
SOCIAL NETWORK GRAPHS,
FACEBOOK’S TAO SERVICE

CS4414/5416
Fall 2025 Lecture 18

CS4414/5416 FALL 2025 1

OUR LAST LECTURE LOOKED AT FACEBOOK’S
CDN AND HOW IT DOES CACHING…

Today, we will look at the way that Facebook creates and manages its
TAO database for the social networking graph. This is a central form of
big data in Facebook, and most cloud platforms have a similar system.

Central to the concept is the ease of doing computing on collections. TAO
is focused on rapidly updating the graph, but also on offering iterators
that match closely with expected application use patterns.

CS4414/5416 FALL 2025 2

WHAT IS “BIG DATA” ACTUALLY ABOUT?

Early in the cloud era, research at companies like Google and Amazon
made it clear that people respond well to social networking tools and
smarter advertising placement and recommendations.

The idea is simple: “People with Ken’s interest find this store fantastic.”
“Anne really like Eileen Fisher and might want to know about this 15% off
sale on spring clothing.” “Sarah had a flat tire and needs new ones.”

CS4414/5416 FALL 2025 3

THEY HAD A LOT OF CUSTOMERS AND DATA

Web search and product search tools needed to deal with billions of web
pages and hundreds of millions of products.

Billions of people use these modern platforms.

So simple ideas still involve enormous data objects that simply can’t fit in
memory on modern machines. And yet in-memory computing is far faster
than any form of disk-based storage and computing!

CS4414/5416 FALL 2025 4

WHAT ARE THE BIG DATA FILES?

Snapshot of all the web pages in the world, updated daily.

Current product data & price for every product Amazon knows about.

Social networking graph for all of Facebook

CS4414/5416 FALL 2025 5

MANY CHALLENGES

CS4414/5416 FALL 2025 6

XenonStack.com

VISUALIZING THE PIPELINE

CS4414/5416 FALL 2025 7

Data starts out
sharded over

servers

Eventually we squeeze our results into a more useful form, like a trained machine-
learning model. The first stages can run for a long time before this converges

Early pipeline stages are extremely parallel: they extract, transform, summarize

Copy the model to wherever we plan to use it.

FOR WEB PAGES THIS IS “EASY”

The early steps mostly extract words or phrases, and summarize by doing things
like counting or making lists of URLs.

The computational stages do work similar to sorting (but at a very large scale),
e.g. finding the “most authoritative pages” by organizing web pages in a graph
and then finding the graph nodes with highest weight for a given search.

When we create a trained machine-learning model, the output is some sort of
numerical data that parameterizes a “formula” for later use (like to select ads).

CS4414/5416 FALL 2025 8

WHAT ABOUT BIG DATA FOR SOCIAL
NETWORKS?
Here we tend to be dealing with very large and very dynamic graphs.

The approaches used involve specialized solutions that can cope with the
resulting dynamic updates.

Facebook’s TAO is a great example, we’ll look closely at it.

CS4414/5416 FALL 2025 9

WHY DOES THIS TOPIC FIT 4414/5416?

Our fundamental goal is highly performant computing of the kind used in
building and deploying ML systems and cloud-hosted ML services

TAO is the most efficient cloud service for big-data social networking.
It uses ideas we’ve seen in the first half of the course, and also it functions
as a cloud hosted knowledge repository widely used in new ML services.

And we access TAO through collection-based computing frameworks like
cpplinq and Python’s Pandas. These were the main focus in lecture 11

CS4414/5416 FALL 2025 10

TAO
Facebook’s Distributed Data Store for the
Social Graph

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding,
Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov, Dmitri Petrov,
Lovro Puzar, Yee Jiun Song, Venkat Venkataramani

Presented at USENIX ATC – June 26, 2013

Cornell PhD who worked with Professor van Renesse. Graduated in 2010
Now one of several people with the title “Director of Engineering”
He owns the distributed systems area: the Facebook “edge”

The Social Graph

COMMENT

POST

USER

USER

PHOTO

LOCATION

USER
 Carol

USER
USER

USER

EXIF_INFO

GPS_DATA AT

PHOTO

AUTHOR(hypothetical
encoding)

Dynamically Rendering the Graph

COMMENT

POST

USER

USER

PHOTO

LOCATION

USER
 Carol

USER
USER

USER

EXIF_INFO

GPS_DATA

APP
 iPhoto

AT

PHOTO

AUTHOR

W
eb

 S
er

ve
r (

PH
P)

TAO

Dynamically Rendering the Graph

COMMENT

POST

USER

USER

PHOTO

LOCATION

USER
 Carol

USER
USER

USER

EXIF_INFO

GPS_DATA

APP
 iPhoto

AT

PHOTO

AUTHOR

W
eb

 S
er

ve
r (

PH
P)

• 1 billion queries/second
• many petabytes of data

TAO opts for a relaxation of the SQL model
TAO applications treat the social networking graph as a form of SQL database.

▪ But they don’t need full SQL, and so TAO itself doesn’t have to be an SQL database.

▪ And they don’t depend on the atomicity properties typical of full SQL databases.

▪ In fact the back end of TAO actually is serializable, but it runs out of band, in a
batched and high-volume way. Eventually, the system catches up and becomes
consistent.

▪ The only edge consistency promise is that to avoid returning broken association lists,
because applications find such situations hard to handle.

What Are TAO’s Goals/Challenges?

▪ Efficiency at scale

Dynamic Resolution of Data Dependencies

COMMENT

POST

USER

USER

PHOTOLOCATION USER
 Carol

APP
 iPhoto

U
PL

O
AD

_
FR

O
MAU

TH
O

R

1

2

3

What Are TAO’s Goals/Challenges?

▪ Efficiency at scale

▪ Low read latency

▪ Timeliness of writes

▪High Read Availability

Graph in “Memcache”

COMMENT

POST

USER

USER

PHOTO

LOCATION

USER
 Carol

USER
USER

USER

EXIF_INFO

GPS_DATA

APP
 iPhoto

AT

PHOTO

AUTHOR

W
eb

 S
er

ve
r (

PH
P)

O
bj

 &
 A

ss
oc

 A
PI

A distributed in-memory
cache for TAO objects

(nodes, edges, edge lists)

mysql

▪ Identified by unique 64-bit IDs

▪ Typed, with a schema for fields

▪ Identified by <id1, type, id2>

▪ Bidirectional associations are two edges,
same or different type

Objects = Nodes

id: 308 =>
 type: USER
 name: “Alice”

id: 2003 =>
 type: COMMENT
 str: “how was it …

id: 1807 =>
 type: POST
 str: “At the summ…

Associations = Edges

▪ <id1, type, *>

▪ Descending order by time

▪ Query sublist by position or time

▪ Query size of entire list

Association Lists

id: 2003 => type: COMMENT
 str: “how was it, was it w…

id: 1807 =>
 type: POST
 str: “At the summ…

<1807,COMMENT,2003>

 time: 1,371,707,355

id: 8332 => type: COMMENT
 str: “The rock is flawless, …

id: 4141 => type: COMMENT
 str: “Been wanting to do …

newer

older

<1807,COMMENT,8332>

 time: 1,371,708,678

<1807,COMMENT,4141>

 time: 1,371,709,009

Inverse associations

▪ Bidirectional relationships have separate
a→b and b→a edges

▪ inv_type(LIKES) = LIKED_BY

▪ inv_type(FRIEND_OF) = FRIEND_OF

▪ Forward and inverse types linked only
during write

▪ TAO assoc_add will update both

▪ Not atomic, but failures are logged and
repaired

Nathan

Carol

“On the
summit”

A
U
T
H
O
R
E
D
_
B
Y

A
U
T
H
O
R

Coding Style?
▪ Developers code against TAO from any language Meta supports (C++ is preferred)

▪ The basic style of coding centers on using SQL-style embedded code (like Pandas, cpplinq):
 The application queries TAO for a collection of tuples such as “friends of Ken”
 Result is an iterator object. The application uses it to filter or transform that data
 This enables an action like “Email Ken’s friends to invite them to the party”
 Most applications are small pieces of code performing these kinds of small tasks

Larger ML actions on TAO often involve “graphical learning” in order to support inference.
For example, Joe posted that he really
likes his new hiking shoes… which of Joe’s friends
might be influenced and likely to buy a pair too?

But graphical learning is out of our scope

Objects and Associations API
Reads – 99.8%

▪ Point queries

▪ obj_get 28.9%

▪ assoc_get 15.7%

▪ Range queries

▪ assoc_range 40.9%

▪ assoc_time_range 2.8%

▪ Count queries

▪ assoc_count 11.7%

Writes – 0.2%

▪ Create, update, delete for objects

▪ obj_add 16.5%

▪ obj_update 20.7%

▪ obj_del 2.0%

▪ Set and delete for associations

▪ assoc_add 52.5%

▪ assoc_del 8.3%

What Are TAO’s Goals/Challenges?

▪ Efficiency at scale

▪ Low read latency

▪ Timeliness of writes

▪High Read Availability

TAO

Independent Scaling by Separating Roles

Cache
• Objects
• Assoc lists
• Assoc counts

Database

Web servers • Stateless

• Sharded by id
• Servers –> bytes

• Sharded by id
• Servers –> read qps

Subdividing the Data Center

Cache

Database

Web servers • Inefficient failure detection
• Many switch traversals

• Many open sockets
• Lots of hot spots

Subdividing the Data Center

Cache

Database

Web servers

• Thundering herds

• Distributed write
control logic

Follower and Leader Caches

Follower cache

Database

Web servers

Leader cache

What Are TAO’s Goals/Challenges?

▪ Efficiency at scale

▪ Low read latency

▪ Timeliness of writes

▪High Read Availability

Write-through Caching – Association Lists

Follower cache

Database

Web servers

X,…

X,A,B,C

Leader cache X,A,B,C

Y,A,B,C

Y,A,B,C

X –> Y

X –> Y

X –> Y ok

ok

refill X refill Xok

Y,…

X,A,B,CY,A,B,C

Ensure that range queries on association lists always work,
even when a change has recently been made. Not ACID, but
“good enough” for TAO use cases.

Asynchronous DB Replication

Follower cache

Database

Web servers

Master data center Replica data center

Leader cacheInval and refill
embedded in SQL

Writes forwarded
to master

Delivery after DB
replication done

What Are TAO’s Goals/Challenges?

▪ Efficiency at scale

▪ Low read latency

▪ Timeliness of writes

▪High Read Availability

Key Ideas
▪ TAO has a “normal operations” pathway that offers pretty good properties, very

similar to full database transactions.

▪ But they also have backup pathways for almost everything, to try to preserve updates
(like unfollow, or unfriend, or friend, or like) even if connectivity to some portion of
the system is disrupted.

▪ This gives a kind of self-repairing form of fault tolerance. It doesn’t promise perfect
transactional atomicity model, yet is pretty close to that.

Improving Availability: Read Failover

Follower cache

Database

Web servers

Master data center Replica data center

Leader cache

TAO Summary

• Separate cache and DB
• Graph-specific caching
• Subdivide data centers

Efficiency at scale
 Read latency

• Write-through cache
• Asynchronous replication

Write timeliness

• Alternate data sourcesRead availability

Single-server Peak Observed Capacity

0 K
100 K
200 K
300 K
400 K
500 K
600 K
700 K

90% 92% 94% 96% 98%

O
pe

ra
tio

ns
/s

ec
on

d

Hit rate

Write latency

More In the Paper
▪ The role of association time in optimizing cache hit rates

▪ Optimized graph-specific data structures

▪ Write failover

▪ Failure recovery

▪ Workload characterization

Not in the paper but worthwhile to be aware of:

▪ Attaching lambdas to TAO, to customize it (EventLoopProxies). Topic is too big a
stretch for us today but is worth knowing about: TAO, like many services in the cloud,
can be customized with code that will run when some matching event occurs.

REMINDER: WHY DID WE LOOK AT TAO?

TAO is a best of breed, vendor-supplied cloud service.
 Designed really smartly for speed, with many ideas such as using a
 graph representation oriented around lists (not relational tables),
 using a consistency model more like consistent cuts than SQL atomicity, …
 TAO itself is coded in C++. Its interface to the applications is inspired
 by C++ lambdas.
 Many applications access it by connecting and then retrieving iterators,
 convenient for Pandas and cpplinq.hpp users
 TAO offers a good “segway” to think about ML “as a service” in clouds

WHAT HAVE WE LEARNED?

We know how to connect to a data center over a network

We’ve seen two examples of major infrastructure services (and others, like
the file system, in past lectures)

Now we’ll shift focus and start to think about how to add new ML services to
these cloud ecosystems – ones that already have big services like TAO
that we can easily customize with lambdas and compute on using iterators

CS4414/5416 FALL 2025 41

CONCEPT OF A LAMBDA… IN A DATA CENTER

We know all about lambdas in C++. Often they allow us to take some
existing piece of code and give it a customized “action”, like a readers
and writers template that we give a read action and write action.

Datacenter leaders realized that programming at cloud scale is too hard
for normal people to really do from scratch!

So they designed more and more services, and all of them allow you to
provide lambdas: plug-ins to customize the service.

CS4414/5416 FALL 2025 42

MANY APPLICATIONS AT META (AND
ELSEWHERE) ARE LAMBDAS!
You as the developer code (or vibe) to create these customizations

Then you (or your vibe partner) will deploy the lambdas by registering
them with the appropriate existing cloud services

 Could be a KV store, TAO, the BLOB store, etc

 Your registration action “plugs the lambda in” on some event path

 Now when that kind of event occurs, your logic will be triggered

CS4414/5416 FALL 2025 43

UPCOMING LECTURES WILL DIVE IN ON THESE IDEAS

First we will learn about the extensible microservices concept and how
clouds use it

Then how we build fault-tolerance in availability zone deployments

And then we can dive in on big-data mining for ML, for a few lectures

CS4414/5416 FALL 2025 44

SELF-TEST

TAO is oriented around a “collections” model, and its APIs focus on
iterators.

Consider some typical Facebook tasks, such as identifying friends of a
person who share their love for whitewater rafting and highlighting Harry
and Sally’s whitewater kayak adventure on their feeds.

How would you code that sort of logic using TAO together with the kinds of
collection-oriented computing features discussed in Lecture 11?

CS4414/5416 FALL 2025 45

SELF-TEST

There are many ways to represent graphs, including the format TAO
adopts but also as a matrix in which each (i,j) cell is a Boolean, with 1 if
there is an edge from node i to node j, and 0 if not.

In modern ML we often deal with large models, but when TAO was
created we had search and social network graphs but not modern ML.

If you were joining the TAO team today, would you advocate for
reimplementing TAO as a matrix using this representation? Why or why
not? Give one example of a task more easily done using a Boolean graph
representation, and one of a task that becomes hard to do.

CS4414/5416 FALL 2025 46

SELF-TEST

TAO is using a single data structure for posts, likes, liked-by, friend
associations, unfriending, comments, etc.
Another option would have been to store each kind of information
separately, in some form of relational database table.
List pros and cons of a tabular representation compared against the
graph employed in TAO.
Revisit the question about computing using TAO iterators. Would the same
tasks be easier or harder to code with a relational database model?
Would the actual code run faster, slower, or the same?

CS4414/5416 FALL 2025 47

	Social network Graphs, Facebook’s TAO service
	Our last lecture looked at Facebook’s CDN and how it does caching…
	What is “big data” actually about?
	they had a lot of customers and data
	What are the big data files?
	Many challenges
	Visualizing the pipeline
	For web pages this is “easy”
	What about big data for social networks?
	Why does this topic fit 4414/5416?
	TAO�Facebook’s Distributed Data Store for the Social Graph
	The Social Graph
	Dynamically Rendering the Graph
	Dynamically Rendering the Graph
	TAO opts for a relaxation of the SQL model
	What Are TAO’s Goals/Challenges?
	Dynamic Resolution of Data Dependencies
	What Are TAO’s Goals/Challenges?
	Graph in “Memcache”
	Objects = Nodes
	Association Lists
	Inverse associations
	Coding Style?
	Objects and Associations API
	What Are TAO’s Goals/Challenges?
	Independent Scaling by Separating Roles
	Subdividing the Data Center
	Subdividing the Data Center
	Follower and Leader Caches
	What Are TAO’s Goals/Challenges?
	Write-through Caching – Association Lists
	Asynchronous DB Replication
	What Are TAO’s Goals/Challenges?
	Key Ideas
	Improving Availability: Read Failover
	TAO Summary
	Single-server Peak Observed Capacity
	Write latency
	More In the Paper
	Reminder: Why did we look at TAO?
	What have we learned?
	Concept of a lambda… in a data center
	Many applications at Meta (and elsewhere) are lambdas!
	Upcoming lectures will dive in on these ideas
	Self-Test
	Self-Test
	Self-test

