N\YFZANYIANYIANTVI ANV I ANTY I ANY S AN

Z Qﬂ%ﬂ%ﬂ%ﬂ%ﬂ\ﬂ% /
NYZANYZANYZANYZANYZANYZANTZAN
ZAN\YZANYZANVZANYZANYZANYZA\Y/
NYZANYZANYZANYZANYZANYZANTZAN

FJANVIANVIANVIANVIANVIANVIANYS

CONSISTENCY MODELS FOR DISTRIBUTED | Professor Ken B irman
DATA AND SYSTEMS | cS4414/5416 Lecture 12

IDEA MAP FOR TODAY’S LECTURE

The monitor pattern in C++
Reminder: Thread Concept

Probl it I lems th 't sol
Lightweight vs. Heavyweight roblems monitors solve (and problems they don’t solve)

Deadlocks and Livelocks
Thread “context”

ik jects. i -
C++ mutex objects. Atomic data types Distributed Computing and Consistency

With collections of sharded data spread within a system and probably
being updated continuously, don’t we need a ‘“consistency’” policy?

CORNELL CS4414/5416 - FALL 2025 2

MODELLING DISTRIBUTED SYSTEMS

Everything is a distributed system these days! Even your Apple
watch is talking to your phone, and it talks to servers in the cloud

ML systems routinely harness multiple compute servers to gain
more compute power. And we often spread large data sets
over arrays of shards, just like Jim recommended. Then we do

shard-by-shard computing.

CORNELL CS4414/5416 - FALL 2025 3

MODELLING DISTRIBUTED SYSTEMS

The question of how powerful a distributed system really is
arose long ago. Leslie Lamport is famous for studying it.

» Can a distributed system “mimic” a non-distributed one?
If so, perhaps this should be our consistency model!

» What kinds of failures can be tolerated, and what methods
work best¢ What kinds of failures really occur?

CORNELL CS4414/5416 - FALL 2025 4

THE TOPIC GETS COMPLICATED! fig

Consider failure models... for the oy

>

B

Loyal knights

Secretly working

Cryptocurrency people favor a “Byzantine” failure model.
Anything can happen, evil attacks are constant, collusion is
a risk. This makes the “anonymous” style of blockchain costly

Datacenter operators often focus on “clean” crash failures.
But you can’t always detect them (timeout is very inaccurate)

And ML developers work with code that can crash for other
reasons, like software bugs, running out of memory, etc

CORNELL CS4414/5416 - FALL 2025 5

| WE GO WITH A DATACENTER FAILURE MODEL
(CRASH FAILURES)

Our focus is on the systems infrastructure and performance used
for machine learning applications

So we adopt a crash failure model “combined” with an
assumption that some computations “fail” for software reasons.

Failures of this kind are detectable and handled in software.

CORNELL CS4414/5416 - FALL 2025 6

CONSISTENCY... THE BIG QUESTION

Once you set failure models to the side, we need to ask what
our goals should be!

Transactional databases are a good place to start
» The data is in the database

> Applications read or do updates, or mixtures, atomically

CORNELL CS4414/5416 - FALL 2025 7

WHAT ABOUT CONSISTENCY FOR

DISTRIBUTED SYSTEMS? Garmafs Drecho brry has G

>

of these features and is very fast

Normal message passing: point to point or remote procedure
call. Messages dropped in the network are automatically
reissued. Check message id to avoid double execution.

Atomic multicast: Messages to a “process group”. All
members receive them exactly once, in identical order.

Durable replicated updates: Like atomic multicast but adds o
way to also update data in files on persistent storage.

CORNELL CS4414/5416 - FALL 2025 8

MONITORING A SMART POWER GRID

Start by deploying synchrophasors,

capturing data at 20 eps, which
forms a log containing timestamps

Que

Ottawa
£ g At
e F L §
b | T ' »

rr Toronto I8

3 WL

oit ; .{D' ‘,\h‘% :.
. A Ao

= e d R a7 mn

- I‘g& | 1 : ‘.- "“f'

‘ '-‘f-,—ﬁ "

B r&%

"‘--!’?h “ Jt{v'

*é:t‘ "‘ ; %‘ ?ﬁ

T e _# HEion

LA .-'."-\'J:l" THENG 4

KEN BIRMAN (KEN@CS.CORNELL.EDU).

Each power bus maps to some
location. Pretend for simplicity
that they map to a simple grid

KEN BIRMAN (KEN@CS.CORNELL.EDU). 10

Ottawa

KEN BIRMAN (KEN@CS.CORNELL.EDU). 1

GIVEN LOTS OF DATA, WE CAN MAKE A MOVIE!

Just take a series of snapshots, at synchronized times

Then render the evolution of some property (we will focus on the
phase of the phasor) over time. An ML might actually react.

20fps is faster than needed. We'll use 4fps. But our grid will
be larger: 20x20, hence 400 concurrent data flows

INCONSISTENCY THREATENS CORRECT BEHAVIOR!

HDFS VORTEX USING SERVER CLOCKS... AND WITH SENSOR CLOCKS

1010

Think of the self-driving cars that experience accidents... if an ML makes a
mistake, is it because the ML is of low quality, or because it “saw” bad data?

KEN BIRMAN (KEN@CS.CORNELL.EDU). 13

WHAT WENT WRONG?

The animation on the left has inconsistencies
> Each “frame” is like a photo in a movie...

» But it turns out that on the left, each frame blends data
from different times and sometimes, data we saw in one
frame vanishes in the next frame.

> Inconsistency is like noise... and could confuse an Al system!

CORNELL CS4414/5416 - FALL 2025 14

HOW LESLIE BUILDS UP TO A SOLUTION TO
THIS PROBLEM

First, he focuses on ordering in message passing systems

Then he extends this to a concept of a distributed snapshot, like
the ones used to make that little movie

CORNELL CS4414/5416 - FALL 2025 15

LESLIE LAMPORT INVENTED MANY OF THESE
MODELS FOR CONSISTENCY

He focused on the ways information can flow in a system.

In fact he introduced a special relationship operator: —

> |f event A occurs and A — B, then “A might have caused B”
(information about A flowed through the system to B)

> Ais in the past relative to B, and may even have triggered B.

> Action B may not make sense if we forget or roll back A.

CORNELL CS4414/5416 - FALL 2025 16

LAMPORT’S CONSISTENCY MODEL

Lamport had the image in his mind of a distributed computation
like an ML inference or training job.

Armed with causality, he started to think about concepts of time,
handling of failures, checkpoints and rollback.

He proposed the idea of a “consistent cut”.

CORNELL CS4414/5416 - FALL 2025 17

TRACKING CAUSALITY: LAMPORT'S A— B

Leslie first considered normal clocks. But they don’t track —

» Here, he took his inspiration from Einstein

» “Time is an illusion.” Einstein went on to draw space-time diagrams.

So Leslie asked: “Can we use space-time diagrams as the basis of a new
kind of “logical clock”?

» If A — B, then LogicalClock(A) < LogicalClock(B)
» If LogicalClock(A) < LogicalClock(B), then A — B

Drill down: COI‘ISISfenCY CORNELL (54414/5416 - FALL 2025 18

DEVELOPING A SOLUTION

Suppose that every computer (P, Q, ...) has a local, private
integer

Call these LogicalClock, and LogicalClock etc.

Each time something happens, increment the clock.

> Now, if A and B happen at P, LogicalClock, can tell us A — B.
» But what if A is on machine P, and B happens on Q2

Drill down: CAP Consistency

CORNELL CS4414/5416 - FALL 2025 19

A SPACE-TIME DIAGRAM FOR THIS CASE

p Xf Af P sends M
~
~
~
~
~
~
~
~
~
~

S
N B

Q receives M
Q %

Drl” dOWh: ConSISfenCY CORNELL CS4414/5416 - FALL 2025 20

A SPACE-TIME DIAGRAM FOR THIS CASE

Uncoordinated counters don’t solve our problem

P sends M
P %

LogicalClock, 0 1

N
N
N
\

S Q receives M
Q %
LogicalClock,, 0

Here, A and B end up with the identical Time, so we incorrectly conclude
that A did not happen before B

Drill down: COI‘ISISfenCY CORNELL (S4414/5416 - FALL2025 21

AHA!

Notice that the “receive” of M occurs when LogicalClock, = 1.

Yet the “send” of M was at LogicalClock, = 3.

So Lamport proposes this idea:

Each time an event occurs at P, increment LogicalClock,

If P sends M to Q, include LogicalClock, in M. When Q receives M,
LogicalClocky = Max(LogicalClock, LogicalClock,,) + 1

Drill down: COHSISfenCY CORNELL (54414/5416 - FALL 2025 2

A SPACE-TIME DIAGRAM FOR THIS CASE

P sends M
P %
LogicalClock, 0 1

\
LogicalClock,, = 3 \\ Q computes:

LogicalClock, = max(0, 3) + 1

N i A
Q receives | L

Q X

LogicalClock, 0 @

Drl” dOWh: ConSISfenCY CORNELL CS4414/5416 - FALL 2025 23

WE NOW HAVE A CHEAP PARTIAL SOLUTION!

With Lamport’s logical clocks, we pay a small cost (one integer per
machine, to keep the clock, and some space in the message)

Let’s use LogicalClock(X) to denote the relevant LogicalClock value
for x. We can time-stamp events and messages.

» If A — B, then LogicalClock(A) < LogicalClock (B)
> But... sometimes LogicalClock (A) < LogicalClock (B),
yet A didn’t happen before B!

Drill down: COI‘ISISfenCY CORNELL (54414/5416 - FALL 2025 24

A SPACE-TIME DIAGRAM FOR THIS CASE

With logical clocks, even if P and Q never talk, we might have Time(A) <
Time(B)

LogicalClock, 0

———r _/\
///\irewoll blocks all traffic: P can’t communicate to Q _/\\

—

Qﬂﬁ#ﬁ—»

LogicalClock, O

Here, if we claim that LogicalClock(A) < LogicalClock (B) = A — B, this is
nonsense! In fact —(A — B), =(B — A). (A and B are *concurrent”)

Drill down: COI‘ISISfenCY CORNELL (S4414/5416 - FALL2025 25

LOGICAL CLOCKS ONLY WORK IN ONE DIRECTION.

They approximate the causal happens-before relationship, but
only in an “if-then” sense, not “If and only if”.

Lamport gives many examples where this is good enough.

We actually can do better, but at the “cost” of higher space
overhead.

Drill down: COI‘ISISfenCY CORNELL (54414/5416 - FALL 2025 2

INTUITION BEHIND VECTOR CLOCKS

Suppose that we had a fancier clock that could act like logical clocks
do (with the “take the max, then add one” rule).

But instead of a single counter, what if it were to count “events in the

causal past of this point in the execution”, tracking events on a per-
process basis?

For example, a VectorClock value for A = [5,7] might mean “event A
happens after 5 events at P, and 7 events at Q.

CORNELL CS4414/5416 - FALL 2025 27

A vector clock has one entry per machine. VT(A) =13, 0, 7, 1]

> |f an event occurs at P, P increments its own entry in the vector

> When Q receives M from P, Q computes an entry-by-entry max,
then increments its own entry (because a “receive” is an event, t00)

VectorClock comparison rule:

Define VT(A) < VT(B) if
VT(A) < VT(B),
but VT(A) # VT(B)

Now, VT(A) < VT(B)

iff A>B

Drill down: Consistency

CORNELL CS4414/5416 - FALL 2025

28

A SPACE-TIME DIAGRAM FOR THIS CASE

Case A: Suppose that P and Q never interact.

, A |

VectorClock, [0,0] [1,0]

———r _/\
///\irewoll blocks all traffic: P can’t communicate to Q _/\\

—
Q %
VectorClock, [0,0] [0,1] [0,2]

With vector clocks we can see that A is concurrent W|’rh X, Y and B. We can use
the comparison rule to show this, for example that —=(A — B) and —(B — A).

Drill down: COI‘ISISfenCY CORNELL (S4414/5416 - FALL2025 29

A SPACE-TIME DIAGRAM FOR THIS CASE

Case B: P sends a message to Q after A, and it is received before B at Q.

A

P
VectorClock,

[0,0] [1,0]

Now the firewall is gone and a message gets through!

Y B
Q

VectorClock, [0,0] [0,1] [1,2] [1,3]
The vector timestamps show that A happens before B (and also, before Y).

Drill down: COnSISfenCY CORNELL (54414/5416 - FALL 2025 30

SO WHY NOT ALWAYS USE VECTOR CLOCKS?

They represent happens-before with full accuracy, which is great.

But you need one vector entry per process in your application. For a
small p-service this would be fine, but if the vector would become
large, the overheads are an issue.

So, we try to use a LogicalClock before considering a VectorClock.

CORNELL CS4414/5416 - FALL 2025 31

CONSISTENT SNAPSHOTS AND CUTS

Lamport and Mani Chandy built a solution to this problem using
the basic A — B logical clock as a building block. Consider a
time-space picture like this

DrI” down: ConSISfenCY CORNELL CS4414/5416 - FALL 2025 32

CONSISTENT CUTS AND SNAPSHOTS

They asked: Suppose | visit each node, each at some point in
time. Can we extend consistency to cover such a case
(“consistent cut”)

Or even fancier: what if each node makes a checkpoint for me
when | visit it along a cut. Can we end up with a “consistent
snapshot”, like a photo?

Drill down: COI‘ISISfenCY CORNELL (54414/5416 - FALL 2025 33

CONSISTENT CUTS AND SNAPSHOTS

Recall: Lamport looks at “pictures” of such a system, like these

A “‘cut” across

D

the system

" alls
N N
R K -
S \\\ / \\ /
T L3
N 7’
U 7

DrI” down: COnSISfenCY CORNELL CS4414/5416 - FALL 2025 34

CONSISTENT CUTS AND SNAPSHOTS

A cut is consistent if no “message arrows” go backwards through it

D
< X,

c - w»n xnm O

... this cut is a consistent one.

DrI” down: COnSISfenCY CORNELL CS4414/5416 - FALL 2025 35

CONSISTENT CUTS AND SNAPSHOTS

A cut is inconsistent if “message arrows” do go backwards through it
A backwards

message

c - wvw xn O ©

... this cut is inconsistent. C— D, and the cut included D, yet it omits

C.

DrI” dOWﬂ: ConSISfenCY CORNELL CS4414/5416 - FALL 2025 36

A CONSISTENT CUT IS LIKE A PHOTO

It shows a state the system might actually have once been in

You could use that state for garbage collection, or to do an
audit of a bank, or to detect deadlocks.

But an inconsistent cut is broken. It omits parts of the past and
any conclusion from it would be incorrect. A real system could
never have been in an inconsistent state of this kind.

Drill down: COI‘ISISfenCY CORNELL (54414/5416 - FALL 2025 37

HOW TO CREATE ONE?

Chandy and Lamport give an algorithm based on a form of
broadcast. It records the state of each process, and also
snapshots messages still in the communication network. It works
while the system is still running — no need to first freeze things.

A packaged version of this mechanism as a library is available
in many systems. For example, it is one option for making a
distributed checkpoint in a long-running application.

CORNELL CS4414/5416 - FALL 2025 38

DEADLOCK DETECTION: “ASK EACH PROCESS
WHAT IT IS CURRENTLY DOING”

With a guarantee of consistency, a cycle is a deadlock

But with inconsistency, we could be missing a “lock
release” message that “allowed” some process to

start running, after which it requested another lock. ©°

Here, D is waiting for C to release a lock. B is waiting for D.

CORNELL CS4414/5416 - FALL 2025 39

DEADLOCK DETECTION: “ASK EACH PROCESS
WHAT IT IS CURRENTLY DOING”

With a guarantee of consistency, a cycle is a deadlock

A > B
But with inconsistency, we could be missing a “lock l
release” message that “allowed” some process to

C« D

start running, after which it requested another lock.

This picture makes sense if D is still waiting for C, and B for D.

CORNELL CS4414/5416 - FALL 2025 40

DEADLOCK DETECTION: “ASK EACH PROCESS
WHAT IT IS CURRENTLY DOING”

Semantically, when D says “I’'m waiting for C” it
should mean ‘““at the instant of the snapshot™...

but the requests show up concurrently and not
necessarily simultaneously!

With a guarantee of cc

But with inconsistency, we could be missing a “loc
release” message that “allowed” some process to
start running, after which it requested another lock. .

It is wrong if D is no longer waiting for C... the deadlock could
be an illusion!

CORNELL CS4414/5416 - FALL 2025 41

| HOW ARE CONSISTENT CUTS USED?
»

o L server Automated deadlock detection really is used in
L2 distributed database systems
ORACLE

Banks allow users to transfer money from
account to account. A consistent cut reports
the right balances.

... Lorenzo Alvisi had a cool ideq, too!

CORNELL CS4414/5416 - FALL 2025 42

ML CHECKPOINTS AND ROLLBACK ENABLE FAULT TOLERANCE.
BUT CAN WE CHECKPOINT EACH SUBSYSTEM SEPARATELY?

In a distributed system, if only parts of it roll back, the state might
not be consistent. This was Lorenzo’s PhD topic.

His algorithm allows asynchronous checkpoints, can log messages on
sending side or receiver, and rolls back on consistent cuts.

Today we are looking at his methods in the context
of checkpointing for ML training jobs with many
subsystems and hours or days long training runs!

CORNELL CS4414/5416 - FALL 2025 43

HOW ARE THEY NOT USED?

Counting geese? Don’t use an array of cameras and a
consistent cut: logical properties are internal to a
system and don’t always match outside real-world goals.

Although “a photographic snapshot” is a common intuition for a
consistent cut or snapshot, this intuition is actually wrong.

There is no connection between logical time (used for cuts) and
physical time (used by a camera).

A consistent cut is only a snapshot if the things in the system are all
software — not if the system has some tie to the outside real world.
If you need a photograph of the real world, don’t use consistent cuts!

CORNELL CS4414/5416 - FALL 2025 44

... AND REMEMBER OUR SMART GRID?

HDFS VORTEX USING SERVER CLOCKS... AND WITH SENSOR CLOCKS

"‘0""§ ‘I‘ I
X PRELE TS LT
S

v 7

T2 Dy
< o

T

-1.0

1010 10-1.0

Vortex uses a variation on the Chandy/Lamport algorithm to ensure that
when you read data, you’ll see a consistent snapshot. HDFS doesn't.

KEN BIRMAN (KEN@CS.CORNELL.EDU). 45

HOW DOES VORTEX DO IT?
STATE MACHINE REPLICATION PLUS CONSISTENT CUTS

Put(k’,v
Each Vortex shard has its own Paxos-based log L4 (Iv)
o, Put(k”,
Put(k,v) < R £ ’u(v)
~ -
(&, 1) — Put(k,v) <~ -T2
SN)
S > %s)
Al 2 +
PU'l'(k’",\L) Ny o
~
/\(l /% GE)
Each A is triggered by an upcall E, =
from a “watcher” monitoring some 1 2
© v
key (or pattern) v 2|

A temporal query for time T sees a consistent cut at T £ 0.

Queries to unstable data must wait, but updates are stable within 50us.

KEN BIRMAN (KEN@CS.CORNELL.EDU). 46

Ec

fro

Queries occur along a stable (durable) consistent cut

ay
gunnnftfine, * ‘

Unstable tail

T+0

KEN BIRMAN (KEN@(CS.CORNELL.EDU).

4

SUMMARY

Lamport (and Einstein) both believe that clocks are an ill-defined
way to think about time: too much depends on frame of reference

Clocks can also fail in very unintuitive ways.

Logical notions of consistency and time lead to very elegant
designs and yet can be pretty far from “wallclock time”

CORNELL CS4414/5416 - FALL 2025 43

THOUGHT QUESTIONS

We use the term “snapshot” but is this the right intuition¢ Do
snapshots ever have any connection to clock time?

Could snapshots be made to match clock time?

CORNELL CS4414/5416 - FALL 2025 49

ARE CONSISTENT CUTS UNIQUE?

Suppose you are interested in the system state corresponding to
when some process P was at time T, according to its local clock.

You decide to create a consistent cut/snapshot where P’s state
would be exactly the one it had at time P,

Is there just one that could match, or could there be many?

CORNELL CS4414/5416 - FALL 2025 50

THOUGHT QUESTION

What is the “most skewed” consistent cut that can still be
consistent? Does it have any relationship at all to “instant in real-
time” or does it reveal that a consistent cut is often definitely not a

single instant in real-time?

Hint: the Einstein space-time diagram is helpful for visualizing this.

CORNELL CS4414/5416 - FALL 2025 51

THOUGHT QUESTION

Lamport pointed out that to audit a bank, you should use a
consistent snapshot.

What are some examples of errors that could confuse an audit
if you collect the states from all the bank’s branches without
making a snapshot (and without freezing everything)?

Why does a consistent snapshot avoid those errors?

CORNELL CS4414/5416 - FALL 2025 52

THOUGHT QUESTION

How can concept of real-time from synchronized clocks be
integrated into the concept of a consistent snapshot?

[Read more: The Freeze-Frame File System. Weijia Song, Theo Gkountouvas, Qi Chen, Zhen
Xiao, Ken Birman. ACM Symposium on Operating Systems Principles (SOCC 2016). Santa
Clara, CA, October 05 - 07, 2016.]

CORNELL CS4414/5416 - FALL 2025 53

EXAM PREPARATION ADVICE

Exams sometimes have questions about potential causality (—), or
about the idea of a consistency cut/snapshot

But we never ask you about algorithms Lamport for implementing
them: a topic for the advanced distributed systems course.

The need for this property is our focus, not the way tools get it.

CORNELL CS4414/5416 - FALL 2025 54

	Consistency models for distributed data and systems
	Idea Map For today’s lecture
	Modelling Distributed Systems
	Modelling Distributed Systems
	The topic gets complicated!
	We go with a datacenter Failure model (crash failures)
	Consistency… the big question
	What about consistency for distributed systems?
	Monitoring A smart power grid
	Monitoring A smart power grid
	Monitoring A smart power grid
	Given lots of data, we can make a movie!
	InConsistency Threatens correct behavior!
	What went wrong?
	How Leslie builds up to a solution to this problem
	Leslie Lamport invented many of these models for consistency
	Lamport’s consistency model
	Tracking Causality: Lamport’s A  B
	Developing a solution
	A space-time Diagram for this case
	A space-time Diagram for this case
	Aha!
	A space-time Diagram for this case
	We now have a cheap partial solution!
	A space-time Diagram for this case
	Logical clocks only work in one direction.
	Intuition behind vector clocks
	Vector Clocks are easy to implement
	A space-time Diagram for this case
	A space-time Diagram for this case
	So why not always use vector clocks?
	Consistent snapshots and cuts
	Consistent Cuts and Snapshots
	Consistent Cuts and Snapshots
	Consistent Cuts and Snapshots
	Consistent Cuts and Snapshots
	A consistent Cut is like a photo
	How to create one?
	Deadlock Detection: “Ask each process what it is currently doing”
	Deadlock Detection: “Ask each process what it is currently doing”
	Deadlock Detection: “Ask each process what it is currently doing”
	How are consistent cuts used?
	ML Checkpoints and rollback enable fault tolerance. But can we checkpoint each subsystem separately?
	How are they NOT used?
	… and remember our Smart grid?
	How does Vortex do it? �State machine replication plus consistent cuts
	How does Vortex do it? State machine replication plus consistent cuts
	Summary
	Thought questions
	Are Consistent Cuts unique?
	Thought Question
	Thought question
	Thought question
	Exam preparation advice

