
HOW SYNCHRONIZED TIME CAN YIELD
INCONSISTENT BEHAVIORS

Professor Ken Birman
CS4414/5416 Lecture 13

CORNELL CS4414/5416 - FALL 2025 1

IDEA MAP FOR TODAY’S LECTURE

Consistency Story in a Real Cloud-Styled (AI Enabled) Application

CORNELL CS4414/5416 - FALL 2025 2

Lightweight vs. Heavyweight

Thread “context”

C++ mutex objects. Atomic data types.

Reminder: Thread Concept

Deadlocks and Livelocks

The monitor pattern in C++

Problems monitors solve (and problems they don’t solve)

Distributed Computing and Consistency

If you need consistency and overlook it,
your whole project can fail!

CONTEXT: ALL ABOUT TIME

Real-time clocks have limitations on precision, accuracy and skew.

Lamport defines the happens-before relation (→), implements logical
clocks (and vector clocks), defines consistent cuts.

We heard about patterns such as atomic multicast, but obviously this is not
the only choice. Some systems put time first

CORNELL CS4414/5416 - FALL 2025 3

BUT WHAT SHOULD “TIME FIRST” MEAN?

As fast as possible, focusing on individual operations?

Highest possible throughput, with latency secondary or ignored?

Offer a service level delay objective (SLO)… Treat SLO misses as failures?

Tight coordination? Accuracy relative to GPS time? Low clock drift?

CORNELL CS4414/5416 - FALL 2025 4

TIME-FIRST, TOPIC ONE Sensors: Devices that measure
something at some time

CORNELL CS4414/5416 - FALL 2025 5

CLOCK TIME CREATES UNIQUE CHALLENGES

Clocks are never perfectly accurate, a term that refers to “truth”

Any clock will also drift over time, causing skew between two clocks

Accuracy relates to skew relative to a perfectly truthful clock (GPS is as
close as we can get, but is pretty good!)

Precision relates to skew between pairs of correct clocks in the system.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 6

WE OFTEN CARE MORE ABOUT PRECISION

It isn’t important whether the system knows that today is Wednesday

What matters more is that when process P on machine A tells process Q on
machine B to take some action at some time, Q’s action is consistent with
what A expects. For example, “I will fill the reactor vessel at 10am. Heat
slowly to 100.5C and maintain until 11pm, then turn the heat off.”

This is a statement about precision… for this task, accuracy is secondary.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 7

CLOCKS AND DEVICES HAVE BOUNDED
ACCURACY
Always best to think of a time unit as reporting a bounding box

 The value is v ± ε, and was measured at time t ± δ.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 8

Suppose we are told that sensor accuracy is +/- 1.5C,
and clock skew for sensors is +/- 5s.

We measured the red dot, but the true temperature
and time could be anywhere in the bounding box

Time

Temp

101

102

100
10:00 10:01 10:02…

POSSIBLY VERSUS DEFINITELY

A value is “possibly” over a threshold if there is any portion of the
bounding box that exceeds that threshold.

We cannot know for sure, but the potential exists that the value is over the
limit.

A value is “definitely” over a threshold if the whole bounding box is over
the threshold limit. There is no risk that it is under the limit.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 9

THOUGHT QUESTION

Suppose that we are managing a chemical reaction.

We want the reaction temperature to be definitely more than 100C, but
also don’t want it to ever exceed 101.2C, even briefly.

What do bounding boxes tell us about implementing this rule? How accurate
would the sensor have to be to allow us to guarantee that we can follow it?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 10

101.2

THOUGHT QUESTION

Suppose that we are managing a chemical reaction.

We want the reaction temperature to be definitely more than 100C, but
also don’t want it to ever exceed 101.2C, even briefly.

What do bounding boxes tell us about implementing this rule? How accurate
would the sensor have to be to allow us to guarantee that we can follow it?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 11

We cannot rule out that it is over
101.2C

101.2

… AND THE ANSWER

For “definitely above”, consider the bottom of the box.

Unless the sensor is broken, if the bottom of the bounding box is above
100C, then the temperature is definitely above 100C

And for “definitely less than or equal to”, we want the top of the bounding
box to be no higher than 101.2C

CORNELL CS4414/5416 - FALL 2025 12

101.2

FAULTY SENSORS

Internet of things (IoT) systems often have redundant sensors but rarely try
to clean up data.

Depending on what we know, we sometimes could exclude a bad sensor
value and focus on the intersection of the good values.

But without enough certainly we might not know for sure which sensor is
bad. Then the default is to just keep all the data and let the AI system
make sense of it.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 13

IDEALIZED PERFECT SENSOR

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 14

But sensor accuracy was registered
as +/- 1.5C, and clock skew for
sensors is +/- 5s.

Actual temperature and time are in
the bounding box

Time

Temp

101

102

100

FAULTY SENSOR SCENARIO

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 15

Now we can recognize that one (the orange one) is faulty or
miscalibrated. But the actual temperature must be in the overlap
of the two correct ones, so we not only can figure this out, we can
even improve the accuracy!

Time

Temp

101

102

100

FAULTY SENSOR SCENARIO

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 16

Times-series data would let an AI realize the green/yellow sensor is faulty.

Time

Temp

101

102

100

MORE FUN WITH TIME-FIRST
SYSTEM DESIGNS

Air Traffic Control

CORNELL CS4414/5416 - FALL 2025 17

AIR TRAFFIC ARCHITECTURE
A persistent real-time DDS combines database and pub/sub functionality

CORNELL CS4414/5416 - FALL 2025 18

Owner of flight plan updates it…
there can only be one owner.

DDS makes the update persistent, records the
ordering of the event, reports it to client systems

… Other ATC controllers see
real-time read-only notifications Automated

services
Automated

services

Real-Time Guarantee: Notifications get through
within delay ∆, even if something crashes!

SOME KEY GOALS

Every flight and every runway has a single owner (“controller”).

Controllers can perhaps work in teams, in a group of computer consoles showing
different aspects of a single system state (“consistency”).

Each flight plan evolves through a unique series of versions. A controller edits
the current version, then saves it back to create the next version.

The whole system must be fault-tolerant and rapid: actions within seconds.
CORNELL CS4414/5416 - FALL 2025 19

IDEAS IBM PROPOSED

A real-time key-value storage system, in which updates to variables would
become visible to all processes simultaneously.

A real-time “heart beat” to help devices take coordinated actions.

A real-time message bus (DDS) to report new events in a temporally
consistent way to processes interested in those events.

CORNELL CS4414/5416 - FALL 2025 20

A REAL-TIME DISTRIBUTED SHARED MEMORY

CORNELL CS4414/5416 - FALL 2025 21

p0
p1

p2

p3

p4

p5

t
t+a t+b

Think of “x” as a key and “3” as the new value. Here x=3 becomes visible within a
time window between t+a and t+b.

set x=3

x=3

PERIODIC PROCESS GROUP: SKEEN

CORNELL CS4414/5416 - FALL 2025 22

p0
p1

p2

p3

p4

p5

Here, a set of devices can coordinate their actions based on a heartbeat.

FAULT-TOLERANT REAL-TIME DDS

CORNELL CS4414/5416 - FALL 2025 23

p0
p1

p2

p3

p4

p5

t
t+a t+b

*

*
*

*

*

Message is sent at time t by p0. Later both p0 and p1 fail. But message is still delivered
atomically, after a bounded delay, and within a bounded interval of time

By having every receiver echo
every message to all other

members, we create an O(n2)
message burst but can overcome

crash failures or network link
issues.

THE CASD PROTOCOL SUITE (NAMED FOR THE
AUTHORS: CRISTIAN, AGHILI, STRONG, DOLEV)

The paper introduces the ∆-T Atomic Broadcast

Goal is to implement a timed multicast that is tolerant of failures

 First, they looked at crash failures and message loss.

 Then they added in more severe scenarios like message corruption
 (the so-called “Byzantine” model).

 To make this feasible, they assumed limits on how many faults occur.

CORNELL CS4414/5416 - FALL 2025 24

EXAMPLES OF THE ASSUMPTIONS THEY MADE

Assumes use of clock synchronization, known clock skew limits.

Sender timestamps message, then sends it. Could crash and not send to
some receivers: they can only tolerated a few crashes of this kind.

Recipients forward the message using a flooding technique (each echos the
message to others). Crashes here count towards the “crash failure” limit.

Wait until all correct processors have a copy, then deliver in unison (up to
limits of the clock skew)

CORNELL CS4414/5416 - FALL 2025 25

CASD PICTURE

CORNELL CS4414/5416 - FALL 2025 26

p0
p1

p2

p3

p4

p5

t
t+a t+b

*

*
*

*

*

p0, p1 fail. Messages are lost when echoed by p2, p3

These were crashes. Otherwise the
messages from p0 would have
reached everyone in step one!

Notice how time elapses step by step

After so many “all-to-all” echo
steps, one of them must have

been successful.

IDEA OF CASD

Because we are assuming that there are known limits on number of
processes that fail during protocol, number of messages lost, we can do a
kind of worst-case reasoning.

Same for temporal (timing) mistakes.

The key idea is to overwhelm the failures – run down the clock.

Then schedule delivery using original time plus a delay computed from the
worst-case assumptions

CORNELL CS4414/5416 - FALL 2025 27

BASIC PROTOCOL IS VERY SIMPLE!

Every process that receives a message

1. Discards it, if the timestamp on the message is “out of bounds”

2. If this is a duplicate, no more work to do, otherwise, save a copy.

3. Echo it to every other process if it wasn’t a duplicate.

Then after a determined delay, deliver the message at a time computed by
taking the timestamp and adding a specific ∆ (hence the protocol name).

CORNELL CS4414/5416 - FALL 2025 28

WHERE DO THE BOUNDS COME FROM?

They do a series of “pessimistic” worst-case analyses.

For example, they say things like this:
 Suppose message M is sent at time T by some process.
 What is the earliest clock value that process Q could have when M first
 arrives at Q? What is the latest possible clock value?
 This would let them compute the bounds for discarding a message that
 “definitely was from a process with a faulty clock” in step 1.

CORNELL CS4414/5416 - FALL 2025 29

THE ANALYSIS IS SURPRISINGLY DIFFICULT!

A message can jump from process to process so by the time it reaches Q, it
may actually have gone through several hops.

Each hop contributes delay, plus at each hop some process ran through the
same decision logic, and apparently, decided to forward the message.

If Q and R are correct, we need a proof that they will ultimately both
deliver M, or both reject M, and this is hard to pull off!

CORNELL CS4414/5416 - FALL 2025 30

SO… IS CASD THE IDEAL
PROTOCOL FOR ATC SYSTEMS?

Air Traffic Control

CORNELL CS4414/5416 - FALL 2025 31

WHAT DOES IT MEAN TO BE “CORRECT”?

In many settings, it is obvious when a process is faulty!

But with CASD a process is correct if it behaves according to a set of
assumptions that cover timing and other aspects (for example, messages
have digital signatures, and a process that damages a message is incorrect).

So in CASD when we say “If Q and R are correct”, this is a fairly elaborate
set of conditions on their behavior.

CORNELL CS4414/5416 - FALL 2025 32

THE PROBLEM WITH CASD

In the usual case, nothing goes wrong, hence the delay is too conservative

Even if things do go wrong, is it right to assume that if a worst-case message
needs δms to make one hop, we should budget n * δ time for n hops?

How realistic is it to bound the number of failures expected during a run?

CORNELL CS4414/5416 - FALL 2025 33

CASD IN A MORE TYPICAL RUN

CORNELL CS4414/5416 - FALL 2025 34

p0
p1

p2

p3

p4

p5

t
t+a t+b

*

*
*

*

*
*

In a normal run, everything gets through
right away, but then we wait a long time

before the DDS can deliver messages.

... DEVELOPERS TUNED, AIMING FOR THIS

CORNELL CS4414/5416 - FALL 2025 35

p0
p1

p2

p3

p4

p5

t
t+a t+b

*

*
*

*

*
*

Here we just changed the delay
parameter to deliver sooner.

Seems reasonable, no?

OOPS! CASD STARTS TO “MALFUNCTION”

CORNELL CS4414/5416 - FALL 2025 36

p0
p1

p2

p3

p4

p5

t
t+a t+b

*

all processes look “incorrect” (red) from time to time

*

*

*

Very few processes are deemed
“correct”. The others do weird

wrong things. CASD didn’t work!

WHY DOES CASD TREAT SO MANY PROCESSES
AS FAULTY?
We need to think about what these assumptions meant.

Suppose CASD assumes that a message sent from P to Q will always
arrive within delay δ, but then we set the limit, δ, to a very small value.

If δ=100ms, we would never have seen problems. But with δ=1ms,
perhaps 10% of messages show up “late”. This will be treated as if P or
Q had failed!

CORNELL CS4414/5416 - FALL 2025 37

MORE EXAMPLES

CASD has a limit on how long after a message arrives, Q can take to
process it. If this limit is very low, scheduling delays make Q look faulty.

CASD has a limit on how many messages can be lost in the network.

CASD has a limit on how far the clocks on the computers can drift.

CORNELL CS4414/5416 - FALL 2025 38

WHAT DOES FAULTY “MEAN”?

Since P and Q are still running, in what sense are they faulty?
 They won’t be notified that CASD “thinks” of them as faulty.
 They don’t have any local evidence they can rely on.
 In fact both think of themselves as healthy. They are normal programs.

Yet the CASD guarantees no longer apply because of these violations of
the assumptions – CASD only promises atomicity and accurate timing if the
model isn’t violated.

CORNELL CS4414/5416 - FALL 2025 39

CLOSER LOOK

CORNELL CS4414/5416 - FALL 2025 40

p0
p1

p2

p3

p4

p5

t
t+a t+b

*

all processes look “incorrect” (red) from time to time

*

*

*

Very few processes are deemed
“correct”. The others do weird

wrong things. CASD didn’t work!

CONSEQUENCE?

Only some airport management units and ATC controllers see each update

Perhaps a “periodic event” triggers and only p3 and p5 act. Others don’t
do anything, and p4 acts but 3s late.

So clearly, running CASD “aggressively” didn’t work at all! But CASD with
a 20s delay (a delay for which it works well) is useless!

CORNELL CS4414/5416 - FALL 2025 41

HOW DO CASD LIMITATIONS PLAY
OUT IN A REAL ATC SETTING? Air Traffic Control

CORNELL CS4414/5416 - FALL 2025 42

BACK IN 1994 OR SO, IBM PROPOSED TO
BUILD THE NEW FAA SYSTEM
They wanted to use ideas like periodicity and ∆T-Shared memory and the CASD
∆T atomic multicast as the lowest level infrastructure.

On this they would build basic services for tracking airplanes and runway
activity, coordinating handoffs from controller to controller, fault-tolerance, etc.
The tools are like “library methods” and these services would use the libraries as
their building blocks.

Then on top of that they could add what we would call AI microservices today.
CORNELL CS4414/5416 - FALL 2025 43

IMAGINE BUILDING AN ATC
SUPPORT APPLICATION USING CASD
Certain information is being replicated, such as the flight plans of
airplanes or the updated state of our power grid.

You are building an application like the ATC console and it receives an
update. The requirement is that every controller sees the same sequence
of events and same background data, so they stay consistent

But due to these CASD issues, sometimes messages show up out of order, or
duplicated, or are dropped. And you have no way to know this happened.

CORNELL CS4414/5416 - FALL 2025 44

LACK OF CONSISTENCY

In effect, CASD is ignoring several aspects of consistency, ones atomic
multicast treats as critical elements of its behavior

 It is inconsistent about which processes are healthy and which have failed

 It isn’t worried about causal consistency or consistent cuts.

And now we are seeing that without those properties, we can’t build
applications over the solution!

CORNELL CS4414/5416 - FALL 2025 45

PROGRAMMING OVER CASD

The original idea was to configure CASD to be perfectly reliable.

But now we can see that with aggressive parameter settings, CASD
becomes extremely unreliable.

How would we compensate for this risk in software?

CORNELL CS4414/5416 - FALL 2025 46

CAN CASD BE FIXED?

 They tried for two years. Eventually the NAS hired Fred Schneider to
 lead a study of the debacle and to recommend a fix.
 Instead, the study recommending dropping the CASD-based DDS and
 use a database with transactions. In the end billions were lost.
 Fred’s advice was accepted in the follow-on project (which also took
 advantage of GPS clocks and tracking)
 Meanwhile Ken designed a solution for France using a system like
 Derecho. They still run it now.

CORNELL CS4414/5416 - FALL 2025 47

WHAT WENT WRONG??

Fundamentally, the IBM effort stumbled because these particular building
blocks provably did achieve their specified behavior, but we lacked a
methodology for using them to implement those kinds of services.

Fault tolerance and consistency were the biggest problems. Nobody could
figure out how to use those building blocks to build services guaranteed to
offer safe ATC guidance for planes and runways, and to be fault tolerant

CORNELL CS4414/5416 - FALL 2025 48

WHAT WENT WRONG??

With much weaker time bounds it might have worked – then the building blocks
would have been “almost always perfect”. This is how the leaders imagined it.

To get highly reliable behavior, protocols like CASD needed big ∆T. But ATC
controllers rejected the big ∆T. If something important happens, it isn’t safe to
delay 30s before notifying the air traffic controller.

But with aggressive timing settings (small ∆T) inconsistency was too frequent:
IBM’s building blocks just stopped being useful.

CORNELL CS4414/5416 - FALL 2025 49

BUILDING A CASTLE ANALOGY

It is easy to build a castle with lego building blocks.

But suppose legos just aren’t an option and your
team decides to construct building blocks from
damp sand packed into molds shaped like legos?

These sand-lego pieces may look right,
but crumble under weight and wash away easily.

CORNELL CS4414/5416 - FALL 2025 50

DOES THE ATC EXAMPLE HINT
AT ISSUES IMPORTANT TO ML?

Machine Learning and Time

CORNELL CS4414/5416 - FALL 2025 51

DID YOU KNOW THAT MODERN ATC USES AI?
A persistent real-time DDS combines database and pub/sub functionality

CORNELL CS4414/5416 - FALL 2025 52

Owner of flight plan updates it…
there can only be one owner.

DDS makes the update persistent, records the
ordering of the event, reports it to client systems

… Other ATC controllers see
real-time read-only notifications Intelligent

µ-service
Intelligent
µ-service

WHAT IS AN INTELLIGENT MICRO-SERVICE?

… An AI component, abrieved “µ-Service” on my slides

… that wakes up when an ATC notification message relevant to it is
published by the real-time DDS

… and reviews the impacted flight plan (and other plans) looking for an
opportunity to optimize airport operations or to offer benefits to airlines

CORNELL CS4414/5416 - FALL 2025 53

IT WOULD BE LIKE OTHER AI SOLUTIONS!

It would need to be trained to understand what is beneficial and what is
considered to be problematic

We would also need it to understand priorities and other “notable
attributes” the airlines might share through the flight plan, like “must not
arrive late” or “many customers will transit via gates in terminal B”

There could be many, specialized in different functionality

CORNELL CS4414/5416 - FALL 2025 54

THERE COULD BE MANY OF THESE SMART ATC
MICROSERVICES!
What would be AI roles for such µ-services?

 Which of my passengers might miss connections?

 Could I purchase priority landing rights? How much would it cost?

 How will my flights be impacted by the approaching weather system?

 If the luggage handlers go on strike, which of my flights should I route
 to other airports?

CORNELL CS4414/5416 - FALL 2025 55

THIS IS A TYPICAL FINDING!

Many ML services and AIs that use them encounter measurements of real-
world properties (like temperature), using clocks with skew and accuracy
limits (like our bounding box pictures).

And many need data replication for lots or reasons, as we saw in previous
lectures, such as for fault-tolerance and to do parallel ML compute.

They may operate under time pressure too: the AI may need to show data
to a person (like an ATC controller) or take an action within some time limit

CORNELL CS4414/5416 - FALL 2025 56

CONCLUSIONS?

First, it seems clear from the ATC experience that consistency-first is a
better methodology. Build a consistency service and make it fast, don’t
build a real-time primitive and then try to add consistency properties.

Next, be very aware that modern platforms do not guarantee these
properties unless you use infrastructure tools that offer strong assurances.

So this is an area where ML will encounter the real world, and platforms
will surely need to evolve to match their requirements!

CORNELL CS4414/5416 - FALL 2025 57

THOUGHT AND STUDY QUESTIONS

In AI systems used for real tasks should we favor consistency or
performance? Derecho offers both… is this valuable?

Are real-time deadlines the most important consideration, or should we
focus more on proving some other aspects of the solution?

If the AI services are big and tricky to run within the time bound, can we
do things to make them perform better?

CORNELL CS4414/5416 - FALL 2025 58

MORE THOUGHT QUESTIONS

Batching is a great way to improve throughout: the ingress process of a
system collects some number BSIZE requests, then sends them through as a
single operation holding a list of requests to perform.

How would batching impact the distribution of delays (latency), as you
vary the BSIZE parameter? In fact this question is nuanced because there
are many factors to consider and they give different answers when
considered separately.

CORNELL CS4414/5416 - FALL 2025 59

MORE THOUGHT QUESTIONS

When you are brought on board as the performance engineering lead for
a new project, knowing nothing, what would you want to learn before
making any recommendations?

Suppose that you are hired to work on an AI for highway management
(speed limits, rules for COV lanes, etc).

How would the issues discussed today enter into your requirements and
design plan for that sort of AI?

CORNELL CS4414/5416 - FALL 2025 60

AN OFFLINE DEBATE TOPIC: SERVICE LEVEL
LATENCY AND MISS RATE OBJECTIVES
Suppose that you measure some system and discover that you can tune it
for very low per-request delay (latency), but that this reduces throughout.
The highest throughput has poor latency performance.

When would you opt for throughput even with this consequence? When
would you opt for low latency?

Can an SLO perspective offer a third possible configuration option, or is it
really just another word for low latency? If it is genuinely is a third
possibility, when would you opt for it?

CORNELL CS4414/5416 - FALL 2025 61

	How synchronized time can yield inconsistent behaviors
	Idea Map For today’s lecture
	Context: All About Time
	But what should “time first” mean?
	Time-First, Topic One
	Clock Time creates unique challenges
	We often care more about precision
	Clocks and devices have bounded accuracy
	Possibly versus definitely
	Thought question
	Thought question
	… and the answer
	Faulty Sensors
	Idealized perfect sensor
	Faulty Sensor scenario
	Faulty Sensor scenario
	More fun with time-first system designs
	Air Traffic Architecture
	Some key goals
	Ideas IBM proposed
	A real-time distributed shared memory
	Periodic process group: Skeen
	Fault-tolerant real-time DDS
	The CASD protocol suite (named for the authors: Cristian, Aghili, Strong, Dolev)
	Examples of the assumptions they made
	CASD picture
	Idea of CASD
	Basic protocol is very simple!
	Where do the bounds come from?
	The analysis is surprisingly difficult!
	So… is CASD the ideal protocol for ATC systems?
	What does it mean to be “correct”?
	The problem with CASD
	CASD in a more typical run
	... Developers tuned, aiming for this
	Oops! CASD starts to “malfunction”
	Why does CASD Treat so many processes as faulty?
	More examples
	What does faulty “mean”?
	Closer look
	Consequence?
	How do CASD limitations play out in a real ATC setting?
	Back in 1994 or so, IBM proposed to build the new FAA system
	Imagine building an ATC �support application using Casd 	
	Lack of consistency
	Programming over CASD
	Can CASD be Fixed?
	What went wrong??
	What went wrong??
	Building a castle analogy
	Does the ATC example hint at issues important to ML?
	Did you know that modern ATC uses AI?
	What is an intelligent micro-service?
	It would be like other AI solutions!
	There could be many of these smart ATC microservices!
	This is a typical finding!
	Conclusions?
	Thought and study questions
	More thought Questions
	More thought questions
	An offline debate topic: Service level latency and miss rate objectives

