing (software) framework:

> Abstracts the complexity of distributed programming
> For easily writing applications which process vast amounts of data in-

parallel on large clusters
Two popular implementations:

> MapReduce: used for individual batch (long running) jobs

> Spark: All of the same, plus streaming, interactive, and iterative batch jobs

CS4414/5416 - Lecture 21 50

MAPREDUCE (“JUST A TASTE”)

MapReduce allows a style of parallel programming designed for:

> Distributing (parallelizing) a task easily across multiple nodes of a cluster
O Allows programmers to describe processing in terms of simple map and reduce

operations, which are inherently parallel
> |nvisible management of hardware and software failures

> Easy management of very large-scale data

CS4414/5416 - Lecture 21 51

MAPREDUCE: TERMINOLOGY

> A MapReduce job starts with a collection of input elements of a single type
-- technically, all types are key-value pairs
> A MapReduce job/application is a complete execution of Mappers and

Reducers over a dataset
O Mapper applies the map functions to a single input element

O Application of the reduce function to one key and its list of values is a Reducer
> Many mappers/reducers grouped in a Map /Reduce task (the unit of

parallelism)

CS4414/5416 - Lecture 21 52

MAPREDUCE: PHASES

Map

> Each Map task (typically) operates on a single HDFS block -- Map tasks (usually) run on the node
where the block is stored

> The output of the Map function is a set of O, 1, or more key-value pairs

Shuffle and Sort

> Sorts and consolidates intermediate data from all mappers -- sorts all the key-value pairs by key,
forming key-(list of values) pairs.

> Happens as Map tasks complete and before Reduce tasks start
Reduce

> Operates on shuffled /sorted intermediate data (Map task output) -- the Reduce function is
applied to each key-(list of values). Produces final output.

CS4414/5416 - Lecture 21 53

EXAMPLE: WORD COUNT (1)

The use case scenario: Start with standard WC for one file.

We have a large file of documents (the input elements)
Documents are words separated by whitespace.

Count the number of times each distinct word appears in the file.

... with MapReduce we can extend this concept to huge numbers of files.

(54414/5416 - LECTURE 21 54

EXAMPLE: WORD COUNT (2)

Why Do We Care About Counting Words"?

> Word count is challenging over massive amounts of data
o Using a single compute node would be too time-consuming
o Using distributed nodes requires moving data
o Number of unique words can easily exceed available memory -- would
need to store to disk
> Many common tasks are very similar to word count, e.g., log file

analysis

CS4414/5416 - Lecture 21 55

WORD COUNT USING MAPREDUCE (1)

map(key, value): reduce(key, value-list):

// key: document ID; value: text of // key: a word; value-list: a list of integers
document

result = 0;
FOR (each word w IN value)

FOR (each integer v on value-list)
emit(w, 1); result +=v;

emit(key, result);

CS4414/5416 - Lecture 21 56

WORD COUNT USING MAPREDUCE (2)

Input

-

the cat sat on the mat

the aardvark sat on the sofa

Map & Reduce

,/

<>

Result

aardvark 1
cat 1
mat 1
on 2
sat 2

sofa 1

the 4

CS4414/5416 - Lecture 21 57

WORD COUNT: MAPPER e

Map, on 1

s Input run on the 1
i t1

[the cat sat on the mat J//\shard 1 j mq ___________ .

[the aardvark sat on the sofa]\ C the 1 |
\ / | |
/Map, D aardvark 1
| sat 1 :
run on > | §
on
shard 2 i
0 4 the 1
. sofa 1

CS4414/5416 - Lecture 21 58

WORD COUNT: SHUFFLE & SORT

the 1
cat | Intermediate Data
sat 1
on 1 aardvark 1
the 1 | cat 1
mat 1 Shuffle & Sort mat 1
Mapper : he] > on 1,1
| t :
Output 5 ° i sat 1,1
. aardvark 1
| : ’ sofa 1
t
> the 1,1,1,1
on 1
the 1
sofa 1

CS4414/5416 - Lecture 21

59

|WORD COUNT: REDUCER

Intermediate Da

aardvark 1

cat 1
mat 1
onl,l
sat 1,1

sofa 1

the 1,1,1,1

fa

[/ LN

4 N
Reduce Reducer Output
&)\ ...
(b ~ aardvark 1
Reduce \f.'
> < cat 1
Reduce \—;f.'
& J : mat 1
4 N ;.':f:'
Reduce > on 2
S J :.'_'.'_'."
a D :
S sat 2
Reduce :.':f::
> </v sofa 1
Reduce é::
N J : the 4
(\/ ...
Reduce
(& J

Result

aardvark 1
cat 1
mat 1
on 2
sat 2

sofa 1

the 4

CS4414/5416 - Lecture 21

60

THE SLIDE WAS A LIE!

In fact the reducer output might never be combined into a single file, the
way the right-hand side of that slide made it seem.

With MapReduce we often start with sharded data, then “transform” it via
one or more map-reduce stages, but end up with a sharded result.

The reason is that often the result itself is also a massive object. It might
be far too big to fit into any single machine. So we keep it sharded!

(54414/5416 - LECTURE 21 61

COPING WITH FAILURES

> MapReduce is designed to deal with compute nodes failing to execute a
Map task or Reduce task.

> Re-execute failed tasks, not whole jobs/applications.

> Key point: MapReduce tasks produce no visible output until the entire set
of tasks is completed. If a task or sub task somehow completes more
than once, only the earliest output is retained.

> Thus, we can restart a Map task that failed without fear that a Reduce

task has already used some output of the failed Map task.

CS4414/5416 - Lecture 21 62

MORE BIG DATA STUFF

Apache has many more tools that we haven’t discussed today (and won’t
cover in CS5412 — they belong in a “big data” course, not CS541 2).

They include software for automatically extracting structured data from
unstructured web pages or documents, ways to treat files as massive

databases or spreadsheets but for limited kinds of retrieval and search
tasks, etc. Names include HBASE, RocksDB, PIG, HIVE, etc.

Many of them are implemented “over” Hadoop

(54414/5416 - LECTURE 21 63

SUMMARY

With really huge data sets, or changing data collected from huge numbers
of clients, it often is not practical to use a classic database model where
each incoming event triggers its own updates.

So we shift towards batch processing, highly parallel: many updates and
many “answers” all computed as one task.

Then cache the results to enable fast tier-one /two reactions later.

(54414/5416 - LECTURE 21 64

SELF-TEST QUESTIONS

If fault-tolerance in the Apache ecosystem depends on Zookeeper, what
would happen if a failure “takes out” the entire set of Zookeeper servers?

» What would happen, in “high level terms”?

> What concretely would you look for if you were in charge of a service
built on Apache and you suspected an issue such as this¢

> Would you worry about if you were only using Kafka, and not the
rest of the Apache framework?

(54414/5416 - LECTURE 21 65

SELF-TEST QUESTIONS

A lot of the Apache framework seems to be about data ingestion and big-
data preprocessing, followed by data mining

Our CS4414 and CS5416 focus is really on LLM/LRM training and later,
hosting the trained models

Does data ingestion, preprocessing and data mining arise at any stage of
LLM or LRM training or execution?

(54414/5416 - LECTURE 21 66

SELF-TEST QUESTIONS

In lecture we mentioned that people are starting to use LLMs to extract
information from data sources like logs and ticketing systems

Suppose that your data is huge and initially sharded into Apache HDFS.
Now you are designing a script that will launch your favorite LLM tool to
do this form of knowledge extraction and preparation.

How does the HDFS data storage structure (sharding) impact your
expectations for performance of the LLM extraction task¢ What might you
look for ways to do in order to ensure the highest possible speed?

(54414/5416 - LECTURE 21 67

	Apache Ecosystem
	Idea map for today
	Terminology reminder
	Why batch?
	Opportunistic batching: Used when ML runs as a service
	A Big Data System for batched, Sharded workloads
	A Big Data System for batched, Sharded workloads
	Several models employed
	Unifying ideas
	Apache has multiple versions of some elements. For example, “file Systems”
	How do they (all) work?
	How do they work?
	Many file systems that scale really well aren’t great for locking/consistency
	Apache Zookeeper and -services
	Zookeeper use cases
	Most popular Zookeeper API?
	The ZooKeeper Service
	Is Zookeeper using Paxos?
	Rest of the Apache Hadoop Ecosystem
	Hadoop Distributed File System (HDFS)
	HDFS: Some Limitations
	Hadoop Database (HBase) is a thin layer directly over HDFS
	HBase
	Reminder: SQL vs NoSQL (1)
	RDBMS vs NoSQL (2)
	HBase: Data Model (1)
	HBase: Data Model (2)
	HBase: Table
	HBase: Horizontal Splits (Regions)
	Hbase Architecture (Region Server)
	HBase Architecture
	HBase Architecture: Column Family (1)
	HBase Architecture: Column Family (2)
	HBase Architecture: Column Family (3)
	HBase Architecture (1)
	HBase Architecture (2)
	HDFS uses ZooKeeper as its coordinator
	�How do these components work together?
	HBase: Meta table
	HBase: Reads/Writes��
	HBase: Some Limitations
	HBase vs HDFS
	Hadoop Resource Management
	Hadoop Ecosystem (Resource Manager)
	YARN Concepts (1)
	YARN Concepts (2)
	YARN Concepts (3)
	YARN Concepts (4)
	Hadoop Ecosystem (Processing Layer)
	Hadoop Data Processing Frameworks
	MapReduce (“Just a taste”)
	MapReduce: Terminology
	MapReduce: Phases
	Example: Word Count (1)
	Example: Word Count (2)
	Word Count Using MapReduce (1)
	Word Count Using MapReduce (2)
	Word Count: Mapper
	Word Count: Shuffle & Sort
	Word Count: Reducer
	The slide was a lie!
	Coping With Failures
	More Big Data stuff
	SUMMARY
	Self-Test Questions
	Self-Test Questions
	Self-Test QUestions

