
AUTOMATING CONSISTENCY CS 4414/CS5416
Fall 2025

CS4414/CS5416 FALL 2025 1

IDEA MAP

CS4414/CS5416 FALL 2025 2

Lamport defined consistency and gave examples of how it can be achieved.

Inconsistency can cause havoc! Entire projects fail over it!

The assumption seems to be that consistency is expensive, especially when information
needs to be shared at several locations (data replication).

Today our goal will be to figure out how to offer very inexpensive consistency
guarantees and then how to hide them in standard framework components. This
allows MLs to benefit from consistency without directly doing anything unusual.

REMINDER: MANY CLOUD AND ML SERVICES
ARE SHARDED AND NEED REPLICATION
All of us use these services all the time, so if they were able to guarantee
consistency, applications running at higher levels inherit consistency.

Sharding is also a universal pattern. Reads are kind of easy: if data isn’t
evolving, we just need to read from current data and avoid stale cached
data items. But updates need to be mirrored on all replicas.

Lelie Lamport considered the sharding question to be an
instance of state machine replication.

CS4414/CS5416 FALL 2025 3

NOT EVERYTHING NEEDS CONSISTENT
REPLICATION
Data that is created but never updated might need replicas but we don’t
need anything fancy to make them.

Most web apps are designed so that if a piece of data is stale but in
cache, it is ok to use that stale data anyhow. Inconsistency “by design”

Spawning ML jobs involves a form of coordination, but it isn’t tricky to
implement. You just select the machines and launch the jobs.

CS4414/CS5416 FALL 2025 4

YET SOME TASKS DO REQUIRE CONSISTENT
REPLICATION

Updating programs on machines that will
run them, or entire virtual machines.

Replication of configuration parameters
and input settings.

Real-world data updates.

Replication for fault-tolerance, within the
datacenter or at geographic scale.

Replication of transient data like a
checkpoint or backup as an ML computes
a new model (which can take days)

Replication for parallel processing in the
back-end layer.

Data exchanged in AllReduce/MapReduce

Interaction between members of a group
of tasks that need to coordinate

 Locking

 Leader selection and disseminating
 decisions back to the other members

 Barrier coordination

CS4414/CS5416 FALL 2025 5

FAULT-TOLERANCE MATTERS TOO

We heard in lecture 12 that failures are common in the cloud

 Hardware can crash, but bugs cause more crashes

 “Reboot, reimage, replace” philosophy

 So consistency has to include fault-tolerance.

 We also learned in that lecture that the crash (“halting”) failure model is
 widely accepted within cloud datacenters.

CS4414/CS5416 FALL 2025 6

James Hamilton
(three R’s)

PAXOS: OVERARCHING “APPROACH” WHERE
CONSISTENT REPLICATION IS NEEDED
Paxos is the name of a model used by a series of protocols that Lamport
created to solve state machine replication. He also showed how to prove
that they are correct and even how to verify an implementation.

 There are many ways to implement Paxos protocols.

 Leslie claimed they all were discovered
 as a side effect of the “part time” senate
 that ruled the city of Paxos

CS4414/CS5416 FALL 2025 7

Paxos (Greek Island)

THE PART TIME SENATE

Senators would come and go, because on Paxos
everyone had to farm, fish, and do house chores

So the decisions of the Senate were recorded on a ledger. And the
Senate needed a way to update this ledger despite the turmoil of
Senators showing up unexpectedly, or wandering off without notice.

Also, parchment is easily damaged, so they actually used three or more
replicas. Sometimes one would be taken away to freshen the ink, briefly.

CS4414/CS5416 FALL 2025 8

BASIC IDEA (WE WON’T DO THE DETAILS)

Leslie’s central idea was to use a pattern seen in some of the earlier work
on similar replication problems.

 Senators would propose a new rule to the Senate by writing it into the
 available ledgers.

 To pass, a proposed rule must get majority support (a “quorum”)

 Once a vote succeeds, the adopted “decree” would be retained
 in a fixed order: new decrees added at the end.

CS4414/CS5416 FALL 2025 9

WHERE IS THE “CLEVER TRICK”?

Lamport suggests a clever way of doing the vote that

 Includes a kind of logical clock, called a ballot counter

 Includes a kind of consistent cut mechanism, which comes from a rule
 he uses to put decrees into a single, permanent, total order that
 centers on the sequence of final vote rounds: ballots approved by
 a quorum of Senators.

His mathematical proofs of these complicated protocols are widely cited

CS4414/CS5416 FALL 2025 10

THE PAXOS PATTERN IS VALUABLE!

These days we know that Leslie’s original protocols were hard to explain
and even harder to understand, and also very inefficient.

Yet the pattern in them is extremely important! The main change is that
rather than running Paxos for every update to replicated data in a shard,
modern systems use Paxos (or something equivalent) in a service off to one
side, tracking “membership” of the system.

This turns out to be sufficient to enable efficient update protocols

CS4414/CS5416 FALL 2025 11

EXAMPLE:
CHAIN REPLICATION
A common approach is “chain replication”, used to make copies of application
data in a small group. It assumes that we know which processes participate.

Once we have the group, we form a chain and send updates to the head.

The updates transit node by node to the tail, and only then are they applied:
first at the tail, then node by node back to the head.

Queries are always sent to the tail of the chain: it is the most up to date.
CS4414/CS5416 FALL 2025 12

A
(head)

B C
(tail)

Update

Ok: Do It

Update Update

DOES CHAIN REPLICATION NEED PAXOS?

Chain Replication is a good shard “update” option, but needs a Paxos-
based membership protocol, to track the list of shard members.

Chain replication is provably correct with a sufficiently strong membership
protocol, combined with a synchronization rule so that if membership
changes and we need to modify the chain, pending updates finish first

This is actually why Lamport felt that a formal model (a mathematical one)
and a methodology for proving things about protocols was needed.

CS4414/CS5416 FALL 2025 13

MEMBERSHIP AS A DIMENSION OF CONSISTENCY

When we replicate data, that means that some set of processes will each
have a replica of the information.

So the membership of the set becomes critical to understanding whether
they end up seeing the identical evolution of the data.

This suggests that membership-tracking is “more foundational” than
replication, and that replication with managed membership is the right goal.

CS4414/CS5416 FALL 2025 14

MEMBERSHIP CONCERNS FOR
CHAIN REPLICATION
Where did the group come from? How will chain be managed? State
machine replication doesn’t turn out to provide a detailed solution for this.

How to initialize a restarted member? You need to copy state from some
existing one, but the model itself doesn’t provide a way to do this.

Why have K replicas and then send all the queries to just 1 of them? If we
have K replicas, we would want to have K times the compute power!

CS4414/CS5416 FALL 2025 15

MEMBERSHIP MANAGED BY A “LIBRARY”

Ideally, you want to link to a library that just solves the problem.

It would automate tasks such as tracking which computers are in the service, what
roles have been assigned to them.

It would also be also be integrated with fault monitoring, management of
configuration data (and ways to update the configuration). Probably, it will
offer a notification mechanism to report on changes

With this, you could easily “toss together” your chain replication solution!

CS4414/CS5416 FALL 2025 16

DERECHO IS A LIBRARY, EXACTLY FOR
THESE KINDS OF ROLES!
You build one program, linked to the Derecho C++ library. Or, you could
use a service built using Derecho that reports membership changes.

Now you can run N instances (replicas). They would read in a
configuration file where this number N (and other parameters) is specified.

As the replicas start up, they ask Derecho to “manage the reboot” and the
library handles rendezvous and other membership tasks. Once all N are
running, it reports a membership view listing the N members (consistently!).

CS4414/CS5416 FALL 2025 17

Derecho: A powerful
straight-line wind

OTHER MEMBERSHIP MANAGEMENT ROLES

Derecho does much more, even at startup.

 It handles the “layout” role of mapping your N replicas to the various
 subgroups you might want in your application, and then tells each
 replica what role it is playing (by instantiating objects from classes
 you define, one class per role). It does “sharding” too.
 If an application manages persistent data in files or a database, it
 automatically repairs any damage caused by the crash. This takes
 advantage of replication: with multiple copies of all data, Derecho
 can always find any missing data to “fill gaps”.

 It can initialize a “blank” new member joining for the first time.

CS4414/CS5416 FALL 2025 18

SPLIT BRAIN CONCERNS

This worry arises if a service plays an important role in a system, and has
a backup scheme: if the primary server crashes, everyone uses the backup

Suppose that some machines think the primary is down but others think it is
still up. Now we have two servers both making decisions.

Our system could behave incorrectly!

CS4414/CS5416 FALL 2025 19

Tes.com

SOLVING THE SPLIT BRAIN PROBLEM

We use a “quorum” approach – and this is the tie-in to Paxos!

Our system has N processes and only allows progress if more than half
agree on the next membership view. Example: if N=5, we say that after a
failure, we need 3 or more of the original N to resume.

Since there can’t be two subsets that both have more than half, it is
impossible to see a split into two subservices.

CS4414/CS5416 FALL 2025 20

Cache Layer

Back-end Store

Multicasts
used for cache
invalidations, updates

Load balancer

External clients use standard RESTful RPC
through a load balancer

… BEYOND SHARDING, DERECHO CAN EVEN
SUPPORT STRUCTURES LIKE THIS!

CS4414/CS5416 FALL 2025 21

A PROCESS JOINS A GROUP

22

At first, P is just a normal program, with purely local private variables

P still has its own private variables, but now it is able to keep them aligned with
track the versions at Q, R and S

P Q R

SP Q R SInitial state

g.Join(“SomeGroup”)
… Automatically transfers state (“sync” of S to P,Q,R)

Now S will receive new updates

CS4414/CS5416 FALL 2025

A PROCESS RECEIVING A MULTICAST

23

All members see the same “view” of the group, and see the multicasts in
the identical order.

SP Q R S

CS4414/CS5416 FALL 2025

A PROCESS RECEIVING AN UPDATE

24

In this case the multicast invokes a method that changes data.

SP Q R S

Foo(1, 2.5, “Josh Smith”);
Foo(1, 2.5, “Josh Smith”);

Foo(1, 2.5, “Josh Smith”);
Foo(1, 2.5, “Josh Smith”);

Bar(12345);Bar(12345);Bar(12345);Bar(12345);

CS4414/CS5416 FALL 2025

SO, SHOULD WE USE CHAIN REPLICATION IN
THESE SUBGROUPS AND SHARDS?
It turns out that once we create a subgroup or shard, there are better
ways to replicate data.

Derecho delivers ordered multicasts in a way that it extremely efficient,
using the hardware in a smarter way than chain replication.

A common goal is to have every member be able to participate in
handling work: this way with K replicas, we get K times more “power”.

CS4414/CS5416 FALL 2025 25

WHAT EXACTLY DOES STATE MACHINE
REPLICATION GIVE US?
First, the Derecho version gives us membership tracking and also layout
tracking: the mapping from members to subgroup/shard roles.
Next, it automates repair of damage after a crash.
Then, when active and healthy, it offers a way to send an “atomic
multicast” or a “Paxos durable update” to all the members of a subgroup
or a shard.
 If any process delivers such a multicast, or persists an updated state,
 all non-failed processes do, and they deliver in the same order.
 Data will be durable if desired: recovered after a crash.

CS4414/CS5416 FALL 2025 26

THE “METHODS” PERFORM STATE MACHINE
UPDATES. YOU GET TO CODE THESE IN C++.
In these examples, we send an update by “calling” a method, Foo or Bar.
The atomic multicast or Paxos is used to do the call, invisible to you.

Even with concurrent requests, every replica performs the identical sequence
of Foo and Bar operations. We require that they be deterministic.

With an atomic multicast, everyone does the same method calls in the same
order. So, our replicas will evolve through the same sequence of values.

CS4414/CS5416 FALL 2025 27

VIRTUAL SYNCHRONY: MANAGED GROUPS

Epoch: A period from one membership view until the next one.

Joins, failures are “clean”, state is transferred to joining members

Multicasts reach all members, delay is minimal, and order is identical…

CS4414/CS5416 FALL 2025 28

P

Q

R

S
T

U

VIRTUAL SYNCHRONY: MANAGED GROUPS

Epoch: A period from one membership view until the next one.

Joins, failures are “clean”, state is transferred to joining members

Multicasts reach all members, delay is minimal, and order is identical…

CS4414/CS5416 FALL 2025 29

P

Q

R

S
T

U
Epoch 1

Epoch Termination

Epoch 2 Epoch 3 Epoch 4

Active epoch: Totally-
ordered multicasts or

durable Paxos updates

Epoch Termination
State Transfer

DERECHO’S VERSION OF PAXOS

Derecho splits its Paxos protocol into two sides.

One side handles message delivery within an epoch: a group with
unchanging membership.

The other is more complex and worries about membership changes (joins,
failures, and processes that leave for other reasons).

CS4414/CS5416 FALL 2025 30

HOW DOES DERECHO TRANSFER
DATA? IT USES “RDMA”.
RDMA: Direct zero copy from source memory to destination memory. But it
is like TCP: a one-to-one transfer, not a one-to-many transfer.

RDMA can actually transfer data to a remote machine faster than a local
machine can do local copying.

Like TCP, RDMA is reliable: if something goes wrong, the sender or receiver
gets an exception. This only happens if one end crashes

31

Source

Optical link

Dest

Unicast

CS4414/CS5416 FALL 2025

LARGE MESSAGES USE A RELAYING
METHOD WE CALL RDMC

Source
Dest

Dest
Dest

Dest

Multicast

Binomial Tree Binomial Pipeline Final Step

32
CS4414/CS5416 FALL 2025

RDMC SUCCEEDS IN OFFLOADING WORK TO
HARDWARE

33

Trace a single multicast through our system… Orange is time “waiting for action by
software”. Blue is “RDMA data movement”.

RDMA
(hardware)

RDMC (software)

CS4414/CS5416 FALL 2025

HOW DOES DERECHO PUT MESSAGES IN ORDER?

Derecho asks each subgroup or shard to designate which members are
“active senders” in a given view.

 Within the senders, Derecho just uses round-robin order: message 1
 from P: P:1 Q:1 R:1 P:2 Q:2 R:2…

 If some process has nothing to send Derecho automatically inserts
 a null message. P:1 Q:1 - - Q:2 R:2…

CS4414/CS5416 FALL 2025 34

ARE WE FINISHED?

We still need to understand how to end one epoch, and start the next.

Derecho’s method for this is a bit too complex for this lecture, but in a
nutshell it cleans up from failures, then runs a protocol (based on quorums)
to agree on the next view (the next epoch membership), then restarts.

If a multicast was disrupted by failure, it then will be reissued.

CS4414/CS5416 FALL 2025 35

SP R S

Failure: If a message was committed by any process, it commits at every
process. But some unstable recent updates might abort.

A PROCESS FAILS

36

SP Q R S

X0 X1 X2 Xk Xk+1 Xk+2. . .

Committed

Now

Update Xk+1

Update Xk+2

Derecho “trims” disrupted
updates, like Xk+2

CS4414/CS5416 FALL 2025

EXAMPLE OF HOW THIS WOULD BE USED?

In chain replication, suppose a failure disrupts our chain while an update is
underway.

Cleanup could discard the update if it hasn’t yet reached the tail, and
finalize it everywhere if it definitely did reach the tail.

Derecho uses this same kind of reasoning to clean up its own multicasts in
the event of a disruptive crash.

CS4414/CS5416 FALL 2025 37

HOW MUCH COST DOES ORDERING AND
PAXOS RELIABILITY OF THIS KIND ADD?
We can compare the Open MPI multicast, which has no guarantees, with
an ordered Paxos protocol layered on RDMC in Derecho.

Our next slide shows what we get for various object sizes and group sizes.

Red: “a video” (100MB), Blue: “a photo” (1MB), Green: “an email” (10K).

Again, 3 cases: all send (solid), half send (dashed), one sends (dash dot)

CS4414/CS5416 FALL 2025 38

DERECHO ATOMIC MULTICAST IS TWICE AS FAST AS THE
NON-ATOMIC OPEN MPI RDMA MULTICAST

39KEN BIRMAN (KEN@CS.CORNELL.EDU). CONFIDENTIAL, DO NOT SHARE. ALL RIGHTS RESERVED.

Derecho is
twice as fast

Derecho is stable over a wide
range of scenarios

CONSISTENCY: A PERVASIVE GUARANTEE

Every application has a consistent view of membership, and ranking, and
sees joins/leaves/failures in the same order.
Every member has identical data, either in memory or persisted
Members are automatically initialized when they first join.
Queries run on a form of temporally precise consistent snapshot

Yet the members of a group don’t need to act identically. Tasks can be
“subdivided” using ranking or other factors

40CS4414/CS5416 FALL 2025

FRAMEWORKS BUILT OVER DERECHO INHERIT
THESE PROPERTIES
For example, we can build a key-value store, or a file system, or a publish-
subscribe queuing system.

They run at extremely high speeds – higher than standard ways of
building things. Consistency doesn’t harm them at all.

Applications, like MLs, using these services inherit consistency without
needing to do anything special!

CS4414/CS5416 FALL 2025 41

EXAMPLE: CASCADE DDS COMPARED TO KAFKA-
DIRECT. BOTH USE THE SAME API.

42

Smaller is better

Tighter is better

Logarithmic Y axis

KEN BIRMAN (KEN@CS.CORNELL.EDU).

Milliseconds vs. Seconds

REPLICATION: MANY WAYS TO GET THERE!

By now we have heard of many ways to implement similar functionality.

 The actual Paxos protocols Leslie proposed. Those are slow.

 There are many famous “variations” on Paxos. RaFT is popular. Not
 faster, but easier to implement.

 Chain replication, but with a suitable membership service.

 A tool called Zookeeper that we didn’t discuss. Used in Hadoop.

 Derecho, fastest of them all!

CS4414/CS5416 FALL 2025 43

LAYERS ON LAYERS!

CS4414/CS5416 FALL 2025 44

Virtual synchrony membership layer

Fancy structures with subgroups and sharding

Data replication: Streaming over RDMC The shared state table (coordination)

Derecho’s version of atomic multicast and durable Paxos

Higher level tools, like the versioned, temporally indexed
Derecho object store (the key-value store)

Familiar APIs, like a file system or message bus or blob
store

Library you
link to

Complete free-standing
self-managed µ-service

SOME PRACTICAL COMMENTS

Derecho is very flexible and strongly typed when used from C++.

But people working in Java and Python can only use the system with byte array
objects (size_t, char*).

You can’t directly call a “templated” API from Java or Python, so:
 First you create a DLL with non-templated methods, compile it.
 Then you can load that DLL and call those methods.
 You still need to know some C++, but much less.

CS4414/CS5416 FALL 2025 45

CORNELL VORTEX PROJECT

Underway right now. Alicia and Jamal and Shouxu are all involved.

The goal is to offer a super-efficient strongly efficient platform for hosting
ML tasks, especially focused on inference and knowledge retrieval.

 Can support really low latency, which predictably fast responses

 And the MLs achieve very high throughput, making them inexpensive to
 operate compared to slower options

CS4414/CS5416 FALL 2025 46

EXAMPLE VORTEX USE CASE: PREFLMR DEPLOYED
AS A DOCUMENT RETRIEVAL SERVICE

PreFLMR is a pipeline of ML components that can be used to answer
questions about images

KEN BIRMAN (KEN@CS.CORNELL.EDU). 47

PREFLMR ON VORTEX WITH AND WITHOUT
RDMA (COMPARED TO RAY SERVE)

KEN BIRMAN (KEN@CS.CORNELL.EDU). 48

PREFLMR ON VORTEX WITH AND WITHOUT
RDMA (COMPARED TO RAY SERVE)

KEN BIRMAN (KEN@CS.CORNELL.EDU). 49

Notice: at the same
throughput, lower delay
and fewer long delays

CONCLUSIONS?

Don’t worry about consistency unless your code has a genuine need!

When needed, the state machine replication model is used to ensure
consistency, fault-tolerance. Two cases: atomic multicast, persistent updates.

A software library like Derecho automates many aspects of creating a
new consistent, fault-tolerant service. Virtualizing membership simplifies:
the application is “notified” when it needs to do something.

CS4414/CS5416 FALL 2025 50

SELF-STUDY QUESTIONS

Suppose your new job is for a manager who took CS4414/5416

The manager is worried about data consistency risks in the existing ML
training framework the company uses. It collects all kinds of preexisting
data (emails, memos, sales materials, other data) and fine tunes models.

Is data consistency a worry for ML training on unchanging data, or is the
issue seen only with continuously updated data?

CS4414/CS5416 FALL 2025 51

SELF-STUDY QUESTIONS

In a busy air traffic control center, John on ATC terminal A is responsible for
takeoffs on runway 3. If the system crashes, Bill on ATC terminal B will take over
from John.

Sarah, on ATC terminal B is responsible for controlling landings on runway 3.
Her system needs to be certain nobody is taking off on runway 3 before
authorizing a plan to land on runway 3.

Does “split brain” arise in this situation? Would virtual synchrony membership
have the same risk?

CS4414/CS5416 FALL 2025 52

SELF-STUDY QUESTIONS

A membership view is really a map of processes in the system to the roles
each process plays, like “member 2 in shard 7 of the KV store”.

Visualizing an ML pipeline or training system, would you expect this kind of
map to remain stable for long periods (in which case Derecho can be very
efficient), or to dynamically change rapidly (in which case the overheads
of virtual synchrony could be a significant cost)?

CS4414/CS5416 FALL 2025 53

SELF-STUDY QUESTIONS

Although consistency throughout a platform pays off, even the people who
build strongly consistent tools like Derecho oppose making them default for
all of Linux and using them all the time.

Do you agree or disagree with this position? What challenges would arise
if we tried to make distributed system membership services and replication
groups universal features of distributed Linux platforms, used by default?

CS4414/CS5416 FALL 2025 54

SELF-STUDY QUESTIONS

If we think of each component of PreFLMR as a small pool of servers that can be
elastically resized to add workers or reduce workers, we would need to create a
new Derecho membership view for each resizing event.

This could be costly.

Suppose we want to support dynamic resizing but without changing the
membership view, and without paying a huge cost to migrate ML models and
other dependent objects each time a new worker is launched. How could that
be done?

CS4414/CS5416 FALL 2025 55

	automating consistency
	Idea Map
	Reminder: Many Cloud and ML services are sharded and Need replication
	Not everything needs consistent replication
	Yet some Tasks Do require Consistent Replication
	Fault-tolerance matters too
	Paxos: Overarching “approach” where consistent replication is needed
	The Part Time Senate
	Basic idea (we won’t do the details)
	Where is the “clever trick”?
	The Paxos pattern is valuable!
	Example:�Chain Replication
	Does chain replication need paxos?
	Membership as a dimension of consistency
	Membership concerns for �chain replication
	Membership Managed by a “library”
	Derecho is a library, exactly for �these kinds of roles!
	Other membership management roles
	Split brain concerns
	Solving the split brain problem
	… Beyond Sharding, Derecho can even support structures like this!
	A process joins a group
	A process receiving a Multicast
	A process receiving an update
	So, should we use chain replication In�these subgroups and shards?
	What exactly does state machine replication give us?
	The “methods” perform state machine�updates. You get to code these in C++.
	Virtual synchrony: Managed Groups
	Virtual synchrony: Managed Groups
	Derecho’s version of Paxos
	How does Derecho transfer�Data? It uses “RDMA”.
	Large messages use a relaying�method we call RDMC
	RDMC succeeds in offloading work to Hardware
	How does Derecho put messages in order?
	Are we finished?
	A process FAILS
	Example of how this would be used?
	How much cost does Ordering and �Paxos reliability of this kind add?
	Derecho atomic multicast is twice as fast as the non-atomic Open MPI RDMA multicast
	Consistency: A Pervasive Guarantee
	Frameworks built over Derecho inherit these properties
	Example: Cascade DDS compared to Kafka-Direct. Both use the same API.
	Replication: Many ways to Get There!
	Layers on Layers!
	Some practical comments
	Cornell Vortex project
	Example Vortex use case: PreFLMR deployed as a document retrieval service
	PreFLMR on Vortex with and without RDMA (compared to Ray Serve)
	PreFLMR on Vortex with and without RDMA (compared to Ray Serve)
	Conclusions?
	Self-Study questions
	Self-Study Questions
	Self-Study Questions
	Self-Study Questions
	Self-Study Questions

