
DEADLOCKS, LIVELOCKS, AND HOW TO
AVOID THEM

Professor Ken Birman
CS4414/5416 Lecture 10

CORNELL CS4414/5416 - FALL 2025 1

IDEA MAP FOR TODAY’S LECTURE

Today we focus on deadlocks and livelocks.

CORNELL CS4414/5416 - FALL 2025 2

Lightweight vs. Heavyweight

Thread “context”

C++ mutex objects. Atomic data types.

Reminder: Thread Concept

Deadlocks and Livelocks

The monitor pattern in C++

Problems monitors solve (and problems they don’t solve)

DEADLOCK: UNDERSTANDING

Deadlock arises in situations where we have multiple threads
that share some form of protected object or objects.

For simplicity, A and B share X and Y.

Now suppose that A is holding a lock on X, and B has a lock on
Y. A tries to lock Y, and B tries to lock X. Both wait, forever!

CORNELL CS4414/5416 - FALL 2025 3

MORE EXAMPLES

We only have one object, X.

A locks X, but due to a caught exception, exits the lock scope.
Because A didn’t use scoped_lock, the lock isn’t released.

Now B tries to lock X and waits. Because A no longer realizes it
holds the lock, this will persist forever.

CORNELL CS4414/5416 - FALL 2025 4

MORE EXAMPLES

A is the only baker at Wide Awake Bakery. After baking
a new batch of cinnamon raisin swirls, A unlocks and opens
the display. Seeing that it is full, A releases the mutex and waits.

B is a customer. The instant A releases mutex, B grabs the lock and buys buys everything, then
notifies the wait condition: “case_not_full” and releases the lock. But all of this happened
while A was about to start waiting. The notify occurs first, so it does nothing.

Now A is waiting on case_not_full. Other customers that show up wait on case_not_empty.

Everyone is waiting. Nobody ever makes progress again! A deadlock…

CORNELL CS4414/5416 - FALL 2025 5

ACQUIRING A MUTEX “TWICE”

Suppose that A is in a recursive algorithm, and the same thread
attempts to lock mutex X more than once. The recursion would
also unlock it the same number of times.

This is possible with a C++ “recursive_mutex” object.

But the standard C++ mutex is not recursive.

CORNELL CS4414/5416 - FALL 2025 6

WHAT IF YOU TRY TO RECURSIVELY LOCK A
NON-RECURSIVE MUTEX?
The resulting behavior is not defined, and usually will deadlock
silently. A waits for A!

Use a recursive mutex if you require recursive locking.

This kind of mutex is slower, but will count how many times the
thread locked it.

CORNELL CS4414/5416 - FALL 2025 7

MORE EXAMPLES

A and B lock X and Y, but not in the same order.

Sometimes this can cause a deadlock… other times they
manage to get away with it.

Examples on next slide.

CORNELL CS4414/5416 - FALL 2025 8

AS A TIMELINE PICTURE THE GOOD CASE

In this run, A and B got lucky. It was a race, but A won and got
both locks, finished what it was doing, then released them.

B then runs, gets both locks, then releases them too.
CORNELL CS4414/5416 - FALL 2025 9

A: lock X A:lock Y A finished, releases locks B: lock Y B: lock X B finished, releases locks

AS A TIMELINE PICTURE: THE DEADLOCK

Trouble! Here, B grabbed the lock on Y while A was doing
other stuff (but holding a lock on X). Now B wants a lock on X
and A wants a lock on Y.

They get stuck: a deadlock!
CORNELL CS4414/5416 - FALL 2025 10

A: lock X B: lock Y B: lock X A: lock Y

COMMON HACK – BUT A MISTAKE!

The developer noticed the deadlock pattern but did not
understand the issue.

C++ lock primitives have optional “timeout” arguments. So the
developer decided to add a “random backoff” feature:
 When locking an object, wait t milliseconds.
 Initially, t=0 but after a timeout, change to a random value [0..999]
 Then retry. The idea: sooner or later things should work…

CORNELL CS4414/5416 - FALL 2025 11

WHAT DOES THIS GIVE US?

Now A locks X (and holds the lock), and B locks Y

A tries to lock Y, times out, retries… forever

B tries to lock X, times out, retries… forever

They aren’t “waiting” yet they actually are waiting: livelock.

CORNELL CS4414/5416 - FALL 2025 12

BETTER: LET THE PROGRAM GET INTO A
DEADLOCK, THEN DEBUG THE ISSUE
Without knowing about how mutex is implemented you can’t tell
which thread is holding a lock.

But gdb can show you!

It can report the
lightweight process “id”
currently holding a lock

CORNELL CS4414/5416 - FALL 2025 13

C++ - Is it possible to determine the
thread holding a mutex? - Stack Overflow

LWP is a form of unique pthread id. The same
post explains how to find the corresponding thread

https://stackoverflow.com/questions/3483094/is-it-possible-to-determine-the-thread-holding-a-mutex
https://stackoverflow.com/questions/3483094/is-it-possible-to-determine-the-thread-holding-a-mutex
https://stackoverflow.com/questions/3483094/is-it-possible-to-determine-the-thread-holding-a-mutex
https://stackoverflow.com/questions/3483094/is-it-possible-to-determine-the-thread-holding-a-mutex
https://stackoverflow.com/questions/3483094/is-it-possible-to-determine-the-thread-holding-a-mutex
https://stackoverflow.com/questions/3483094/is-it-possible-to-determine-the-thread-holding-a-mutex

DEADLOCK AND LIVELOCK DEFINITIONS

We say that a system is in a deadlocked state if one or more
threads will wait indefinitely (for a lock that should have been
released).

Non-example: A is waiting for input from the console. But Alice
doesn’t type anything.
Non-example: A lock is used to signal “a cupcake is ready”, but
we have run out of sugar and none can be baked.

CORNELL CS4414/5416 - FALL 2025 14

NECESSARY AND SUFFICIENT CONDITIONS
FOR DEADLOCK

1. Mutual exclusion: The system has resources protected by locks
2. Non-shareable resources: while A holds the lock, B waits.
3. No preemption: there is no way for B to “seize the lock” from A.
4. Cyclic waiting: A waits for B, B waits for A (a “circular” pattern)

With recursion using non-recursive locks, A could deadlock “by itself”

CORNELL CS4414/5416 - FALL 2025 15

CONDITIONS FOR LIVELOCK

A livelock is really the same as a deadlock, except that the
threads or processes have some way to “busy wait”

For example instead of pausing one or more may be spin-waiting.

We can define “inability to enter the critical section” as a wait, in
which case the four necessary and sufficient conditions apply.

CORNELL CS4414/5416 - FALL 2025 16

HOW TO AVOID DEADLOCKS?

Acquire locks in a fixed order that every thread respects. This rule
implies that condition 4 (cyclic waiting) cannot arise.

CORNELL CS4414/5416 - FALL 2025 17

HOW TO AVOID DEADLOCKS?

Acquire locks in a fixed order that every thread respects. This rule
implies that condition 4 (cyclic waiting) cannot arise.

Cool fact: std::scoped_lock will do this automatically if you list
multiple mutexes in a single call.

But you do need to list all the mutexes you might use.

CORNELL CS4414/5416 - FALL 2025 18

HOW TO AVOID DEADLOCKS?

More common is to lock in order by hand, with the sequence in mind.

Example: Recall A and B with X and Y. Use alphabetic ordering
 We had A holding a lock on X and requesting a lock on Y:
 if our rule says lock X before Y, this is legal and A must wait.
 Meanwhile B held a lock on Y. Given our rule, B is not allowed
 to request a lock on X at this point.
 Nothing will check your logic! But if you code this correctly, it works

CORNELL CS4414/5416 - FALL 2025 19

AS A TIMELINE PICTURE

B shouldn’t be trying to try to lock X while still
holding a lock on Y,if you are using an
ordered locking rule.

X is alphabetically smaller than Y, and B
locked Y earlier. But C++ won’t will throw an
exception here. Your code didn’t follow the
rule… and nothing was checking

CORNELL CS4414/5416 - FALL 2025 20

A: lock X B: lock Y A: lock Y B: lock X

SO… USE ORDERED LOCKING!
BUT IT CAN BE IMPRACTICAL
There are many applications that learn what they must lock one
item at a time, in some order they cannot predict.

So in such a situation, B didn’t know it would need a lock on X at
the time it locked Z.

… now it is too late!

CORNELL CS4414/5416 - FALL 2025 21

EXAMPLE: UNPREDICTABLE LOCK ORDER

For example, this could arise in a for loop. Maybe B is scanning
a std::list<Species*>, and needs a lock on each Species.

The std::list isn’t sorted by Species.name. The lock rule requires
locks in Species-name sort order. B locks Fuzzy Tribble and
Policle but now can’t lock Ballard’s Hooting Crane

CORNELL CS4414/5416 - FALL 2025 22

Fuzzy
Tribble Policle

Darwin’s
Tortle

WHAT IF IT TRIES?

This is a rule you would impose on yourself

If you don’t respect your own design, that would be a bug in
your code. C++ itself won’t enforce this rule.

It definitely is possible to “wrap” locks in a way that would track
locking and detect cyclic wait, but this isn’t standard in C++

CORNELL CS4414/5416 - FALL 2025 23

… EVEN SO, ORDERED LOCKING IS USEFUL

When you actually can impose an order and respect the rule, it is
a very simple and convenient way to avoid deadlock.

Ordered locking is very common inside the Linux kernel. It has a
cost (an application may need to sort a list of items, for example,
before locking all of them), but when feasible, it works.

CORNELL CS4414/5416 - FALL 2025 24

TIMER BASED SOLUTIONS

Sometimes it is too complicated to implement ordered locking.

Many programs just employ a timeout.

If B is running and tries to get a lock, but a timeout occurs, B
aborts (releasing all its locks) and restarts.

CORNELL CS4414/5416 - FALL 2025 25

BACKING OUT AND RETRYING

For this purpose, B would employ “try_lock”.

This is a feature that acquires a lock if possible within some
amount of time, but then gives up.

If B gets lucky, it is able to lock Y, then X, and no deadlock
arises. But if the lock on Y fails, B must unlock X.

CORNELL CS4414/5416 - FALL 2025 26

Backout can be costly

CONCEPT: ABORT AND RETRY

We say that a computation has “aborted” if it has a way to
undo some of the work it has done.

For example, B could be executing, lock Y, then attempt to lock
X. The try_lock fails, so B releases the lock on X and throws
away the temporary data it created – it “rolls back”. Then it
can retry, but get a lock on X first. Hopefully this will succeed.

CORNELL CS4414/5416 - FALL 2025 27

DOES THIS WORK?

Many database systems use abort/retry this way.

Assuming that the conditions giving rise to deadlocks are very
rare, the odds are that on retry B will be successful.

But if deadlocks become common, we end up with a livelock. That
was what we showed you on slides 8, 9

CORNELL CS4414/5416 - FALL 2025 28

PREEMPTIVE SOLUTION (“WOUND-WAIT”)

This method requires some way for the system to detect a
deadlock if one arises, and a way for threads to abort.

When A and B start executing, each notes its start time.

Rule: in a deadlock, the older thread wins. So if A was first, A
gets to lock Y and B aborts. If B was older, A aborts.

CORNELL CS4414/5416 - FALL 2025 29

CYCLE DETECTION IS A COMMON DEADLOCK
DETECTING METHOD
Many applications have self-checks for deadlocks (database
systems, especially)

Periodically they build a graph of “who is waiting for whom”

Deadlocks are evident as cycles in these graphs

CORNELL CS4414/5416 - FALL 2025 30

HOW TO CONTINUOUSLY CHECK FOR
DEADLOCK
We wrap every locking operation with a method that builds a
graph of which thread is waiting for which other thread.

For example, if A tries to lock Y, but B is holding that lock, we
add a node for A, a node for B, and an A → edge.

If a thread is waiting for long enough, run “cycle detection”.

CORNELL CS4414/5416 - FALL 2025 31

CYCLE DETECTION ALGORITHM?

Run the depth-first search algorithm.

Back-edges imply a cycle; success with no back-edges implies
that the graph is cycle-free, hence there is no deadlock.

Complexity: V+E, where V is the number of threads (nodes) and
E is the number of wait-edges.

CORNELL CS4414/5416 - FALL 2025 32

A B

THE SAME METHOD CAN ALSO DETECT
UNORDERED LOCKING
Because it tracks who is waiting for whom using a graph, it also knows
if A had a lock on Y before it tries to get a lock on X

Now you can throw a “lock order exception” and debug the issue

Ken has done this in a very elaborate system with a lot of locking, as a
debugging aide. He used a “const” if statement to disable this whole
wrapper when shipping the product so it didn’t slow it down at all.

CORNELL CS4414/5416 - FALL 2025 33

PRIORITY INVERSIONS

In some systems, threads are given different scheduler priorities
 Urgent: The thread should be scheduled as soon as possible.
 Normal: The usual scheduling policy is fine.
 Low: Schedule only when there is nothing else that needs to run.

A priority inversion occurs if a higher priority thread is waiting for a lower
priority thread.

Deadlock can now arise if there is a steady workload of high priority tasks, so
that the lower priority thread doesn’t get a chance to run.

CORNELL CS4414/5416 - FALL 2025 34

HOW TO DETECT THIS SORT OF PROBLEM

Once we create our wrapped locking tool for deadlock
detection, we can extend it do handle priority-inversion detection!

For each mutex, track the priority of any thread that accesses it.

If we ever see a mutex that is accessed by a high and a low
priority thread, a risk of priority inversion arises!

CORNELL CS4414/5416 - FALL 2025 35

WHAT TO DO ABOUT IT?

One option is to temporarily change the priority of the lower priority
thread.

Suppose that A (at priority p) holds a mutex on X.

B (with priority p’ > p) wants a lock on X. B’s lock request can also
“bump” A to priority p’ temporarily. The wrapper would also restore
A to priority p later, when A releases the lock on X.

CORNELL CS4414/5416 - FALL 2025 36

NONE OF THESE IS CHEAP…

Recall our discussion of C++ versus Java and Python.

These methods of watching for cycles or priority inversions,
possibly forcing threads to abort, rollback and retry, etc, are all
examples of runtime mechanisms that can be very costly!

If you have no choice, then you use them. But don’t be naïve
about how expensive they can become!

CORNELL CS4414/5416 - FALL 2025 37

JIM GRAY

Jim Gray, a Turing Award winner, was a big player in inventing
databases and “transactions”. He worked at Microsoft

Jim’s focus for much of his career was on making it easier to create
really big databases and to access them from programming
languages like C++ (or C#, Java, Python, whatever)

CORNELL CS4414/5416 - FALL 2025 38

JIM GRAY’S STUDY

In the 1990’s, databases were used for storing all forms of data.
They use the kinds of ideas just listed (deadlock detection, priority
tracking, rollback and retry, etc)

By the early 2000’s, they became extremely big and heavily
loaded. People began to move them to NUMA machines and to use
lots of threads.

Surprisingly, they slowed down!

CORNELL CS4414/5416 - FALL 2025 39

JIM TRACKED DOWN THE CAUSE

It turned out that with more and more load on the database server,
hence lots of threads, the database locking algorithm was
discovering a lot of deadlocks.

Running the cycle detector, aborting all of those waiting threads,
rolling back and then retrying – it all added up to huge overheads!

Jim showed that once this occurred, his databases slowed down

CORNELL CS4414/5416 - FALL 2025 40

THE “FULL STORY”

He found that if you have a system with n servers (or using n
cores), and the system is trying to process t “simultaneous”
transactions (transactions), it could slow down as

 O(n3 t5)

CORNELL CS4414/5416 - FALL 2025 41

You used more cores servers to have your system
 handle more concurrent threads or transactions

… but it slows down, dramatically!

… NOT WHAT OWNERS EXPECTED!

People who buy a NUMA machine and run a program with more
threads want more performance, not less!

Also, the situation Jim identified didn’t arise instantly. It only
showed up under heavy load. This made it hard to debug…
 A Heisen-performance-bug!
 Very bad news… Hard to find, impossible to fix!

CORNELL CS4414/5416 - FALL 2025 42

EXAMPLE?

Suppose that your boss wants to increate capacity
for a RAG ML system with a dynamically updated database.

A decision is made to double the number of servers. Over time
the workload doubles too: n becomes 2n, and t becomes 2t.

… plug in (2n)3(2t)5 = old cost * 512

CORNELL CS4414/5416 - FALL 2025 43
… Jim is saying the overheads will soar by 28

Yikes! We are spending twice
as much but the system
slowed down by 512x!

That isn’t going to work

HOW DO YOU EXPLAIN THIS?

With the new workload, more deadlocks occurred. Like
downtown Ithaca with more traffic: we get more jams.

Each caused a rollback and retry… some of those transactions
deadlock too!

A form of exponential traffic jam!

CORNELL CS4414/5416 - FALL 2025 44

WHAT DID JIM RECOMMEND?

He found ways to slice his big data sets into n distinct,
independent shards (chunks).

With a sharding approach, we run all n databases separately!
The rate of abort/retry drops by a factor of n3

It works in many cloud settings and not just for databases.

CORNELL CS4414/5416 - FALL 2025 45

SUMMARY

Deadlock is a risk when we have concurrent tasks (threads or
processes) that share resources and use locking.

There are simple ways to avoid deadlock, but they aren’t
always practical. Ordered locking is a great choice, if feasible.

Complex options exist, but they can have high overheads.

CORNELL CS4414/5416 - FALL 2025 46

SUMMARY

Livelock is a form of deadlock in which threads or processes are
active but no progress is occurring.

Often associated with some form of “busy wait” loop.

Deadlock avoidance mechanisms often can prevent livelocks, too

CORNELL CS4414/5416 - FALL 2025 47

SELF-TEST

Remind yourself what the four conditions for deadlock were

Which condition can never occur with ordered locking? Why
do you accept this “claim”?

Are there situations in real life (not in computing), where human
beings use ordering to avoid deadlocks?

CORNELL CS4414/5416 - FALL 2025 48

SELF-TEST

Have you ever seen a real-world (non-computing) example of a
livelock?

What do people do to avoid these? Is it the same as a
deadlock or different?

CORNELL CS4414/5416 - FALL 2025 49

HOW HARRY AND SALLY BROKE UP

Harry and Sally often meet in the coffee shop or the cafeteria.

One important time, they want to meet, but Harry isn’t sure Sally will
have read his last email, which said the park is really beautiful
today. Should he just go there? Or go to the coffee shop like usual?

Sally knows Harry is the nervous type, and she actually replied “ok,
see yah!” but now she doesn’t know if he read it…

CORNELL CS4414/5416 - FALL 2025 50

HOW HARRY AND SALLY BROKE UP

H: How about meeting in the park instead of the coffee place?
S: The leaves are incredible now… I would love to!
H: Ok, in the park then
S: Yup, the park
… (repeats for a while)
S: Why did you go to the coffee shop? We agreed on the park!
H: No, we were still discussing it. We never really agreed

CORNELL CS4414/5416 - FALL 2025 51

THIS IS A LIVELOCK!

The two processes (Harry and Sally) keep sending emails but never
actually can deduce that they have agreed on the park.

In this particular case, Harry wanted to know that Sally knows that
Harry knows …. (for all iteration values).

We can formalize this as a kind of “epistemic knowledge equation,”
shown at the top right corner. Sally wants the same thing.

CORNELL CS4414/5416 - FALL 2025 52

Goal: Κ*(park)
Prior: K*(coffee shop)

LEARNING MORE?

In fact there are famous papers by Joe Halpern and his student
Yoram Moses on problems like this

They show how reasoning about sequences of events (about time)
can be incredibly confusing and unintuitive

Harry and Sally in an infinite exchange of emails is an example.
Read about “knowledge and common knowledge” to learn more.
The “muddy children” problem used in the introduction is classic.

CORNELL CS4414/5416 - FALL 2025 53

https://arxiv.org/pdf/cs/0006009

THOUGHT QUESTIONS

As humans, do we reason in a purely logical way? Or do we
engage in the kind of endless email exchanges Harry and Sally did?

There is a kind of knowledge asymmetry in an email back-and-forth
dialog. Explain why. Can it be avoided?

Suppose Harry and Sally have reliable watches, and check email at
least hourly. Does knowing this help them agree on a rendezvous?

CORNELL CS4414/5416 - FALL 2025 54

TRAFFIC CIRCLES

Think of a traffic circle. Normally, entering cars yield, but there
are some traffic circles in Paris where traffic lights cause cars in
the circle to yield to cars entering the circle.

What does our theory of deadlocks tell us about this scenario?

CORNELL CS4414/5416 - FALL 2025 55

	Deadlocks, Livelocks, and how to avoid them
	Idea Map For today’s lecture
	Deadlock: Understanding
	More examples
	More examples
	Acquiring a Mutex “twice”
	What if you try to recursively lock a non-recursive mutex?
	More Examples
	As a timeline picture The good case
	As a timeline picture: The deadlock
	Common hack – but a mistake!
	What does this give us?
	Better: Let the program get into a deadlock, then debug the issue
	Deadlock and Livelock Definitions
	Necessary and sufficient conditions for deadlock
	Conditions for Livelock
	How to avoid deadlocks?
	How to avoid deadlocks?
	How to avoid deadlocks?
	As a timeline picture
	So… use Ordered locking! �But it can be impractical
	ExaMPLE: Unpredictable lock order
	What if it tries?
	… Even so, Ordered Locking is useful
	Timer based solutions
	Backing out and retrying
	Concept: Abort and Retry
	Does this work?
	Preemptive solution (“Wound-wait”)
	Cycle detection is a common deadlock detecting method
	How to continuously check for deadlock
	Cycle detection algorithm?
	The same method can also detect unordered locking
	Priority inversions
	How to detect this sort of problem
	What to do about it?
	None of these is cheap…
	Jim Gray
	Jim Gray’s study
	Jim tracked down the cause
	The “full story”
	… not what owners expected!
	Example?
	How do you explain this?
	What did Jim recommend?
	Summary
	Summary
	Self-Test
	Self-Test
	How Harry and Sally broke up
	How Harry and Sally broke up
	This is a livelock!
	learning more?
	Thought questions
	Traffic circles

