
CLOUD MICROSERVICE ARCHITECTURES Professor Ken Birman
CS4414/5416 Lecture 19

CORNELL CS4414/5416 - FALL 2025 1

KEY IDEAS FOR TODAY

 We discussed several really large cloud infrastructure services

 You build new applications by introducing much smaller bits of
 code (lambdas) that leverage those existing tools. This leads to
 a so-called microservice model, sometimes written µ-service

 Exciting new trends? Agentic AI uses this same infrastructure

CORNELL CS4414/5416 - FALL 2025 2

Early first-tier services were web servers. But we broke them into components. The microservice
approach emerged because monolithic web servers were becoming too large and sluggish.

Today, the first tiers are portals to web sites/services
accessed via http(s)/GRPC, backed by microservices

Our focus in today’s lecture is on the main elements of
the cloud computing microservices ecosystem

WHY DO WE EVEN
CALL IT THE “CLOUD”?
Computing happens somewhere else, not on your PC or mobile device

A big goal is to prepare students for careers at the companies building and
running the cloud (Google, Microsoft, Amazon, Facebook…).

Cloud computing is a technology course: we ask how things really work, not
a concepts course that might be more centered on capabilities and use cases
(in fact we will see lots of those, but they aren’t our main topic)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 3

THE CLOUD

THE CLOUD UNDERPINS
MODERN COMPUTING
Physical: The cloud is a global deployment of massive data centers
connected by ultra-fast networking, designed for scalability and
robustness.

Logical: A collection of tools and platforms that scale amazingly well.
The platforms matter most; as a developer, they allow you to
extend/customize them to create your application as a “personality”
over their capabilities.

Conceptual: A set of scalable ideas, concepts and design strategies.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 4

THE CLOUD

WHO INVENTED THE CLOUD?

Google’s Jeff Dean and Sanjay Ghemawat get my “vote”.
 Jeff Dean was a University of Washington PhD student. We know him
 well and he often visits Cornell. Now he is the head of Google Brain.
 Sanjay Ghemawat was a Cornell ugrad, then MIT PhD. He is a Senior
 Fellow in Google’s systems infrastructure area.

Both Jeff and Sanjay are famous for simple and robust ways to scale things
up (and writing about them). This was the key to the modern cloud.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 5

Jeff Dean Sanjay Ghemawat

I WAS THERE TOO…

 I didn’t invent the cloud, but many of my students had huge roles.
 Personally, I created the “self-healing” software that ran the trading floors
 of the New York Stock Exchange and the Swiss Exchange for 10+ years.
 The US military uses this technology too.
 Designed the French portion of the European Air Traffic control system,
 control and created the core software. They’ve used it since 1996.
 Oracle and Microsoft both use a technology I invented to track the
 status of their clusters and data centers.
 Recently, I helped create the New England smart grid (for ISONE and
 NYPA), and helped the Air Force figure out how to leverage the cloud.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 6

SOME OF MY PAST STUDENTS BECAME CLOUD
COMPUTING SUPERSTARS
Werner Vogels was in my group until 2005.
He has been CTO of Amazon since 2006.

Ranveer Chandra is Chief Scientist for Azure Global, head of
Networking Research and responsible for their FarmBeats product.

Yee-Jiun Song: VP Engineering, Facebook
Qi Huang: Facebook video/photo delivery
Dalia Malkhi: CTO for Diem, Facebook’s digital currency.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 7

EVERYTHING IS BIG
IN THE CLOUD

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 8

DATA IN THE CLOUD

1 Exabyte of data is 1,073,741,824
GB. (Your hard disk probably holds
64GB, but is way too slow by data-
center standards)

The Internet has about 2B websites,
and of these, 644M have “active
content”

… and all of this is “pre Internet of
Things”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 9

HOW DID TODAY’S CLOUD EVOLVE?

Prior to ~2005, we had “data centers designed for high availability”.
Amazon had especially large ones, to serve its web requests
 This is all before the AWS cloud model
 The real goal was just to support online shopping

Their system wasn’t very reliable, and the core problem was scaling
 Like a theoretical complexity growth issue.
 Amazon’s computers were overloaded and often crashed

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 10

WASN’T GOOGLE FIRST?

Google was still building their first scalable infrastructure in this
period.

Because Amazon ran into scaling issues first, Google (a bit later)
managed to avoid them.
 In some sense, Amazon dealt with these issues “in real time”.
 Google had a chance to build a second system by learning from
 Amazon’s mistakes and approaches.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 11

YAHOO EXPERIMENT

In the 2005 time period everyone was talking about an experiment done at
Yahoo. It was an “alpha/beta” experiment about ad-click-through
 Customers who saw web page rendering faster than 100ms clicked ads.
 For every 100ms delay, click-through rates noticeably dropped.

Speed at scale determines revenue, and revenue shapes technology: an arms
race to speed up the cloud.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 12

A sprint to render your web page!

MORE YAHOO FINDINGS

Rending the ads first didn’t help – in fact it hurt.

Customers wanted to see the “real content” first.

Rendering the ads after the content hurt too.

To get the best click-through rates, render your pages (ads included)
fast!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 13

A sprint to render your web page!

EVERYONE HEARD THIS MESSAGE

At Amazon, Jeff Bezos spread the word internally.

He wanted Amazon to win this sprint.

The whole company was told to focus on ensuring that every Amazon
product page would render with minimal delay. Unfortunately… as
more and more customers turned up… Amazon’s web pages slowed
down. This is a “crisis of the commons” situation.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 14

THE CRISIS OF THE COMMONS

At the center of the village is a lovely grassy commons. Everyone
uses it.

One day a farmer has an awesome idea. He lets his goats graze on
the commons. This saves the time of herding them to his fields. This
gains him hours that he uses to improve his goat cheese factory.

He earns extra money with his award-winning cheeses.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 15

THE CRISIS OF THE COMMONS

… his neighbors love the idea! All of them decide to use the
commons.

In no time all the grass is gone and the commons is reduced to dust.

For Amazon, success was like that. The first shoppers loved the
site, but then “everyone” wanted to use it, and it overloaded and
collapsed.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 16

WHERE ARE THE COMMONS, IN A CLOUD?

In the cloud we need to think about all the internal databases and
services “shared” by lots and lots of µ-service instances.

If we take the advice to “make everything as fast as possible”, all
those millions of first-tier µ-services will be greedy.

But what works best for one instance, all by itself, might overload the
shared services when the same code runs side by side with huge
numbers of other instances (“when we run at scale”)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 17

THE CLOUD AND THE “THUNDERING HERD”

In fact this is a very common pattern.

Something becomes successful at small
scale, so everyone wants to try it.

But now the same code patterns that worked at small scale
might break. The key to scalability in a cloud is to use the cloud
platform in a smart way.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 18

STARTING AROUND 2006, AMAZON LED IN
REINVENTING DATA CENTER COMPUTING
Amazon reorganized their whole approach:
 Requests arrived at a “first tier” of very lightweight servers.
 These dispatched work requests on a message bus or queue.
 The requests were selected by “micro-services” running in elastic
pools.
 One web request might involve tens or hundreds of µ-services!
They also began to guess at your next action and precompute what
they would probably need to answer your next query or link click.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 19

OLD APPROACH (2005)
Product List

Computers were mostly desktops

Internet routing was
pretty static, except
for load balancing

Web Server
built the page… in Seattle

Image Database

Billing and Account Info

Databases held the real
product inventory

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 20

NEW APPROACH (2008)
Product List

Computers became lightweight,
yet faster

Image Database

Billing and Account Info

Databases held the real
product inventory

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 21

Web Server built the page…
ten miles from the users

NEW APPROACH (2008)
Product List

Computers became lightweight,
yet faster

Image Database

Billing and Account Info

Databases held the real
product inventory

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 22

Web Server built the page…
ten miles from the users

More and more mobile apps

NEW APPROACH (2008)

Desktops with
snappier response

More and more mobile apps HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 23

Message Bus

Racks of highly parallel workers do much of
the data fetching and processing, ideally

ahead of need… The old databases are split
into smaller and highly parallel services.

Web Server becomes simpler
and does less of the real work

GeoReplication

TIER ONE / TIER TWO

We often talk about the cloud as a “multi-tier” environment.

Tier one: programs that generate the web page you see.

Tier two: services that support tier one. We will see one later (DHT/KVS
storage used to create a massive cache)

Back end: Asynchronous/offline services not used directly by tier 1.
These do important things but maybe no “in the moment”.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 24

TIERING EXAMPLE

A Facebook client program is an app that asks a tier 1 service to
create a web page, perhaps for the user’s web feed.

Tier 2 services include TAO itself, blob resizing and caching, maps,
advertisement/recommendation generating, etc

Back end includes Haystack, the TAO database, cloud storage, etc

CORNELL CS4414/5416 - FALL 2025 25

OLD DEBATE: HOW TO LEVERAGE
PARALLELISM?

Not every way of scaling is equally effective. Pick poorly and
you might make less money!

To see this, we’ll spend a minute on just one example.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 26

EXAMPLE: CLOUD HOSTED MUSIC SERVICE

Which is better:
One multithreaded server, per node?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 27

WHICH WOULD YOU PICK?

Basically, we have four options:

1. Keep my server busy by running one multithreaded application on it

2. Keep it busy by running N unthreaded versions of my application as
 virtual machines, sharing the hardware

3. Keep it busy by running N side by side processes, but don’t virtualize

4. Keep it busy by running N side by side processes using containers

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 28

THE WINNER IS…

Best is “container virtualization” with one server process
dedicated to each distinct user.

A single cloud server might host hundreds of these servers. But
they are easy to build: you create one music player, and then tell
the cloud to run as many “instances” as required

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 29

One “µ-player” per user, but many
containerized instances per machine

Docker
Container

WHY FAVOR CONTAINER VIRTUALIZATION?

Code is much easier to write. Most people can write a program to
play music for a single client – this same insight applies to other
programs, too!

Very easy for the cloud itself to manage: containers are cheap to
launch and also to halt, when your customer disconnects

The approach also matches well with modern NUMA computer
hardware

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 30

BUT YOU’VE TAKEN CS4414/5416!

Couldn’t you do better?

… and yes, you really could! We’ve already learned more than
most web solution developers ever hear about

But in web settings, if the application is fast enough (that 100ms
thing), usually we just declare success and move on!

CORNELL CS4414/5416 - FALL 2025 31

TODAY’S CLOUD IS OPTIMIZED FOR THIS PATTERN

Tier one is specialized for very lightweight servers:
 The services uses very small amounts of computer memory so that
 each tier one computer can host a huge number of instances
 They don’t need a lot of compute power either
 They have limited needs for storage, or network I/O

Tier two µ-Services specialize in various aspects of the content
delivered to the end-user. They may run on somewhat “beefier”
computers.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 32

Social Network

End-to-end Microservices (from Christina Delimitrou)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 33

Media Service

End-to-end Microservices (from Christina Delimitrou)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 34

WHAT EXACTLY ARE THE LITTLE BOXES?

They are Linux programs that adhere to standardized methods to talk
to the cloud hosting framework and to one-another. We call them
microservices (µ-services) if they follow this pattern.

We typically package them as Linux containers for portability, but the
code is often as small as a C++ lambda or an object supporting some
C++ interface (or Python, Java, C#, whatever)

In these graphics, each box is a label for a pool with a variable
number of instances of the container, dynamically resized by the cloud

CORNELL CS4414/5416 - FALL 2025 35

MORE ON THIS ELASTIC POOL CONCEPT

In those graphs, each individual node really is a variable size pool of
instances.

Thus, each microservice (µ-service) centers on a program designed so that
the data center can shut it down entirely, launch one instance… or many
instances, “elastically”, to deal with dynamically varying demand.

The idea here is that any instance can handle any request equally well, so
there is no need for very careful “routing” of specific requests to specific
instances. This lets the data center adapt to changing loads easily!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 36

A MICROSERVICE STARTS AS A PROGRAM

The pieces in our Lego picture might have originated as modules
in some single program, or been created separately, but by
today those modules have been ported into the target setting.

But each target setting can be very different. Clouds are
operated by many big vendors like Azure, AWS and Google,
but some of their customers operate application-clouds hosted
on the larger clouds. A hierarchy of clouds!

CORNELL CS4414/5416 - FALL 2025 37

EACH VENDOR HAS ITS OWN SPECIALITIES!

Each cloud has evolved by emphasizing distinct roles

For example, AWS and Azure are leaders in hosting
customizable web sites and services accessed via https/GRPC

The idea is that by leveraging existing their microservices, your
coding obligation is dramatically reduced – in fact an off-the-
shelf AI can generate many standard kinds of solutions.

CORNELL CS4414/5416 - FALL 2025 38

EACH VENDOR HAS ITS OWN SPECIALITIES!

In contrast… companies like Oracle, Snowflake and Databricks all
are basically big-data clouds.

Their customers bring immense amounts of data and need to extract
various forms of knowledge. Of course these cloud also are
specialists in data security!

Their services and tools help you describe and execute your data
mining objectives (to a growing degree, with machine intelligence)

CORNELL CS4414/5416 - FALL 2025 39

TODAY WE’LL FOCUS ON WEB HOSTING (WHICH IS
THE SAME AS AGENTIC ML/AI HOSTING)

This focus fits with the topics of our course.

If you work in this area, you’ll want to learn more about all of
the different styles of clouds, and your code will probably talk
to multiple clouds.

But learning any one, deeply, takes months of training

CORNELL CS4414/5416 - FALL 2025 40

MANAGEMENT OF µ-SERVICE
POOLS IS AUTOMATED
In Azure, for example, there is a tool called the “App Service” (we’ll
use it!)

The App Service manages a big collection of compute resources in the
cloud. Developers can install your own services in it (as “containers”).
Configuration files tell it when to launch them for you, automatically.

Among the features is a way for it to watch the queue of requests
and automatically add instances or shut instances down to match
loads.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 41

Advantages of µ-services:
Modular  easier to understand
Speed of development & deployment
On-demand provisioning, elasticity
Language/framework heterogeneity

Motivation for µ-services (Delimitrou)

webserver

databases

recommender

ads
photos

posts

ads
posts

photos
recommender

webserver databases

Monolith Microservices

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 42

Brings many benefits… but complicates cluster management & performance debugging

Dependencies cause cascading QoS violations

Difficult to isolate root cause of performance unpredictability

Elasticity management (one role of the App Service)

Netflix Twitter Amazon

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 43

Dependencies cause cascading QoS violations

Empirical performance debugging  too slow,
bottlenecks propagate

Long recovery times for performance

Performance visualization

AmazonNetflix

Social Network

44HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA

WHAT DID THE ANIMATION REVEAL?

The cloud scheduler watched each µ-service pool (each is shown as one dot,
with color telling us how long the task queue was, and the purple circle
showing how CPU loaded it is).

The picture didn’t show how many instances were active – that makes it
too hard to render. But each pool had varying numbers of instances. The
App Server was automatically creating and removing instances.

Each time the scheduler realized that it should add instances to a slow
service, some of the “deadline violations” went away.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 45

WHAT ARE SOME VENDOR-SUPPLIED
MICROSERVICES?
The list is endless! There are literally tens of thousands!

Common elements include fast sharded storage for structured data
(tables, spreadsheets, databases), for photos or videos (“blobs”),
and object/file storage. Databases and caching services are
popular, too. And some microservices help you talk to other clouds!

There are also tools to help with communication from layer to layer:
Kafka is one we’ve mentioned a few times.

CORNELL CS4414/5416 - FALL 2025 46

WHAT DOES IT MEAN TO “ADD INSTANCES”?

For some applications (ones with NUMA threading for parallelism)
we add instances by launching new threads on additional cores.

For others, we literally run two or more identical copies of the same
program, on different computers! They use a “load balancer” to
send requests to the least loaded instances.

And you can even combine these models…

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 47

STANDARDS FOR ELASTICITY

A very common approach focuses on docker container
virtualization. A docker container is like a snapshot including a
program (or several) and the files they depend on, and a kind
of virtual image of the O/S environment they expect

Kubenetes is a widely popular docker container management
framework. To define a new pool, you fill in a kind of form that
it uses to manage the pool elastically according to your spec.

CORNELL CS4414/5416 - FALL 2025 48

BUT ARE POOLS OF INSTANCES REALLY BEST?

This is just one of a few ways to get parallelism

Let’s look at some of the choices and try to understand why the
cloud favors the approach we just saw on the Delimitrou
visualization.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 49

HOW DOES LOAD BALANCING WORK?

Often we use a service like Kafka between the tier 1 app and
the tier 2 service.
 Requests are enqueued in a “topic” (in fact a replicated
 shard instance managed by the Apache key-value store)
 Using a form of transaction, a tier 2 server can dequeue a
 request, process it, and reply. All of this is fault-tolerance.
 The client is notified, reads the reply, adds that data to the
 web response (page) it is constructing

CORNELL CS4414/5416 - FALL 2025 50

WHY IS THIS LOAD-BALANCED?

New work goes to a service instance with capacity to do
another request

The microservices management framework monitors the Kafka
queue and if a backlog forms, launches more service instances.
It downsizes if instances are sitting around doing nothing.

But the approach assumes that launching instances is very cheap
CORNELL CS4414/5416 - FALL 2025 51

HOW DOES AGENTIC AI CHANGE THE GAME?

Clearly, we focus on queries that are some multimodal combination
of text, images, voice, other data formats (radar, fMRI and CAT
scans, ultrasound…)

We have new kinds of ecosystem elements such as LLMs for
knowledge retrieval or inference, RAG databases, etc

And new kinds of security/privacy considerations.

CORNELL CS4414/5416 - FALL 2025 52

HOW DOES AGENTIC AI CHANGE THE GAME?

LLM/LRM hosting is different from traditional microservice hosting
because the models (and RAG databases) are huge – 10’s of GB

We can’t spin this kind of container up or down quickly, so we need to
create high performance “hosting specialist” systems (examples include
Ray Serve and Torch Serve) that optimize to perform well despite this
constraint.

Cornell’s Vortex project is an example of a research effort in this area

CORNELL CS4414/5416 - FALL 2025 53

ML VIEWED AS A MICROSERVICE PIPELINE

KEN BIRMAN (KEN@CS.CORNELL.EDU). 54

PreFMLR knowledge retrieval, finds documents relevant to a query.

… WHERE IS THE AGENTIC AI ASPECT?

Some sort of app is engaged with the actual end-user. Perhaps, a
voice app on a mobile phone.

The app dispatches an AI query, but it could be an AI task request.
Agentic AI covers both cases.

The ML as a service pipeline receives queries and performs tasks like
retrieving relevant data (not always generating speech or pictures).

CORNELL CS4414/5416 - FALL 2025 55

… WHERE ARE THE MASSIVE ML MODELS?

The ML microservice components each have an ML model. The code is
pretty small but the ML model and perhaps other objects could be huge
(tens or hundreds of gigabytes).
 E.g. a RAG database and its index
 Often we also need a GPU accelerator preloaded with the desired
 ML computational kernels.

This makes it harder to elastically resize a pool of instances.

CORNELL CS4414/5416 - FALL 2025 56

SUMMARY?

The modern cloud is all about pipelines and graphs of components
that talk to one-another, often using Kafka or a similar connector.

Elasticity enables load balancing

ML as a service will be challenging because it doesn’t fit the
elasticity concept easily.

CORNELL CS4414/5416 - FALL 2025 57

SELF-TEST QUESTION

We saw that for a case like a music or video player, it might be
easier to build a single-threaded container than to have each
server instance handle multiple clients.

What overheads would this single-threading choice imply? List
as many as you can think of.

CORNELL CS4414/5416 - FALL 2025 58

SELF-TESTING QUESTION

When you use Facebook, which is very heavy on images and videos,
it is almost uncanny how quickly your feed loads and how fast you
can scroll around in it without delay.

What sorts of challenges do you think Facebook must have overcome
to achieve that seamless experience?

If you were doing a Facebook clone, what microservices might you
want to create (or leverage) to support it?

CORNELL CS4414/5416 - FALL 2025 59

SELF-TEST QUESTIONS

Suppose that we create a web-hosted system for some sort of
application like Amazon shopping, and it involves a set of new
microservices.

The solution is popular, but it sees bursts of load and the deployment
dynamically varies in response. You configure it for elasticity.

Would you expect your microservice pools to have the same number
of replicas, or could one need a lot and another, very few?

CORNELL CS4414/5416 - FALL 2025 60

SELF-TEST QUESTION

In your new job on the agentic AI interface team for purpleair.com,
you need to create a collection of intelligent APIs.

Purpleair.com has a lot of value in its database of sensor data and
its historical tracking of this data over time.

How would you design your agentic APIs to protect this valuable
information while also giving very high value to purpleair.com’s
customers and partner companies?

CORNELL CS4414/5416 - FALL 2025 61

	Cloud Microservice Architectures
	Key ideas for today
	Why do we even�call it the “cloud”?
	the cloud underpins �modern computing
	Who invented the cloud?
	I was there too…
	Some of my past students became Cloud computing Superstars
	Everything is big �In the cloud
	Data in the cloud
	How did today’s Cloud evolve?
	Wasn’t Google First?
	Yahoo Experiment
	More Yahoo Findings
	Everyone heard this message
	The crisis of the Commons
	The crisis of the commons
	Where are the commons, in a cloud?
	The cloud and the “thundering herd”
	Starting around 2006, Amazon led in reinventing data center computing
	Old Approach (2005)
	New Approach (2008)
	New Approach (2008)
	New Approach (2008)
	Tier one / Tier Two
	Tiering example
	Old debate: How to Leverage Parallelism?
	Example: Cloud hosted Music Service
	Which would you pick?
	The winner is…
	Why favor container virtualization?
	But you’ve taken CS4414/5416!
	Today’s Cloud is optimized for This pattern
	Slide Number 33
	Slide Number 34
	What exactly are the little boxes?
	More on this elastic pool concept
	A microservice starts as a program
	Each vendor has its own specialities!
	Each vendor has its own specialities!
	Today we’ll focus on web hosting (which is the same as Agentic ML/AI hosting)
	Management of -service�pools is automated
	Slide Number 42
	Slide Number 43
	Slide Number 44
	What did the animation reveal?
	What are some vendor-supplied microservices?
	What does it mean to “add instances”?
	Standards for elasticity
	But are pools of instances really best?
	How does load balancing work?
	Why is this load-balanced?
	How does agentic AI change the game?
	How does agentic AI change the game?
	ML viewed as a microservice pipeline
	… where is the agentic AI aspect?
	… where are the massive ML models?
	Summary?
	Self-Test question
	Self-Testing question
	Self-Test Questions
	Self-Test question

