N\YFZANYIANYIANTVI ANV I ANTY I ANY S AN

% Qﬂ%ﬂ&ﬂ%ﬂ%ﬂ%ﬂ& /
NYZANYZANYZANYZANYZANYZANTZAN
ZAN\YZANYZANVZANYZANYZANYZA\Y/
NYZANYZANYZANYZANYZANYZANTZAN

FJANVIANVIANVIANVIANVIANVIANYS

COMPUTING ON COLLECTIONS Ken Birman
OF OBJECTS | Cs4414/5416 Lecture 11

KEY IDEAS FOR TODAY

Cloud-hosted applications often end up managing huge numbers of objects or files.

But Linux emerged as an O/S focused on systems
with relatively smallish numbers of files

Our focus today is on where objects come from, how storage servers host large object collections,
and how applications query large object collections. We will even touch on one case that is often
used in distributed settings, although it makes sense even in a single process using threads

CORNELL CS4414/5416 - FALL 2025

WE USED TO ALWAYS KEEP “COLLECTIONS”™
OF DATA IN DATABASES

But today, MLs train on real world data that can include every conceivable
media and data type. Small files might feel more natural, for example if

we have a million emails, or fifty thousand examples of properly filled-out
W4 forms.

Sometimes, the very first task is to just figure out (“classify”) the input!

Yet ML training and RAG ML knowledge retrieval systems need a more
regular and predictable way to deal with data

(54414/5416 - FALL 2025 3

STRUCTURED AND UNSTRUCTURED DATA

It is common to say that cloud data is structured or unstructured.

Unstructured data means web pages, photos, or other kinds of content that
isn’t organized into some kind of table.

Structured data means “a table” with a regular structure, or a list of items
in a similar format such as (key,value) tuples in a collection

(54414/5416 - FALL 2025 4

A TABLE IS A STRUCTURED FORM OF DATA
| CowName | Weight | Age | Sex | Miking? __

Bessie 37 5kg 4 F Y
Sally 480kg 3 M Y
Clover 2 F N
Daisy 411kg S F Y

Even so, notice that this table has an error: Sally isn’t a male cow. “Milking” should be
N. And we are missing weight data for Clover.

Often the first step is to clean up missing data, visibly incorrect data, etc.

(54414/5416 - FALL 2025 5

STRUCTURED AND UNSTRUCTURED DATA

There are many tools to convert unstructured data to structured data.

For example, we can take a photo and extract the photo meta-data. This

would initially be a list of (key,value) pairs. The values would be byte
arrays

If we deserialize the values, we obtain some form of structure, and the
fields in the structure become the “columns” in our row

(54414/5416 - FALL 2025 6

STRUCTURED AND UNSTRUCTURED DATA

Another example with a photo collection.

We could take a set of photos and segment them to outline the objects in
the image: fences, plants, cows, dogs, etc.

Then we can tag the objects: this is Bessie the cow, that is Scruffy the dog,
over there is the milking barn. And finally, we could make one table per
photo with a row for each of the tagged objects within the photo.

(S4414/5416 - FALL 2025 7

AUTOMATED PIPELINES

In fact the big cloud companies have huge automated pipelines that do
exactly this task.

Photos are uploaded into, say, Facebook. Then in big batches they are
auto-segmented, tagged to identify the people, and this in turn allows
them to repost to the feeds of friends of those people.

(54414/5416 - FALL 2025 8

AUTOMATED PIPELINES

Notice that the sequence would have a database query in it: first, the
people in a photo are often friends of the person who uploaded it.

... so the autotagger would want a list of those friends as an input.

Then the autotagger would probably want to find prior photos of those
individuals: a second query that returns a list of photos.

(54414/5416 - FALL 2025 9

A PHOTO AND ITS META-DATA

TAG VALUE ADDITIONAL_VALUE

GPS 42°26'26.27" N -76°29'47.80" DMS

Cow Bessie Obiject #3
Cow Daisy Object #4
Dog Scruffy Object #5
DATETIME Jan 15, 2020 10:18.25.821
Bldg Milking shed Object #8
Man Farmer Jim Object #71
Bldg Farm House Object #2

Vehicle Tractor Object #33

(54414/5416 - FALL 2025 10

NOTICE THAT THE META DATA HAD MORE
THAN ONE SOURCE

Some meta-data fields were put there by the camera, but other
applications could add more tags

Here, some were added by photo analysis applications. The extra meta
data includes information about a series of objects identified by some sort
of computer vision software.

Each type of meta-data would have its own columns.

(S4414/5416 - FALL 2025 11

{"widget": {
“debug™: "on",
"window™: {
"title®: "Sample Konfabulator Widget™,
"name”: "main_ window",
"width™: 508,

“"height": 508
}J
“image": {
"src™: "Images/Sun.png’,

"name”: "sunl”,
"hoffset": 258,
"woffset": 258,
"alignment™: “center”

";ext“: {
"data": "Click Here™,
The cloud has a standard way of representing e S
things like tags, in a file format called JSON. ot !
“"onMouselp™: “sunl.opacity = (sunl.opacity / 188)

Ir

* 0g;"

It looks like a web page, with text fields, “field” : “value”

These can nest, using a simple bracket notation.

(S4414/5416 - FALL 2025 12

STRUCTURED AND UNSTRUCTURED DATA

Now, imagine that we actually had many photos
We could do this same process photo by photo.

We end up with one row per photo. The photo name or id is just one more
columnl!

(54414/5416 - FALL 2025 13

WHERE SHOULD THE PIPELINE PUT THE
EXTRACTED INFORMATION?

In some systems we extract into a database (a good option).

Small files can feel natural but can overload Linux (the directory structure is
inefficient if one directory might have a really huge number of files in it)

A modern and popular option is to use a key-value storage layer.

Common products of this kind include DynamoDB (AWS), CosmosDB (Azure),
Reddis, and there are many more.

(S4414/5416 - FALL 2025 14

KEY-VALUE STORAGE

These have a very simple interface:
» put(KT key, VT value)
» VT v = get(KT key)

They are automatically sharded for scalability. Often the KT and VT are
just byte vectors or strings, and “hashing” is used to convert to a pseudo-

random integer. Then, by taking it modulo the number of shards, we know
which shard will handle this (key, value) tuple.

(S4414/5416 - FALL 2025 15

SHARDED K/V STORE: MAIN IDEAS

Our data consists of files or K/V objects

Potentially
large set of = . Abstractly, we think of the entire
concurrent Y/ | : * service as a single store

users

The K/V service is just one of the many vendor-supplied microservices in the ecosystem

-0 0 X 00 31 0 0 _

Sharding breaks the single K/V store into chunks, each with 1 /k’th of the data

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 16

SHARDS HAVE 2 (OR MORE) NODES!
AR \ \ \

Potentially large set of concurrent users

VU VO

Each request accesses

Hash the key .
just one shard

mod k
to find the shard

Storage
H-service

The pairs of nodes here represent the idea of replication. Both of the
purple nodes are individual servers, on different computers.

We use state machine replication to keep them in sync.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022FA 17

WHAT’S IN A KEY? ; - - j

Are K/V stores file systems?

Often a string that “looks like” a full file system path

> The pathnames can include directory names, offering an easy
way to “organize” large K/V data collections

¢ This works even though the directories don’t “exist”!

» Using string patterns it is easy to select only the objects in some
“directory”, or just the ones with names (keys) matching a pattern

(54414/5416 - FALL 2025 18

PROGRAMMING LANGUAGE CONCEPTS

A collection is a list of elements with some shared type that your code is
focused upon. You bind to a key-value store (like a form of file open) and
if successful, end up with a connector.

Given a connector, your code can now iterate over the collection.

No connector will show you aren’t allowed to access, but fancy connectors
can additionally select only objects with keys matching a pattern you supply.

(S4414/5416 - FALL 2025 19

ITERATOR OBJECTS

An iterator object represents some portion of the collection.
It has a begin point, a next operator, and an end point.

You can iterate a range within some list, or iterate in reverse order...

(54414/5416 - FALL 2025 20

EXAMPLES

My photo meta-data was a table, but | can think of it as a collection of
rows, one row per meta-data item.

Every row always has a unique row key. The value is the row contents: a
struct or array or an object with one field per column.

To scan the full row, a for loop will begin with the first row and scan to the
last row: begin... next... next.... End.

(S4414/5416 - FALL 2025 21

EXAMPLES

You would see code like this in C++:

for(auto row = table.begin(); row = row.next(); row != table.end())

{

do something with this row

(54414/5416 - FALL 2025 22

EXAMPLES

You would see code like this in C++:

for(auto row: table)

{

do something with this row

(54414/5416 - FALL 2025 23

CONNECTORS TO K/V STORES HAVE BUILT-IN
ITERATORS FOR MOST LANGUAGES

This lets you
» Bind, at which point permissions are checked

» Select some collection of K/V data you are allowed to access
(many connectors include a way to filter at this stage)

> But then can do more filtering in your code, in any language!

(54414/5416 - FALL 2025 24

EXAMPLES

You would see code like this in C++:

for(auto row: table)

{

if(row.cow_id = 1471)

{

do something with this row

(54414/5416 - FALL 2025 25

BUT WE CAN DO EVEN BETTER!

Many languages have built-in layers that look like database query
languages!

C++ has one too, but it is awkward because of compile-time type rules.

So Python, Java, and other languages with runtime types are actually
more powerful for this style of coding.

In Microsoft Azure there is a language like C++ or Java called C#, and it
has a layer called LINQ for this purpose.

(54414/5416 - FALL 2025 26

LINQ EXAMPLES uForeter/Copling

#Hinclude <iostream>
#Hinclude <vector>

Notice that cpplink has #include "cppling.hpp"

. int main() {
methods much like SQL operq’rors std::vector<int> numbers = {1, 2, 3, 4, 5, 6,7, 8,9, 10};

auto result = cppling::from(numbers)
.where([](int n) { return n % 2 == 0; })
select([](int n) { return n * n; })

But you supply lambda methods to_vector();

that shape the way the operators for (auton: result) {

behdve std:zcout << n<<"",
}

return O;

}

Visit Microsoft LINQ for .NET documentation to learn more (S4414/5416 - FALL2025 27

https://github.com/utilForever
https://github.com/utilForever/CppLinq

LINQ EXAMPLES

Things to notice:
- Code is very “succinct”
- Lots of use of lambdas

- On Microsoft platforms, LINQ
is available in 44 languages!

- C# version even allows use of
reflection to optimize the queries

Visit Microsoft LINQ for .NET documentation to learn more

Double the odd numbers, then keep those in the range [3,11]:

intsrc[]={1,2,3,4,5,6,7, 8};

auto dst = from(src)
.where([I(inta) {returna % 2==1;}) //1,3,5,7
.select([](int a) { return a * 2; }) //2,6,10,14
.where([I(inta) {returna >28&& a<12;})// 6,10
toStdVector(); // dst will be a std::vector with 6, 10

Order descending all the distinct numbers from an array of integers,
transform them into strings and print the result.
int numbers[] ={3,1,4,1,5,9, 2, 6};
auto result = from(numbers)
. distinci()
. orderby_descending([](int i) {return i;})
. select([](int i){std::stringstream s; s<<i; return s.str();})
. toStdVector();
for(auto i : result)
std::cout << i << std::endl;

(54414/5416 - FALL 2025 28

EXAMPLE WITH STRUCTS

In a list of friends, find the subset who are under age 18, order them by age, then return their names.
struct Friends { std::string name; int age; };

Friends src[] = {
{*Kevin”, 14}, {*Anton”, 18}, {*Agata”, 17}, “Saman”, 20}, {*‘Alice”, 15},
}i

auto dst = from(src).where([](const Friends & who) { return who.age < 18; })
.orderBy([](const Friends & who) { return who.age; })
.select([](const Friends & who) { return who.name; })
toStdVector();

/[dst type: std::vector<:string>... items: “Kevin”, “Alice”, “Agata”

Visit Microsoft LINQ for .NET documentation to learn more (S4414/5416 - FALL 2035 29

EXAMPLE WITH STRINGS

In a list of text messages, count the number of messages to Dennis by sender:
struct Message { std::string PhoneA; std::string PhoneB; std::string Text; };

Message messages[] = {
{*“Anton”, “Troll”, “Hello, friend!”’},
{*Denis”, “Mark”, “Join us to watch the game?"},
{*“Anton”, “Sarah”, “OMG! "*},
{*Denis”, “Jimmy", “How r u?"},
{*Denis”, “Mark", “The night is young!’},

}

int DenisUniqueContactCount =
from(messages)
.where([](const Message & msg) { return msg.PhoneA == “Denis’’; })
distinct([](const Message & msg) { return msg.PhoneB; })
.count();

Visit Microsoft LINQ for .NET documentation to learn more

(S4414/5416 - FALL 2025

30

string sentence = "the quick brown fox jumps over the lazy dog"’;
// Split the string into individual words to create a collection.

WO R D EXT RACT I O N string[] words = sentence.Split(" ');
EXAMPLE var qvery = from word in words

group word.ToUpper() by word.Length into gr
orderby gr.Key

This is a case you m|gh1' select new { Length = gr.Key, Words = gr };
use when scanning emails // Using method-based query syntax.
or similar documents to var query?2 = words.
extract fields from them GroupBy(w => w.Length, w => w.ToUpper()).

. Select(g => new { Length = g.Key, Words = g }).
or phrqsmg OrderBy(o => o.Length);

foreach (var obj in query)

{
Then could use that data to Console.WriteLine("Words of length {0}:", obj.Length);

train an LLM to CIUTomCIﬁCG”)’ foreach (string word in obj.Words)
. Console.WriteLine(word);
suggest replies }

(54414/5416 - FALL 2025 31

SOME LINQ OPERATORS. THE FULL LIST HAS

MORE!

Filters and reorders:

* where(predicate), where_i(predicate)

* take(count), takeWhile(predicate), takeWhile i(predicate)
* skip(count), skipWhile(predicate), skipWhile i(predicate)
* orderBy(), orderBy(transform)

distinct(), distinct(transform)

* append(items), prepend(items)

» concat(ling)

* reverse()
* cast()

Transformers:
* select(transform), select_i(transform)

* groupBy(transform)
* selectMany(transfom)

Bits and Bytes:

* bytes(ByteDirection?)

* unbytes(ByteDirection?)

* bits(BitsDirection?, BytesDirection?)

* unbits(BitsDirection?, BytesDirection?)

Visit Microsoft LINQ for .NET documentation to learn more

Aggregators:

all(), all(predicate)
any(), any(lambda)
sum(), sum(), sum(lambda)
avg(), avg(), avg(lambda)
min(), min(lambda)

max (), max(lambda)

count(), count(value), count(predicate)
contains(value)
elementAt(index)

first(), first(filter), firstOrDefault(), firstOrDefault(filter)
last(), last(filter), lastOrDefault(), lastOrDefault(filter)
toStdSet(), toStdList(), toStdDeque(), toStdVector()

Fancy stuff:

gz(), ungz(), leftjoin, rightJoin, crossjoin, fulljoin

(S4414/5416 - FALL 2025

32

N\YFZANYIANYIANTVIANTYIANTY I ANY S AN

Z Qﬂ%ﬂ\ﬂ%ﬂ%ﬂ&ﬂ% /
NYZANYZANYZANYZANYZANYZANTZAN
ZAN\YZANYZANVZANYZANYZANY/ZA\Y/
NYZANYZANYZANYZANYZANYZANTZAN

JANVIANVIANVIANVIANVIANVIANYS

NOW WE KNOW HOW TO How to compute on it at massive
EXTRACT OUR DATA... | =~

BIG DATA SETS CAN BE REALLY BIG

Many ML systems train or fine tune on huge data sets sharded in a massive
K/V store

In such cases they will often assign one worker per shard (or even k per
shard) and carry out their ML task in a parallel way

For example, in stochastic gradient descent a leader assigns workers to
improve DNN parameters, then merges the gradients, then repeats

(54414/5416 - FALL 2025 34

... PARALLELISM “PATTERNS™!

Arises in distributed computing of this kind

The “collective communication libraries” such as Open MPI CCL and
NVIDIA's NCCL emerged from ML compute on sharded collections

(54414/5416 - FALL 2025 35

Worker threads

THEY START WITH BARRIERS

Phase one

Time

Example: A computation with
distinct phases or epochs.

After phase one, all workers
must wait until phase two starts.

CORNELL CS4414/5416 - FALL 2025 36

Worker threads

THEY START WITH BARRIERS
Phase one
Time
Example: A computation with
distinct phases or epochs. — 1

1 Done 3 Done

Barrier
All are done! Phase two can start

After phase one, all workers
must wait until phase two starts.

CORNELL CS4414/5416 - FALL 2025 37

Worker threads

THEY START WITH BARRIERS
Phase one
Time
Example: A computation with
distinct phases or epochs.

Barrier

After phase one, all workers
must wait until phase two starts.
Phase two

UNORDERED MULTICAST PATTERN

This is a one-to-many pattern. Suppose some event occurs. We sometimes
call it broadcast but the meaning is the same.

A sender thread needs every worker to see an object describing the event,
so it puts that object on every worker’s work queue.

The pattern permits multiple senders: A sender locks all of the work

queues, then emplaces the request, then unlocks. Thus all workers see the
same ordering of requests.

CORNELL CS4414/5416 - FALL 2025 39

UNORDERED MULTICAST PATTERN

Sender thread(s) Worker threads

Event A

CORNELL CS4414/5416 - FALL 2025 4

THE NEED FOR “ORDERED” MULTICAST

An unordered multicast is fine if there is only one initiator
But what if a pool of workers might be supporting multiple leaders?

With unordered multicast, they could end up working on different tasks
and deadlock!

(S4414/5416 - FALL 2025 41

UNORDERED MULTICAST RISK

Sender thread(s) Worker threads

Event A

Event B —

Race condition: Danger is that
one thread could see B before
A, but others see A before B.

CORNELL CS4414/5416 - FALL 2025 42

ORDERED MULTICAST PATTERN

This is a one-to-many pattern. Suppose some event occurs. We sometimes
call it broadcast but the meaning is the same.

A sender thread needs every worker to see an object describing the event,
so it puts that object on every worker’s work queue.

The pattern permits multiple senders: A sender locks all of the work
queues, then emplaces the request, then unlocks. Thus all workers see the
same ordering of requests.

CORNELL CS4414/5416 - FALL 2025 43

ORDERED MULTICAST PATTERN

Sender thread(s) Worker threads

Event A

CORNELL CS4414/5416 - FALL 2025 44

ORDERED MULTICAST PATTERN

Sender thread(s) Worker threads

Event A

Event B \ —

SN

The idea is that the team
implementing the multicast can
build a rule in that enforces

vniform sequencing

CORNELL CS4414/5416 - FALL 2025 45

ORDERED MULTICAST PATTERN

Sender thread(s) Worker threads

Event A

Event B

This is often done using a form of barrier. There are many ways to build
the barrier. In this example, A gets ordered first, so B has to wait

CORNELL CS4414/5416 - FALL 2025 46

ORDERED MULTICAST WITH REPLIES

In this model, we start with an ordered multicast, but then the leader for a
given request awaits replies by supplying a reply queue.

Often, this uses a std::future in C++: a kind of object that will have its
value filled in “later”.

The leader makes n requests, then collects n corresponding replies.

CORNELL CS4414/5416 - FALL 2025 47

ORDERED MULTICAST PATTERN

Sender thread(s) Worker threads

With replies, workers can send results back to the sender threads.

CORNELL CS4414/5416 - FALL 2025 43

ALL-REDUCE PATTERN: SHARDED DATA
SET

Leader Worker threads

Shard A L

“Shard 8 LN Shard ¢ L

ALL-REDUCE: BROADCAST STEP

The leader sends a request to all workers in some set. They are scattered
over different shards, hence have distinct local data.

Each worker performs its share of the work by applying the requested
function to the data in its shard.

When finished, each worker will have a share of the result.

CORNELL CS4414/5416 - FALL 2025 50

ALL-REDUCE PATTERN: BROADCAST

Leader Worker threads

CORNELL CS4414/5416 - FALL 2025 51

ALL-REDUCE PATTERN: ALL-TO-ALL

Leader Worker threads

=

Partial Result C II

Partial Result A II Partial Result B II

CORNELL CS4414/5416 - FALL 2025 52

ALL-REDUCE PATTERN: ALL-TO-ALL

Leader Worker threads

Shard A L

Partial Result A II
rtial Result B II
II Partial Result C II

Partial Result A II el el II\ I
Parfial Result B II\ Partial Result B I
Partial Result C

Partial Result C II

CORNELL CS4414/5416 - FALL 2025 53

ALL-REDUCE PATTERN: ALL-TO-ALL

Leader Worker threads

Reduced Result II

N

With AllReduce, at the end of the pattern all participants
have identical “replicas’ of the reduced result. The map
step is usually the slow one, and reducing is usually fast

Reduced Result II Reduced Result II\

CORNELL CS4414/5416 - FALL 2025 54

EXAMPLE: START WITH VECTORS OF INTS (DIFFERENT
FOR EACH WORKER). REDUCE SUMS THE INTEGERS

Process 1 Process 2 Process 3 Process 4

‘ AllIReduce

Process 1 Process 2 Process 3 Process 4

| CS4414/5416 - Fall 2025

MAP-REDUCE

Same ideaq, but we shard the partial results (these are assumed to be
(K,V) tuples, and the keys are used to map to the shards)

The worker on shard s ends up with the reduced result for keys that map
to shard s, rather than all workers having identical outcome results.

Very useful in big-data settings (All-Reduce runs out of memory)

CORNELL CS4414/5416 - FALL 2025 56

COLLECTIVE COMMUNICATION LIBRARY PRIMITIVES
AP lonesenenceDessipion

All-Reduce Combines values from all processes and distributes the result back to all.

Reduce-Scatter Reduces values across processes and scatters the result to all processes.

All-Gather Gathers data from all processes and distributes the combined data to all.

Reduce Combines values from all processes and sends the result to a single process.

Broadcast Sends data from one process to all other processes.

All-to-All Each process sends distinct data to every other process and receives distinct data in return.

Processes map the request and their local shard content to create intermediate key-value

Map-Red
dp-reauce pairs. These are shuffled to shard owners, which reduce them into a final result.

Many programmers rely on All-Reduce for ML compute. Big-data mining systems
favor Map-Reduce, because it keeps the computation and results sharded.

CORNELL CS4414/5416 - FALL 2025 57

COULD WE USE CCLS IN A MULTITHREADED
PROGRAM, TOO?

Modern servers can have 100 NUMA CPUs per computer

At this scale it makes sense to use CCL styles of computing even among
your threads!

The CCL libraries would not work in such cases but you can easily
implement this pattern of interactions by hand

(54414/5416 - FALL 2025 58

SUMMARY

Modern machine learning applications often compute on big collections of
input files, which they transform into objects or databases

Obiject-oriented software engineers approached this using design patterns.
Today we see similar patterns in coordination, synchronization and distributed
computing.

ML systems make especially heavy use of All-Reduce, and Big Data systems
love Map-Reduce

CORNELL CS4414/5416 - FALL 2025 59

SELF-TEST

It is move-in day on campus!

How does the coordination of the arriving families and students resemble
the coordination patterns we discussed?

Thinking of All-Reduce and Map-Reduce, which is more similar to a move-in
coordination pattern?

CORNELL CS4414/5416 - FALL 2025 60

THOUGHT QUESTION

Consider doubles tennis

Does this fit any of the coordination patternse Why not?¢

What does this tell us about the “coverage” of software design patterns?
Lorenzo Alvisi teaches a course, cs5414, that looks at a wide variety of
distributed coordination and agreement issues beyond the CClLs.

Doubles tennis matches a computing style Alicia uses in her work that was studied by Amy
Ousterhout in a paper called “The Power of Two.” It appeared at SOSP around 201 3.

CORNELL CS4414/5416 - FALL 2025 61

THOUGHT QUESTION (3 SLIDES) &=

-

You work at a major insurance company, and have been hired to
implement a supervised fine tuning LLM solution for the online chat bot on
the web page.

For each category (vehicles, property, life, annuities, etc) your company
has a huge number of specialized products. Many of those involve choices
of investment mixtures.

As a result, the company has tens of thousands of documents and articles.
Different client questions should retrieve the right ones. Your job is to
reduce this to a job an LLM could do?

CORNELL CS4414/5416 - FALL 2025 62

SLIDE 2 OF 3:
EXAMPLES OF HOW IT MIGHT BE USED

“I am purchasing a life annuity with a seven year roll-up. Should | delay in
the hope that the guaranteed rate will rise?”

“I own a life insurance product. I’'m thinking about shifting the underlying
death benefit to a market index more focused on Al. Which options
should | consider?”

“I just purchased a motor cycle and am curious about your insurance
pricing. | have a few minor citations on my car license.”

CORNELL CS4414/5416 - FALL 2025 63

SLIDE 3 OF 3: THE ACTUAL QUESTION!

You’ve decided to start by using an LLM to figure out which documents
could be useful for which categories of client and product.

Then you will run a supervised fine tuning reinforcement learning process
that takes a foundation LLM and produces a specialist LLM for each
client /product pairing.

Which coordination patterns are likely to be useful at each step?

CORNELL CS4414/5416 - FALL 2025 64

SELF-TEST QUESTIONS

Think back to what we learned about how the Linux file system is
implemented (this was covered in Lecture 4)

What aspects would probably perform badly if a Linux file system
needed to hold billions (or trillions) of files, one per object?

If you really had to host that many objects on Linux how would you do it?
(Hint: read about “Linux archives”).

(54414/5416 - FALL 2025 65

SELF-TEST QUESTIONS

Suppose that a task involves scanning so many objects that no single server
can do it sufficiently quickly.

Think of some task that fits this description. Now invent a way to do the
computation in a sharded manner (you may need a final step that
combines the results).

Can you identify a scanning task that simply cannot be sharded?

(54414/5416 - FALL 2025 66

SELF-TEST QUESTIONS

Suppose that you have gained access to a very large amount of data from an IT
ticketing system, like the one for the COECIS helpdesk.

In addition to IT ticket records (in a format like JSON), the data includes logs

from all the servers used by your company. The log contents and formats vary
widely.

How would you approach a task such as creating weekly reports highlighting the

top ten issues customers encounter, and assessing overall system stability and
reliability over time?

(S4414/5416 - FALL 2025 67

SELF-TEST QUESTIONS

Consider some form of unstructured data that you might wish to transform into
structured data for an Al system, such as a medical information system.

What kinds of missing data might be seen in the form of unstructured data you
are thinking about?

Can these missing items be “filled in”? How might doing so run the risk of ML
hallucinations later¢ Conversely, how might ignoring incomplete data records
cause problems? How do humans deal with such problems?

(54414/5416 - FALL 2025 68

SELF-TEST QUESTIONS

Still assuming you work for a medical records company, suppose your job
involves creating agentic ML services for other companies to access records

|dentify examples of privacy obligations this kind of agent would need to
respect (these are called HIPPA obligations in the US medical system).

Now brainstorm a big-data object-oriented approach (with as many
microservices as needed) to support agentic queries without violating HIPPA.

(54414/5416 - FALL 2025 69

	Computing on Collections of Objects
	Key ideas for today
	We used to always keep “collections” of data in databases
	Structured and Unstructured Data
	A table is a structured form of data
	Structured and Unstructured Data
	Structured and Unstructured Data
	Automated pipelines
	Automated pipelines
	A photo and its meta-data
	Notice that the meta data had more than one source
	JSON files
	Structured and Unstructured Data
	Where should the pipeline put the extracted information?
	Key-Value storage
	Sharded K/V store: main Ideas
	shards have 2 (or more) nodes!
	What’s in a key?
	Programming Language Concepts
	Iterator objects
	Examples
	Examples
	Examples
	Connectors to K/V stores have built-in iterators for most languages
	Examples
	But we can do even better!
	LINQ examples
	LINQ examples
	Example with structs
	Example with Strings
	Word extraction�example
	Some LINQ operators. The full List has more!
	Now we know how to extract our data…
	Big data sets can be really Big
	… parallelism “patterns”!
	They start with barriers
	They start with barriers
	They start with barriers
	UNOrdered Multicast pattern
	UnOrdered Multicast pattern
	The need for “ordered” multicast
	UnOrdered Multicast Risk
	Ordered Multicast pattern
	Ordered Multicast pattern
	Ordered Multicast pattern
	Ordered Multicast pattern
	Ordered Multicast with Replies
	Ordered Multicast pattern
	All-Reduce pattern: Sharded data set
	All-Reduce: broadcast step
	All-Reduce pattern: broadcast
	All-Reduce pattern: All-To-All
	All-Reduce pattern: All-To-All
	All-Reduce pattern: All-To-All
	Example: start with vectors of ints (different for each worker). Reduce sums the integers
	Map-reduce
	Collective Communication Library Primitives
	Could we use CCLs in a multithreaded program, too?
	Summary
	Self-Test
	Thought Question
	Thought question (3 slides)
	Slide 2 of 3:�Examples of how it might be used
	Slide 3 of 3: The actual question!
	Self-Test Questions
	Self-Test Questions
	Self-Test Questions
	Self-test questions
	Self-Test Questions

