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IDEA MAP FOR TODAY’S LECTURE

With collections of sharded data spread within a system and probably 
being updated continuously, don’t we need a “consistency” policy?
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Lightweight vs. Heavyweight

Thread “context”

C++ mutex objects.  Atomic data types.

Reminder: Thread Concept

Deadlocks and Livelocks

The monitor pattern in C++

Problems monitors solve (and problems they don’t solve)

Distributed Computing and Consistency



MODELLING DISTRIBUTED SYSTEMS

Everything is a distributed system these days!  Even your Apple 
watch is talking to your phone, and it talks to servers in the cloud

ML systems routinely harness multiple compute servers to gain 
more compute power.  And we often spread large data sets 
over arrays of shards, just like Jim recommended.  Then we do 
shard-by-shard computing.
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MODELLING DISTRIBUTED SYSTEMS

The question of how powerful a distributed system really is 
arose long ago.  Leslie Lamport is famous for studying it.

  Can a distributed system “mimic” a non-distributed one?
    If so, perhaps this should be our consistency model!

  What kinds of failures can be tolerated, and what methods
     work best?  What kinds of failures really occur?
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THE TOPIC GETS COMPLICATED!

Consider failure models…
  Cryptocurrency people favor a “Byzantine” failure model.
    Anything can happen, evil attacks are constant, collusion is
    a risk.   This makes the “anonymous” style of blockchain costly
  Datacenter operators often focus on “clean” crash failures.
    But you can’t always detect them (timeout is very inaccurate)
  And ML developers work with code that can crash for other
    reasons, like software bugs, running out of memory, etc
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Secretly working
for the enemy

Loyal knights



WE GO WITH A DATACENTER FAILURE MODEL 
(CRASH FAILURES)
Our focus is on the systems infrastructure and performance used  
for machine learning applications

So we adopt a crash failure model “combined” with an 
assumption that some computations “fail” for software reasons. 

Failures of this kind are detectable and handled in software.
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CONSISTENCY… THE BIG QUESTION

Once you set failure models to the side, we need to ask what 
our goals should be!

Transactional databases are a good place to start

  The data is in the database

  Applications read or do updates, or mixtures, atomically
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WHAT ABOUT CONSISTENCY FOR 
DISTRIBUTED SYSTEMS?

  Normal message passing: point to point or remote procedure  
    call.  Messages dropped in the network are automatically 
    reissued.  Check message id to avoid double execution.

  Atomic multicast: Messages to a “process group”. All
    members receive them exactly once, in identical order.

  Durable replicated updates: Like atomic multicast but adds a
    way to also update data in files on persistent storage.
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Cornell’s Derecho library has all 
of these features and is very fast



MONITORING A SMART POWER GRID

KEN BIRMAN (KEN@CS.CORNELL.EDU). 9

Start by deploying synchrophasors,
capturing data at 20 eps, which

forms a log containing timestamps



MONITORING A SMART POWER GRID

KEN BIRMAN (KEN@CS.CORNELL.EDU). 10

Each power bus maps to some
location.  Pretend for simplicity
that they map to a simple grid



MONITORING A SMART POWER GRID
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GIVEN LOTS OF DATA, WE CAN MAKE A MOVIE!

Just take a series of snapshots, at synchronized times

Then render the evolution of some property (we will focus on the 
phase of the phasor) over time.  An ML might actually react.

20fps is faster than needed.  We’ll use 4fps.  But our grid will 
be larger: 20x20, hence 400 concurrent data flows
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INCONSISTENCY THREATENS CORRECT BEHAVIOR!

13

HDFS               VORTEX USING SERVER CLOCKS… AND WITH SENSOR CLOCKS

Think of the self-driving cars that experience accidents… if an ML makes a 
mistake, is it because the ML is of low quality, or because it “saw” bad data?

KEN BIRMAN (KEN@CS.CORNELL.EDU).



WHAT WENT WRONG?

The animation on the left has inconsistencies

  Each “frame” is like a photo in a movie…

  But it turns out that on the left, each frame blends data
    from different times and sometimes, data we saw in one
    frame vanishes in the next frame.
  Inconsistency is like noise… and could confuse an AI system!  
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HOW LESLIE BUILDS UP TO A SOLUTION TO 
THIS PROBLEM

First, he focuses on ordering in message passing systems

Then he extends this to a concept of a distributed snapshot, like 
the ones used to make that little movie
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LESLIE LAMPORT INVENTED MANY OF THESE 
MODELS FOR CONSISTENCY
He focused on the ways information can flow in a system.

In fact he introduced a special relationship operator: →
  If event A occurs and A → B, then “A might have caused B”
    (information about A flowed through the system to B)
  A is in the past relative to B, and may even have triggered B.  
  Action B may not make sense if we forget or roll back A.
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LAMPORT’S CONSISTENCY MODEL

Lamport had the image in his mind of a distributed computation 
like an ML inference or training job.  

Armed with causality, he started to think about concepts of time, 
handling of failures, checkpoints and rollback.

He proposed the idea of a “consistent cut”.

CORNELL CS4414/5416 - FALL 2025 17



TRACKING CAUSALITY: LAMPORT’S  A → B

Leslie first considered normal clocks.  But they don’t track →
  Here, he took his inspiration from Einstein
  “Time is an illusion.”   Einstein went on to draw space-time diagrams.

So Leslie asked: “Can we use space-time diagrams as the basis of a new 
kind of “logical clock”? 
  If A → B, then LogicalClock(A) < LogicalClock(B)
  If LogicalClock(A) < LogicalClock(B), then A → B
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DEVELOPING A SOLUTION

Suppose that every computer (P, Q, …) has a local, private 
integer

Call these LogicalClockP and LogicalClockQ etc.

Each time something happens, increment the clock.

 Now, if A and B happen at P, LogicalClockP can tell us A → B.

 But what if A is on machine P, and B happens on Q?
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A SPACE-TIME DIAGRAM FOR THIS CASE
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P

Q

A

B

P sends M

Q receives M

Drill down: Consistency

X



A SPACE-TIME DIAGRAM FOR THIS CASE
Uncoordinated counters don’t solve our problem

Here, A and B end up with the identical Time, so we incorrectly conclude 
that A did not happen before B
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P
LogicalClockP

Q
LogicalClockQ

A P sends M

0        1      2                     3

0                                                                             1                         2

Q receives M B

Drill down: Consistency
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AHA!
Notice that the “receive” of M occurs when LogicalClockB = 1.

Yet the “send” of M was at LogicalClockA = 3.

So Lamport proposes this idea:

  Each time an event occurs at P, increment LogicalClockP

  If P sends M to Q, include LogicalClockP in M.  When Q receives M,
         LogicalClockQ = Max(LogicalClockQ, LogicalClockM) + 1
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Q computes:
LogicalClockQ = max(0, 3) + 1

A SPACE-TIME DIAGRAM FOR THIS CASE
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P
LogicalClockP

Q
LogicalClockQ

A P sends M
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Drill down: Consistency

LogicalClockM = 3
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WE NOW HAVE A CHEAP PARTIAL SOLUTION!

With Lamport’s logical clocks, we pay a small cost (one integer per 
machine, to keep the clock, and some space in the message)

Let’s use LogicalClock(X) to denote the relevant LogicalClock value 
for x.   We can time-stamp events and messages.
  If A → B, then LogicalClock(A) < LogicalClock (B)
  But… sometimes LogicalClock (A) < LogicalClock (B), 
     yet A didn’t happen before B!
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A SPACE-TIME DIAGRAM FOR THIS CASE
With logical clocks, even if P and Q never talk, we might have Time(A) < 
Time(B)

Here, if we claim that LogicalClock(A) < LogicalClock (B) ⇒ A → B, this is 
nonsense!  In fact ¬(A → B), ¬(B → A).  (A and B are “concurrent”)
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Drill down: Consistency

Firewall blocks all traffic: P can’t communicate to Q



LOGICAL CLOCKS ONLY WORK IN ONE DIRECTION.

They approximate the causal happens-before relationship, but 
only in an “if-then” sense, not “If and only if”.

Lamport gives many examples where this is good enough.

We actually can do better, but at the “cost” of higher space 
overhead.
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INTUITION BEHIND VECTOR CLOCKS

Suppose that we had a fancier clock that could act like logical clocks 
do (with the “take the max, then add one” rule).

But instead of a single counter, what if it were to count “events in the 
causal past of this point in the execution”, tracking events on a per-
process basis?

For example, a VectorClock value for A = [5,7] might mean “event A 
happens after 5 events at P, and 7 events at Q”.
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VECTOR CLOCKS ARE EASY TO IMPLEMENT
A vector clock has one entry per machine.  VT(A) = [3, 0, 7, 1]
  If an event occurs at P, P increments its own entry in the vector
  When Q receives M from P, Q computes an entry-by-entry max,
    then increments its own entry (because a “receive” is an event, too)

VectorClock comparison rule:

   Define VT(A) < VT(B) if
               VT(A) ≤ VT(B),                   Now, VT(A) < VT(B)   iff  A → B 
               but VT(A) ≠ VT(B) 
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A SPACE-TIME DIAGRAM FOR THIS CASE
Case A: Suppose that P and Q never interact.

With vector clocks we can see that A is concurrent with X, Y and B. We can use 
the comparison rule to show this, for example that ¬(A → B) and ¬(B → A).  

CORNELL CS4414/5416 - FALL 2025 29

P
VectorClockP
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Drill down: Consistency

Firewall blocks all traffic: P can’t communicate to Q



A SPACE-TIME DIAGRAM FOR THIS CASE
Case B: P sends a message to Q after A, and it is received before B at Q. 

The vector timestamps show that A happens before B (and also, before Y).  
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Drill down: Consistency

Now the firewall is gone and a message gets through!



SO WHY NOT ALWAYS USE VECTOR CLOCKS?

They represent happens-before with full accuracy, which is great.

But you need one vector entry per process in your application.  For a 
small µ-service this would be fine, but if the vector would become 
large, the overheads are an issue.

So, we try to use a LogicalClock before considering a VectorClock.
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CONSISTENT SNAPSHOTS AND CUTS
Lamport and Mani Chandy built a solution to this problem using 
the basic A → B logical clock as a building block.  Consider a 
time-space picture like this
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CONSISTENT CUTS AND SNAPSHOTS

They asked: Suppose I visit each node, each at some point in 
time.  Can we extend consistency to cover such a case 
(“consistent cut”)

Or even fancier: what if each node makes a checkpoint for me 
when I visit it along a cut.  Can we end up with a “consistent 
snapshot”, like a photo?
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CONSISTENT CUTS AND SNAPSHOTS

Recall:  Lamport looks at “pictures” of such a system, like these
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CONSISTENT CUTS AND SNAPSHOTS

A cut is consistent if no “message arrows” go backwards through it

… this cut is a consistent one.

CORNELL CS4414/5416 - FALL 2025 35

P

Q

E

FR

S
T

U

B

C

H

G

D

Drill down: Consistency



CONSISTENT CUTS AND SNAPSHOTS

A cut is inconsistent if “message arrows” do go backwards through it

… this cut is inconsistent.  C → D, and the cut included D, yet it omits 
C.
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A CONSISTENT CUT IS LIKE A PHOTO

It shows a state the system might actually have once been in

You could use that state for garbage collection, or to do an 
audit of a bank, or to detect deadlocks.

But an inconsistent cut is broken.  It omits parts of the past and 
any conclusion from it would be incorrect.  A real system could 
never have been in an inconsistent state of this kind.
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HOW TO CREATE ONE?

Chandy and Lamport give an algorithm based on a form of 
broadcast.  It records the state of each process, and also 
snapshots messages still in the communication network.  It works 
while the system is still running – no need to first freeze things.

A packaged version of this mechanism as a library is available 
in many systems.  For example, it is one option for making a 
distributed checkpoint in a long-running application.
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DEADLOCK DETECTION: “ASK EACH PROCESS 
WHAT IT IS CURRENTLY DOING”
With a guarantee of consistency, a cycle is a deadlock

But with inconsistency, we could be missing a “lock 
release” message that “allowed” some process to 
start running, after which it requested another lock.  

Here, D is waiting for C to release a lock.  B is waiting for D.
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DEADLOCK DETECTION: “ASK EACH PROCESS 
WHAT IT IS CURRENTLY DOING”
With a guarantee of consistency, a cycle is a deadlock

But with inconsistency, we could be missing a “lock 
release” message that “allowed” some process to 
start running, after which it requested another lock.  

This picture makes sense if D is still waiting for C, and B for D.
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DEADLOCK DETECTION: “ASK EACH PROCESS 
WHAT IT IS CURRENTLY DOING”
With a guarantee of consistency, a cycle is a deadlock

But with inconsistency, we could be missing a “lock 
release” message that “allowed” some process to 
start running, after which it requested another lock.  

It is wrong if D is no longer waiting for C…  the deadlock could 
be an illusion!
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A B

C D

Semantically, when D says “I’m waiting for C” it 
should mean “at the instant of the snapshot”… 
but the requests show up concurrently and not 

necessarily simultaneously!



HOW ARE CONSISTENT CUTS USED?

                             Automated deadlock detection really is used in
                             distributed database systems

   Banks allow users to transfer money from 
  account to account.  A consistent cut reports
  the right balances.

                         … Lorenzo Alvisi had a cool idea, too!
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ML CHECKPOINTS AND ROLLBACK ENABLE FAULT TOLERANCE.  
BUT CAN WE CHECKPOINT EACH SUBSYSTEM SEPARATELY?

In a distributed system, if only parts of it roll back, the state might 
not be consistent. This was Lorenzo’s PhD topic. 

His algorithm allows asynchronous checkpoints, can log messages on 
sending side or receiver, and rolls back on consistent cuts.

Today we are looking at his methods in the context
of checkpointing for ML training jobs with many 
subsystems and hours or days long training runs!
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HOW ARE THEY NOT USED?

Although “a photographic snapshot” is a common intuition for a 
consistent cut or snapshot, this intuition is actually wrong.

There is no connection between logical time (used for cuts) and 
physical time (used by a camera).

A consistent cut is only a snapshot if the things in the system are all 
software – not if the system has some tie to the outside real world.  
If you need a photograph of the real world, don’t use consistent cuts!
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Counting geese?  Don’t use an array of cameras and a 
consistent cut: logical properties are internal to a 

system and don’t always match outside real-world goals.



… AND REMEMBER OUR SMART GRID?
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HDFS               VORTEX USING SERVER CLOCKS… AND WITH SENSOR CLOCKS

Vortex uses a variation on the Chandy/Lamport algorithm to ensure that 
when you read data, you’ll see a consistent snapshot.  HDFS doesn’t.

KEN BIRMAN (KEN@CS.CORNELL.EDU).



HOW DOES VORTEX DO IT?  
STATE MACHINE REPLICATION PLUS CONSISTENT CUTS

A temporal query for time τ sees a consistent cut at τ ± δclock. 
Queries to unstable data must wait, but updates are stable within 50us.
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HOW DOES VORTEX DO IT?  STATE MACHINE 
REPLICATION PLUS CONSISTENT CUTS

A temporal query for time τ sees a consistent cut at τ ± δclock. 
Queries to unstable data must wait, but updates are stable within 50us.
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SUMMARY

Lamport (and Einstein) both believe that clocks are an ill-defined 
way to think about time: too much depends on frame of reference

Clocks can also fail in very unintuitive ways.

Logical notions of consistency and time lead to very elegant 
designs and yet can be pretty far from “wallclock time”
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THOUGHT QUESTIONS

We use the term “snapshot” but is this the right intuition?  Do 
snapshots ever have any connection to clock time?

Could snapshots be made to match clock time?  
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ARE CONSISTENT CUTS UNIQUE?

Suppose you are interested in the system state corresponding to 
when some process P was at time TP according to its local clock.

You decide to create a consistent cut/snapshot where P’s state 
would be exactly the one it had at time PT

Is there just one that could match, or could there be many?
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THOUGHT QUESTION

What is the “most skewed” consistent cut that can still be 
consistent?  Does it have any relationship at all to “instant in real-
time” or does it reveal that a consistent cut is often definitely not a 
single instant in real-time?

Hint: the Einstein space-time diagram is helpful for visualizing this.
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THOUGHT QUESTION

Lamport pointed out that to audit a bank, you should use a 
consistent snapshot.

What are some examples of errors that could confuse an audit 
if you collect the states from all the bank’s branches without 
making a snapshot (and without freezing everything)?

Why does a consistent snapshot avoid those errors?
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THOUGHT QUESTION

How can concept of real-time from synchronized clocks be 
integrated into the concept of a consistent snapshot?  
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[Read more: The Freeze-Frame File System. Weijia Song, Theo Gkountouvas, Qi Chen, Zhen 
Xiao, Ken Birman. ACM Symposium on Operating Systems Principles (SOCC 2016). Santa 
Clara, CA, October 05 - 07, 2016.]



EXAM PREPARATION ADVICE

Exams sometimes have questions about potential causality (→), or 
about the idea of a consistency cut/snapshot

But we never ask you about algorithms Lamport for implementing 
them: a topic for the advanced distributed systems course.  

The need for this property is our focus, not the way tools get it.
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