N\YFZANYIANYIANTVI ANV I ANTY I ANY S AN

Z Qﬂ%ﬂ%ﬂ%ﬂ%ﬂ\ﬂ% /
NYZANYZANYZANYZANYZANYZANTZAN
ZAN\YZANYZANVZANYZANYZANYZA\Y/
NYZANYZANYZANYZANYZANYZANTZAN

FJANVIANVIANVIANVIANVIANVIANYS

Professor Ken B irman
PERFORMANCE DEBUGGING | o Kon Brman

IDEA MAP FOR TODAY

If | didn’t build some application, how can | understand it’s

performance without spending months?

Aren’t there millions of things that can shape 9
performance? - .

Today will be a “big picture” lecture about
the visualizing all those different elements

with a purpose: not “why it does this” but
rather “what shapes its speed?”

CORNELL CS4414/5416 - FALL 2025

YOUR JOB? BE A DETECTIVE!

You suspect that some program isn’t remotely close to peak
potential execution speed... but much of the code isn’t yours.

You need to be the sleuth and track down the bottleneck!

> This centers on developing a mental image of this code
as it executes

> YouU'll need to have a theory of how fast it “could be”, than
search for evidence that something is slowing it down

CORNELL CS4414/5416 - FALL 2025 3

WHAT DO WE KNOW ABOUT PERFORMANCE?

A program needs to use —O3 and “map” cleanly to the hardware

It should be wary of mismatch-related costs, like large objects
being in a slow part of memory relative to code that needs to
intensively access more than can fit in cache

Threads can perform poorly due to lock conflicts, “convoy” issues

Asynchronous pipelined flows via circular buffers are very
effective. If a producer waits for the consumer to reply, it stalls

CORNELL CS4414/5416 - FALL 2025 4

WHAT IS A “CONVOY EFFECT™?

In systems with some form of locking or waiting, this occurs if some
component is even a tiny bit slower than the others.

Requests back up, and the backlog can cascade to earlier stages.

Many systems are meta-stable: even after the original cause is gone,
the delay lingers! We've experienced this on highways: with the same
traffic there can be steady fast movement or bunched-up slow motion.

CORNELL CS4414/5416 - FALL 2025 5

PUZZLE?

In effect, you need to hunt for the “root cause” yet it may be
gone by the time you can really snapshot the system.

This forces us to use a mixture of guesswork and
experimentation to understand when the system is at risk of a
problem, what might trigger it, and how to reduce the risks

CORNELL CS4414/5416 - FALL 2025 6

THIS IS THE OPPOSITE OF ALGORITHMIC
WORK! MORE LIKE ENGINEERING...

All the elements of a complex system are continuously active

The work they are doing is highly efficient (they aren’t suffering
memory access delays, or compiled poorly, or wasting time on
things that could have been precomputed at compile time...)

The solution performs well at a range of scales and over a wide
range of deployment settings

CORNELL CS4414/5416 - FALL 2025 7

A GOOD DETECTIVE HAS AN OPEN MIND

You do start with a belief (“this is way too slow!”), and perhaps
even a mental image of why (“l bet the program is stalling due
to memory fetch delays”)... but your theory could be wrong.

Sometimes the most obvious “issue” isn’t the root cause — it may
be a symptom of the real cause, but “upstream” from it.

» On a highway, when you see slow cars ahead of you, they
are probably not the cause. The cause is further up the road!

CORNELL CS4414/5416 - FALL 2025 8

DEFINITION: CRITICAL PATH

A critical path is the longest end-to-end sequence of sequentially
dependent activities in an application.

This example shows 11 subtasks in some program (node numbers)
each annotated by the expected delay.

The application has parallelism,
yet the steps shown in red
determine the critical path

CORNELL CS4414/5416 - FALL 2025 9

UN TRAIN PEU
“ EN CACHER

FOCUS ON THIS PATH FIRST

If you can’t improve it, you may be stuck...

But removing one bottleneck can expose another. Don’t be
dismayed if performance isn’'t magically solved by your first
improvement

If often takes two or three interventions to get a big benefit

CORNELL CS4414/5416 - FALL 2025 10

GOOD PERFORMANCE VERSUS BUSY WORK

One huge challenge for performance tuning is that a busy
machine often isn’t an optimized machine!

We can be busy for a good reason, like training a machine-
learning model

But often a busy computer is “thrashing” — doing work pointlessly

CORNELL CS4414/5416 - FALL 2025 11

IDEAL VERSUS REALITY...

Ideally, we want all the “moving parts” seamlessly interacting to
provide a smooth, efficient workflow

In practice we often find that most parts of the system are
bottlenecked behind some very busy but ineffective component

CORNELL CS4414/5416 - FALL 2025 12

JUMPING TO CONCLUSIONS

It can be very tempting to rush to optimize some part of your
program where you’ve just come up with an idea to speed it up

When you have a theory, design a validation/invalidation test to see
if you are right

» For example, “add a bug” to your code that causes it to skip part
of a step you think is the issue, but still keeps data consistent

» Does the application as a whole speed up as much as expected?

CORNELL CS4414/5416 - FALL 2025 13

BIG PICTURE PROCESS

It is important to approach a systems programming challenge by
really visualizing the whole task — all aspects of the solution

This includes the tasks that the operating system or network will
be responsible for, and perhaps even things that other services
are providing (in larger settings your programs often talk to
services that run on other machines or in the cloud)

CORNELL CS4414/5416 - FALL 2025 14

DOMAIN CROSSINGS CAN BE COSTLY a4

A domain crossing occurs when one element of a system talks to
some totally different element of the system

This can occur in a single process, or between processes over a
network, or even when fetching from a NUMA remote memory

Domain crossings often introduce waiting and costly overheads

CORNELL CS4414/5416 - FALL 2025 15

MODERN SYSTEMS HIDE THESE COSTS

For example, via caching, prefetching, asynchronous pipelines.
These are all great things to do. You want all of them!

But this means that the same logic might be faster or slower
depending on factors you aren’t controlling. But sometimes once
you understand those, you can control them.

CORNELL CS4414/5416 - FALL 2025 16

TOOLS OF THE TRADE

When you approach a performance question, pause and think
about this big picture, and try to visualize all aspects

Where does the program really spend its time?
Why is it spending time there? Is this what you would expect?

Are there delaying factors that might be causing that
bottleneck to actually be far less efficient than ideal?

Can you intervene at that one spot and eliminate the issue?

CORNELL CS4414/5416 - FALL 2025 17

ISOLATION TESTING

Used to study some component of your application. You create a
dedicated specialized test to measure its speed or hunt for bugs.

You often can do this by “breaking” your application— with some
special argument, main just calls the test logic, then exits.

This allows you to understand the speed of that element and to tune
it, without worrying about the rest of your program.

CORNELL CS4414/5416 - FALL 2025 18

INTERPOSITION TESTING

The Linux linker has a feature that will “reroute” calls to a
method through a version you can provide. And your version can
still call the original version if you like.

This allows you to do fine-grained timing measurements of just a
specific method, perhaps in just a specific situation.

Slides on interposition technique details are at the end of the
slide deck.

CORNELL CS4414/5416 - FALL 2025 19

HOW FAST “SHOULD” YOUR CODE BE?

With a whiteboarding process you can often arrive at very
crude estimates — rough but still very useful!

> Time needed to do the file I/O
» Computational time per “data item”, and “how many items”?
> Will there be a great deal of copying needed?

> What aspects look very sequential to you?

CORNELL CS4414/5416 - FALL 2025 20

HIERARCHY OF DELAY

Think of each part of your application in terms of
> Bandwidth: How fast data can be moved through it.

> Latency: How long it takes.

Keep in mind that the disk and Linux and the network are all
parts of your application even if you didn’t code those

CORNELL CS4414/5416 - FALL 2025 21

A BUSY THING CAUSES DELAY. BUT SO DOES
AN IDLE THING!

We tend to think that delay is always caused by heavy loads

This is sometimes true. If you put a storage device under heavy
load, it bogs down. But this might not consume CPU time.

But often, being “overloaded” shows up as “100% idle”. That
component is spending all its time waiting, not computing.

CORNELL CS4414/5416 - FALL 2025 22

CPU IS NOT ALWAYS THE ISSUE!

Sometimes we see components that are waiting for other things.

Each type of device has a minimal delay. This can grow if a
backlog occurs due to overload.

» Reading from a storage device? Normally < 1 ms

> Reading over a network? Similar, but also depends on
.... Where the service resides
. How you talk to it

CORNELL CS4414/5416 - FALL 2025 23

NETWORK TYPES

The fastest networks are used in high speed clusters or data
centers. Some use hardware accelerators called RDMA (remote
DMA transfer over the network — ultra high bandwidth)

TCP/IP is fast in a cluster or inside a data center, but can be
much slower with a wide-area link.

Terms: LAN means “local area network”. WAN: “wide area”.

CORNELL CS4414/5416 - FALL 2025 24

NETWORKED SYSTEMS

A big topic in upcoming lectures... the issue is often triggered by
moving data from program to program, through pipelines.

Even waiting for the receiver to acknowledge success, so that the
sender can reclaim storage, can trigger a system-wide slowdown!

ML systems are especially at risk: they work with large data
objects like ML models, aggregated collections of queries, etc.

CORNELL CS4414/5416 - FALL 2025 25

ASYNCHRONOUS PIPELINING

A huge tool is the idea of creating a steady flow via a pipeline

We say that we have a pipeline if there is some “sender” and
some “receiver”’, and they can both run simultaneously

Like a bucket brigade, a pipeline buffers some data
(a cost), freeing sender and receiver to run in parallel

CORNELL CS4414/5416 - FALL 2025 26

PIPELINES HIDE DELAY!

They let us request something “long before” we need it. A
producer task can run faster than the consumer task.

If the data becomes available when the receiver isn’t ready to
process it, that data just waits in the pipeline.

And because the sender can reclaim memory as soon as the
data is in the pipeline, we don’t see a backlog effect.

CORNELL CS4414/5416 - FALL 2025 27

BUT DON'T LET PIPELINES GET “TOO DEEP”

If a pipeline is holding huge amounts of data, or huge amounts
of some other resources, costs accumulate

» That memory could have been useful elsewhere
> Linux limits how many files can be open all at once

» Data might even become stale, if the underlying files change

Use your analysis to select a smart pipeline size — “depth”

CORNELL CS4414/5416 - FALL 2025 28

OFTEN WE HAVE ADEQUATE MEMORY AND
PROCESSORS TO SHIFT LOGIC THIS WAY

A pipeline is just one way to use memory to speed things up. A
machine has many resources... how do we keep things busy?

This is especially worrying in big ML applications because they
often run on incredibly big, powerful servers with expensive GPUs

Dangere That the server sits totally idle when waiting for GPU
computing to finish, wasting an incredibly valuable resource.

CORNELL CS4414/5416 - FALL 2025 29

DON'T SWEAT THE SMALL STUFF

Start by trying to understand whether something is 10x slower
than it should be.

Finding the major bottlenecks, or the very inefficient pieces of a
solution, can pay off: fixing those first gives dramatic
improvements... After that, you can focus on smaller things

CORNELL CS4414/5416 - FALL 2025 30

ALGORITHMS (SOMETIMES) MATTER...

As a student you’ve learned a lot about algorithms

If the complexity genuinely reflects the costly resource, and we
are in a situation where asymptotic costs are the bottleneck,
picking the right algorithm is key.

But those two “ifs” are not minor points!

CORNELL CS4414/5416 - FALL 2025 31

EFFICIENT ALGORITHMS DON'T ALWAYS
FOCUS ON THE COSTLY RESOURCE

Many algorithms were created using standard metrics like
compute time for one thread, or space consumed

In a parallel setting with a lot of memory, we might be fine with
spending memory to save time — we saw examples earlier today.

And computing may actually be “cheap” too!

CORNELL CS4414/5416 - FALL 2025 32

WHAT WOULD BE A COSTLY RESOURCE OTHER
THAN MEMORY OR CPU TIME?

Idle resources
Network delays
Distributed convoy effects

Overloaded networked servers

... ALGORITHMS ARE IMPORTANT, BUT ARE
ULTIMATELY TOOLS, LIKE OTHER TOOLS

When we work with algorithms we are working in a very
conceptual way, highly abstracted from concrete resources. An
algorithm is a design pattern

Our challenge as systems builders — engineers — is to map our
understanding of the application into “relevant” algorithmic
questions where the metrics we optimize are the costly aspects
of the overall application pipeline.

CORNELL CS4414/5416 - FALL 2025 34

MIDPOINT STRETCH: BIG PICTURE

Having the big picture is central to performance-oriented
systems programming. You develop it by running experiments
and using profiling tools to study the running system.

Once you identify critical paths with apparent problems, you
can gain control in many ways — sometimes with our direct C++
code, but sometimes by rearranging our program in clever ways.

CORNELL CS4414/5416 - FALL 2025 35

MIDPOINT STRETCH: BOTTLENECKS

Start by understanding bottlenecks and the critical path, and
visualizing the desired flow of your computation.

You won’t be able to improve performance unless you
understand goals, and understand where you started.

Random changes just make code messy, add bugs, and might not
help — we want to only make the right changes.

CORNELL CS4414/5416 - FALL 2025 36

MIDPOINT STRETCH: BOTTLENECKS

They really come in two forms
» Unavoidable work being done as efficiently as possible

> Accidental work (or delays, perhaps even idle time) arising
from some form of mismatch between our code and the system

Once you identify a bottleneck, you can often intervene to
improve exactly the slow step

CORNELL CS4414/5416 - FALL 2025 37

NYFZANYIANYS

; QﬂQﬂQﬂQﬂQ
NYZANYZANYZANYZA\Y/
NYZANYZANYZANYZANYZA\Y/

JANVIANVIANVIANVIANVIAN

OUR PERFORMANCE-TUNING R
CORNELL CS4414/5416 - FALL 2025 38)

\)
%
QA

WHAT SORTS OF RESOURCES EXIST?

Linux has many kinds of performance-debugging tools!

> Tools that can tell us how busy various things are, like gprof

> Ways to watch network or file | /O, O/S system calls, like perf
» Fancier visualization tools to graph things over time
>

Tricks to get a program to “reveal” what it is doing when
it seems very slow, like inserted timing measurements

. a challenge is that the slow thing might not be the actual cause!

CORNELL CS4414/5416 - FALL 2025 39

WE CAN’T COVER TOOL APIs IN LECTURE!

In recitation we do show you quite a few

But each different performance puzzle tends to need its own
specialized way of proving or disproving your guesses

For many purposes, tracking time by hand is the best tool!

CORNELL CS4414/5416 - FALL 2025 4

TIME IN C++ /LINUX SYSTEMS

std::chrono::high_resolution_clock::now();

Just measure the time before and after doing something:
A=T T

after. ' before

For accuracy, measure 100 or 1000 iterations. Save the measurements
and print data afterwards — never print anything inside the timing test.

But be wary of time in distributed systems. With NTP running, clocks are
synchronized to within a few milliseconds — but a millisecond is a huge
number, so it isn’t safe to compare numbers from different clocks.

CORNELL CS4414/5416 - FALL 2025 41

WHAT IF THE THING WE WANT TO PROFILE IS
NOT “ACCESSIBLE™ TO US?

Gprof sometimes isn’t very useful. Yet if code is in libraries or
involves complicated distributed actions, there may not be an
obvious way to measure before and after times!

For this, a trick called interposition is very useful

It involves help from the C++ compiler and linker

CORNELL CS4414/5416 - FALL 2025 42

WHAT IS LINKING?

Linking is a technique that allows programs to be constructed from
multiple object files

Linking can happen at different times in a program’s lifetime:
Compile time (when a program is compiled): static linking (““‘archives”)
Load time (when a program is loaded into memory): uncommon
Run time (while a program is executing): dynamic linking (DLLs)

Understanding linking can help you avoid nasty errors and make you
a better programmer

CORNELL CS4414 - SPRING 2023 43

ARCHIVES, DLLS

In Linux, an archive is a collection of files concatenated into a larger
file, for convenience and speed

A static library is normally an archive of compiled “object files” for
methods called by user code, plus a symbol table for the
linker /loader to use to quickly find what it needs

A dynamically linked library (DLL) is similar, but the entire library is
mapped into the application address space at runtime, as a segment

CORNELL CS4414/5416 - FALL 2025 44

GETTING VERY FANCY: LIBRARY
INTERPOSITIONING (FOR SERIOUS HACKERS!)

Library interpositioning: powerful linking technique that allows
programmers to intercept calls to arbitrary functions.

Interpositioning can occur at:

» Compile time: When the source code is compiled

» Link time: When the relocatable object files are statically linked to form an
executable object file

»Load /run time: When an executable object file is loaded into memory, dynamically
linked, and then executed.

CORNELL CS4414 - SPRING 2023 45

1-2-3 RECIPE FOR INTERPOSITIONING

Given an executable that obtains something from a library.

Create a .o file that defines something, using the same API the
executable expected. Relink the executable against your .o file.

Now your implementation of something will be called

CORNELL CS4414 - SPRING 2023 46

BEFORE AND AFTER INTERPOSITION

Code that you can inspect
and trace and experiment

on, even if you didn't

necessarily write it

CORNELL (S4414/5416 - FALL 2025 47

BEFORE AND AFTER INTERPOSITION

Code that you can inspect
and trace and experiment

on, even if you didn’t
necessarily write it

CORNELL (S4414/5416 - FALL 2025 48

1-2-3 RECIPE FOR INTERPOSITIONING

... hotice you can still call the original version of something
from inside your replacement!

But you use a slightly different name.

... 90, have it call _something. This will be undefined... claim
that it is in a library

CORNELL CS4414 - SPRING 2023 49

1-2-3 RECIPE FOR INTERPOSITIONING

So now we have the original executable, and it calls your version
of something, which calls _something.

Create a new DLL library that defines _something. It calls the
original something, from the original DLL.

Now we have “wrapped” something!

CORNELL CS4414 - SPRING 2023 50

... SHORTCUT

This is such a valuable approach that in Linux, the C++ linker
automates several steps to make it easy to do.

Eliminates the need to create the extra helper DLL.

Time permitting, I'll show you an example that wraps malloc

CORNELL CS4414 - SPRING 2023 51

SOME INTERPOSITIONING APPLICATIONS

Security
» Confinement (sandboxing)
» Behind the scenes encryption

Debugging

» In 2014, two Facebook engineers debugged a treacherous 1-year old bug in their iPhone
app using interpositioning

» Code in the SPDY networking stack was writing to the wrong location
» Solved by intercepting calls to Posix write functions (write, writev, pwrite)

» Source: Facebook engineering blog post at:
> https://code.facebook.com/posts/313033472212144 /debugging-file-corruption-on-ios/

CORNELL CS4414 - SPRING 2023 52

SOME INTERPOSITIONING APPLICATIONS

Monitoring and Profiling

» Count number of calls to functions

» Characterize call sites and arguments to functions
> Malloc tracing

» Detecting memory leaks

» Generating address traces

Changing a local resource into one accessed over a network

CORNELL CS4414 - SPRING 2023 53

EXAMPLE PROGRAM

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

int main(int argc,
char *argvl][])

int 1i;

for (1 = 1; 1 < argc; 1i++) {
void *p =

malloc (atoi(argv[i])) ;

free(p);
}

return (0) ;
) int.c

Goal: trace the addresses and sizes of the
allocated and freed blocks, without
breaking the program, and without
modifying the source code.

Three solutions: interpose on the library
malloc and free functions at compile
time, link time, and load/run time.

We won’t cover this example if we are short on time; it is not required and you won'’t see questions abowidhasesslides on a quiz

Time permitting

COMPILE-TIME INTERPOSITIONING

#1fdef COMPILETIME
#include <stdio.h>
#include <malloc.h>

/* malloc wrapper function */
vold *mymalloc(size t size)

{

vold *ptr = malloc(size);
printf ("malloc (%d)=%p\n", (int)size, ptr);

return ptr;

/* free wrapper function */
vold myfree(void *ptr)
{

free(ptr) ;
printf ("free (%p) \n", ptr);

}

#endif mymalloc.c

CORNELL CS4414 - SPRING 2023

55

COMPILE-TIME INTERPOSITIONING

Time permitting

#fdefine malloc(size) mymalloc (size)
#define free(ptr) myfree (ptr)

void *mymalloc(size t size);

vold myfree(void *ptr);

malloc.h

linux> make intc

gcc -Wall -DCOMPILETIME -c mymalloc.c
gcec -Wall -T. -O0~ntc int.c mymalloc.o

linux> make ru

./intc 10 100 1080
malloc (10)=0x1ba70\0
free (0x1lba7010)

malloc (100)=0x1ba7030
free (0x1ba7030)

malloc (1000)=0x1ba70a0
free (0x1lba70a0)

linux>

Search for <malloc.h> leads to
/usr/include/malloc.h

Search for <malloc.h> leads to

(CORNELL CS4414 - SPRING 2023

56

Time permitting

LINK-TIME INTERPOSITIONING

#ifdef LINKTIME
#include <stdio.h>

void * real malloc(size t size);

void real free(void *ptr);
/* malloc wrapper function */
void * wrap malloc(size t size)
{
void *ptr =
printf ("malloc (%d) = %p\n", (int)size, ptr):;

return ptr;

/* free wrapper function */
void wrap free(void *ptr)

{
real free(ptr); /* Call libc free */

printf ("free (%p) \n", ptr);

}
#fendif

__real malloc(size); /* Call libc malloc */

mymaﬂ-)lmé'ﬂ%&:lf SﬁIN(I2023 57

LINK-TIME INTERPOSITIONING

linux> make intl —>(Search for <malloc.h> leads to
gcc —-Wall -DLINKTIME -c mymalloc.c /usr/include/malloc.h

gcc -Wall -c int.c

gcc -Wall -Wl,--wrap,malloc -Wl,--wrap,free -o intl \
int.o mymalloc.o

linux> make runl

./intl 10 100 1000

malloc (10) = 0x91a010

free (0x91a010)

The “-W1” flag passes argument to linker, replacing each comma with a
space.

The “—--wrap,malloc” arg instructs linker to resolve references
in a special way:

» Refsto malloc should be resolved as wrap malloc

» Refs to real malloc should be resolved asmalloc

. eyge CORNELL CS4414 - SPRING 2023 58
Time permitting

Time permitting

LOAD/RUN-TIME

#ifdef RUNTIME
#define GNU SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

/* malloc wrapper function */

volid *malloc(size t size)

{

void *(*mallocp) (size t size);

char *error;

mallocp = dlsym(RTLD NEXT, "malloc"); /* Get addr of libc malloc */
if ((error = dlerror()) != NULL) {

fputs (error, stderr);

exit (1),

}
char *ptr =
return ptr;

INTERPOSITIONING

Observe that we DON’T have
#include <malloc.h>

mallocp(size);

/* Call libc malloc */

—
MyllalLlfoc. ©

CORNELL CS4414 - SPRING 2023

59

LOAD/RUN-TIME INTERPOSITIONING

Time permitting

/* free wrapper function */
vold free(void *ptr)

{

vold (*freep) (void *) = NULL;
char *error;
if (!ptr)
return;
freep = dlsym (RTLD NEXT, "free");
if ((error = dlerror()) != NULL)
fputs (error, stderr):;
exit (1),
}
freep(ptr); /* Call libc free */}
#endif

{

/* Get address of libc free */

mymalloc.c

CORNELL CS4414 - SPRING 2023

60

NOTE: DON’T CALL PRINTF IN MALLOC/FREE

We going overloading malloc...

... but this means that debugging our code using a printf
wouldn’t work: calling anything that does a malloc can cause a

recursion that wouldn’t terminate!

... printf(“something”) turns into std::cout << *something”, and
this in turn creates a std:string(“something”). Program crashes.

CORNELL (54414 - SPRING 2023 61

LOAD/RUN-TIME INTERPOSITIONING

linux> make intr

gcc -Wall -DRUNTIME -shared —-fpic -o mymalloc.so mymalloc.c -1dl
gcc -Wall -o intr int.c

linux> make runr

(LD PRELOAD="./mymalloc.so" ./I™qtr 10 100 1000)
malloc (10) = 0x91a010
free (0x91a010) Search for <malloc.h> leads to

/usr/include/malloc.h

linux>

The LD PRELOAD environment variable tells the dynamic
linker to resolve unresolved refs (e.g., to malloc) by looking in
mymalloc.so first.

Type into (some) shells as:

env LD PRELOAD=./mymalloc.so ./intr 10 100 1000)

. eyge CORNELL CS4414 - SPRING 2023 62
Time permitting

INTERPOSITIONING RECAP

Compile Time
» Apparent calls to malloc/free get macro-expanded into calls to mymalloc/myfree
» Simple approach. Must have access to source & recompile

Link Time

» Use linker trick to have special name resolutions
» malloc - _wrap malloc
» __real malloc - malloc

Load/Run Time

» Implement custom version of malloc/free that use dynamic linking to load library
malloc/free under different names

» Can use with ANY dynamically linked binary

env LD PRELOAD=./mymalloc.so gcc —c int.c)

. eyge CORNELL CS4414 - SPRING 2023 63
Time permitting

HOW IS INTERPOSITIONING USED?

Very helpful for adding timing code to apparent bottleneck paths
without really modifying the original program

You interpose your timing check at some method you know the
original code calls (a method coming from a DLL!), and then your
code remembers timing but calls the original method.

At the end of the run, some other interposed method prints the timing

CORNELL CS4414/5416 - FALL 2025 64

YOU CAN EVEN USE INTERPOSITIONING TO
IMPROVE A SLUGGISH APPLICATION

First, profile it to understand where bottlenecks arise

Next, identify ways to speed up the slow steps, such as “cache
frequently reused objects”.

Then use interposition to replace some existing calls to things like
file read and write with improved logic that leverages your idea

CORNELL CS4414/5416 - FALL 2025 65

SUMMARY

Performance tuning is an art and can be incredibly satisfying

The trick is to build a mental picture of what is going on, but
also what “should” be happening and how the actual system

departs from expectations

Performance tuning rewards “hacking” — taking the code into a
sandbox and running it in isolation to test portions of it.

CORNELL CS4414/5416 - FALL 2025 66

SUMMARY

Performance tuning is an art and can be incredibly satisfying

The trick is to build a mental pictureafass :
also what “should” be happening q Alicia and Jamal and Shouxu prefer

depqrfs from expec’rd’rions the term ““microbenchmarking”. It

seems more scientific!

Performance tuning rewards “hacking” — taking the code into a
sandbox and running it in isolation to test portions of it.

CORNELL CS4414/5416 - FALL 2025 67

SELF-TEST QUESTIONS

All of us have experienced frustrating delays on web pages.

Put on your deerstalker hat and see how many possible factors
you can think of that might cause delay when interacting with a
web site like Amazon.com

Now... same question, but what if instead of Amazon.com, you
are asking an ML like Claude or ChatGPT some sort of question?

CORNELL CS4414/5416 - FALL 2025 68

SELF-TEST QUESTIONS

Thinking about programs you have worked on, identify some
examples of performance issues that:

Caused the program to be very slow yet the problem could
be solved quickly

Involved a lot of delays that could be eliminated using some
form of pipelining

Involved a program /hardware mismatch: with the same code
but on some other platform, it wouldn’t be at all slow

CORNELL CS4414/5416 - FALL 2025 69

SELF-TEST QUESTIONS

Why might a profiling tool like gprof give confusing results for
timing of methods that read files or do network 1/O?2

How would you use interpositioning to take an existing program
and modify it (without changing any of the existing source code)
to time (instrument) those kinds of methods?

CORNELL CS4414/5416 - FALL 2025 70

SELF-TEST QUESTIONS

Suppose that you wanted to create your own file or object caching
layer.

How could you use interpositioning to get some existing legacy
application to use your layer, but without changing the existing code
base?

Why is this often preferable to changing the code base, if the
legacy application is open source?

CORNELL CS4414/5416 - FALL 2025 Al

	Performance Debugging
	Idea Map For Today
	Your job? Be a detective!
	What do we know about performance?
	What is a “convoy effect”?
	Puzzle?
	This is the opposite of algorithmic work! More like engineering…
	A good detective has an open mind
	Definition: Critical Path
	Focus on this path first
	Good performance versus busy work
	Ideal versus reality…
	Jumping to conclusions
	Big Picture process
	Domain crossings can be costly
	Modern systems hide these costs
	Tools of the trade
	Isolation Testing
	Interposition testing
	How fast “should” your code be?
	Hierarchy of delay
	A busy thing causes delay. But so does an idle thing!
	CPU is not always the issue!
	Network types
	Networked systems
	Asynchronous Pipelining
	Pipelines hide delay!
	But don’t let pipelines get “too deep”
	Often we have adequate memory and processors to shift logic this way
	Don’t sweat the small stuff
	Algorithms (sometimes) matter…
	Efficient Algorithms don’t always focus on the costly resource
	What would be a costly resource other than memory or CPU time?
	… algorithms are important, but are ultimately tools, like other tools
	Midpoint Stretch: big picture
	Midpoint Stretch: Bottlenecks
	Midpoint stretch: Bottlenecks
	Our Performance-tuning toolkit
	What sorts of resources exist?
	We can’t cover tool APIs in lecture!
	Time in C++/Linux systems
	What if the thing we want to profile is not “accessible” to us?
	What is linking?	
	Archives, DLLs
	Getting very fancy: Library Interpositioning (for serious hackers!)
	1-2-3 Recipe for Interpositioning
	Before and After Interposition
	Before and After Interposition
	1-2-3 Recipe for Interpositioning
	1-2-3 Recipe for Interpositioning
	… shortcut
	Some Interpositioning Applications
	Some Interpositioning Applications
	Example program		
	Compile-time Interpositioning
	Compile-time Interpositioning
	Link-time Interpositioning
	Link-time Interpositioning
	Load/Run-time �Interpositioning
	Load/Run-time Interpositioning
	Note: Don’t call printf in malloc/free
	Load/Run-time Interpositioning
	Interpositioning Recap
	How is interpositioning used?
	You can even use interpositioning to improve a sluggish application
	Summary
	Summary
	Self-Test Questions
	Self-Test Questions
	Self-Test Questions
	Self-Test Questions

