
MONITOR PATTERN Professor Ken Birman
CS4414/5416 Lecture 9

CORNELL CS4414/5416 - FALL 2025 1

IDEA MAP FOR TODAY

C++ supports every imaginable kind of synchronization
pattern. Monitors are our pick for complex settings.

CORNELL CS4414/5416 - FALL 2025 2

Lightweight vs. Heavyweight

Thread “context”

C++ mutex objects. Atomic data types.Reminder: Thread Concept

The monitor pattern in C++

Problems monitors solve (and problems they don’t solve)

C++ ATOMICS

If a single variable needs to be accessed atomically when shared by
threads, but without locks, we use std::atomic<T>. The type T must be a
native data type.

For example, std::atomic<int> is a safe counter that requires no additional
locking. But it only protects operations against the variable, not expressions.

Example: even if X and Y are both std::atomic, X < Y isn’t the same as doing
comparison in a critical section (while holding a mutex).

CORNELL CS4414/5416 - FALL 2025 3

C++ ATOMICS

If you use std::atomic, you won’t need volatile

std::atomic forces the hardware and compiler to reread the variable
on each access. Prevents use of cached or speculated values.

CORNELL CS4414/5416 - FALL 2025 4

UNDER THE HOOD

Mutex locking is done using a std::atomic<boolean>, initially false (F).

Threads desiring a lock loop perform an atomic operation defined this way:

test-and-set(x) { temp = x; x = T; return temp; } // Compiles to a special instruction

 Returns F ⇒ it “won the race” and now holds the lock.
 Returns T ⇒ some other thread currently holds the lock.

To release a lock, the holder simply sets the mutex back to F.

CORNELL CS4414/5416 - FALL 2025 5

mutex

F! I hold the lock T: locked by someone else

while(test-and-set(mutex)) ;

UNDER THE HOOD

Competing to lock a mutex is not necessarily fair!

 Recall that memory is NUMA! Suppose the mutex is right next
 to thread A and far from threads B, C and D.

 Because thread A is close to the variable, it can access the memory
 location much faster. It loops more rapidly, and has an advantage

 In practice, few programs run into issues. C++ also has fair locking,
 but it is much slower and rarely used.

CORNELL CS4414/5416 - FALL 2025 6

mutex

Closer: loops faster Further: loops slower

while(test-and-set(mutex)) ;

HOW TO SAFELY LOCK, THEN UNLOCK A MUTEX

Best is to do so in a block of code using std::shared_lock

Notice that this code gave the
lock a name (cslock) and yet
never uses the cslock variable

The reason is tied to the rule for
when deconstructors run!

CORNELL CS4414/5416 - FALL 2025 7

std::mutex mtx;

void critical_section()
{
 std::scoped_lock cslock(mtx);
 … do stuff, I hold the lock …
}

HOW TO SAFELY LOCK, THEN UNLOCK A MUTEX

Best is to do so in a block of code using std::shared_lock

Notice that this code gave the
lock a name (cslock) and yet
never uses the cslock variable

The reason is tied to the rule for
when deconstructors run!

CORNELL CS4414/5416 - FALL 2025 8

std::mutex mtx;

void critical_section()
{
 std::scoped_lock cslock(mtx);
 … do stuff, I hold the lock …
}

cslock is in scope until this block
 exits, so the lock is held until here

WHAT HAPPENS WITH CAUGHT EXCEPTIONS?

Suppose that while holding a lock, some method you call throws
an exception and it is caught in a scope above where you
acquired the lock?

With scoped_lock your lock will release. With a “hand
acquired” lock you’ll still hold it, but might easily forget that you
do and deadlock… against yourself!

CORNELL CS4414/5416 - FALL 2025 9

…. THOUGHT PUZZLE

What would have gone wrong
with this version?

CORNELL CS4414/5416 - FALL 2025 10

std::mutex mtx;

void critical_section()
{
 std::scoped_lock (mtx);
 … do stuff, I hold the lock …
}

…. THOUGHT PUZZLE

What would have gone wrong
with this version?

A very common error!

C++ won’t report the mistake
but might warn with -Wall

CORNELL CS4414/5416 - FALL 2025 11

std::mutex mtx;

void critical_section()
{
 std::scoped_lock (mtx);
 … do stuff, I don’t hold the lock …
}

Lacking a variable name, acquires
but instantly releases the lock

STD::SHARED_LOCK AND STD::UNIQUE_LOCK

std::scoped_lock implements true critical sections and is fast

In the examples we will look at next, we need more control
 std::shared_lock is a form of read-lock. Multiple readers
 can acquire a std::shared_lock on the identical mutex.
 std::unique_lock is the counterpart of std::shared_lock: a write-lock.
 Both also support a fancy form of waiting

CORNELL CS4414/5416 - FALL 2025 12

STD::ATOMIC FOR CLASS TYPES

One experimental proposal for C++ extends std::atomic<T>
but is limited to “trivially copyable” C++ classes!

Concurrent accesses are automatically handled safely: each
operation looks like a transaction!

The technique uses no locks (but does a lot of copying)

CORNELL CS4414/5416 - FALL 2025 13How to use std::atomic<> effectively for non-primitive types

EXAMPLE PATTERN ONE:
READERS/WRITERS

Very
important
stuff

CORNELL CS4414/5416 - FALL 2025 14

READERS AND WRITERS

The default in C++ is that a std:: data structure can support
arbitrary numbers of concurrent read-only accesses.

But an update (a “writer”) might cause the structure to change, so
updates must occur when no reads are active.

We also need a limited kind of fairness: an endless stream of
reads should not starve (block) occasional updates

CORNELL CS4414/5416 - FALL 2025 15

READERS AND WRITERS PATTERN

… block of code to do a read action
{
 std::shared_lock srlock(mtx);
 … do your reading here …
}

… block of code to do a write action
{
 std::unique_lock wrlock(mtx);
 … do your writing here
}

CORNELL CS4414/5416 - FALL 2025 16

std::mutex mtx;

READERS AND WRITERS AS METHODS

void be_a_reader(const std::function<void()>& read_action)
{
 std::shared_lock srlock(mtx);
 read_action();
}

void be_a_writer(const std::function<void()>& write_action)
{
 std::unique_lock wrlock(mtx);
 write_action();
}

CORNELL CS4414/5416 - FALL 2025 17

HOW TO USE THE SECOND VERSION…

CORNELL CS4414/5416 - FALL 2025 18

be_a_reader([&](){ … logic used by the reader });

be_a_writer([&](){ … logic used by the writer });

Uses variables from the
caller scope by reference

When invoked, expects no
arguments

Code, like for any method

EXAMPLE PATTERN TWO:
CIRCULAR BUFFER

Even more
important
stuff

CORNELL CS4414/5416 - FALL 2025 19

CIRCULAR BUFFERS: A TOOL FOR THREAD-
THREAD COMMUNICATION
When we created word count, we commented that the fastest
version involved a main thread that launched word-counter
threads, and a separate file opener thread.

How should the file opener thread
“talk” to the word counter threads?

CORNELL CS4414/5416 - FALL 2025 20

Open files Count words

ASPECTS TO CONSIDER

In Linux, each open file has an associated file descriptor. This is a
small integer. At most ulimit() files can be open at once.

C++ file reading normally uses a buffered I/O stream library such as
std::ifstream. The buffer takes up space, which is another reason we
limit how many files can be open at once.

Meanwhile inside the O/S, opening a file involves finding the name in
a folder, getting the corresponding inode number, fetching the inode.

CORNELL CS4414/5416 - FALL 2025 21

A GOOD SOLUTION

We wish to do this work “in anticipation of need”
 The separate file opening thread will pre-open a few files.
 It can be smaller than ulimit(), because each word counter
 will only scan one file at a time.
 We can already package the file descriptor into an ifstream,
 so the word counter won’t have to do that.
 The image to have is of a “bucket brigade” for a fire. One
 thread fills buckets. Other threads dump water on the fire.

CORNELL CS4414/5416 - FALL 2025 22

CIRCULAR BUFFER IMPLEMENTS THIS PATTERN

We take an array of some fixed size, LEN, and think of it as a
ring. The k’th item is at location (k % LEN). Here, LEN = 8

CORNELL CS4414/5416 - FALL 2025 23

nfree =3
free_ptr = 15

nfull =5
next_item = 10

15 % 8 = 7

10 % 8 = 2

Producers write
to the end of the

full section

Consumers read
from the head of
the full section

0 1 2 3 4 5 6 7
free free free

Item
10

Item
11

Item
12

Item
13

Item
14

CIRCULAR BUFFER IMPLEMENTS THIS PATTERN

Now, wrap this into a circle, with cell 0 next to cell 7. No other
change is made – the remainder of the figure is identical.

CORNELL CS4414/5416 - FALL 2025 24

nfree =3
free_ptr = 15

nfull =5
next_item = 10

15 % 8 = 7

10 % 8 = 2

free

free

Item
11

Item
12

Item
13

Item
14

free

Item
10

0

1

2

3
4

5

6

7Producers write
to the end of the

full section

Consumers read
from the head of
the full section

A PRODUCER OR CONSUMER WAITS IF NEEDED

Producer:

void produce(const Foo& obj)
{

 if(nfull == LEN) wait;
 buffer[free_ptr++ % LEN] = obj;
 ++nfull;
}

Consumer:

Foo consume()
{

 if(nfull == 0) wait;
 - - nfull;
 return buffer[next_item++ % LEN];
}

CORNELL CS4414/5416 - FALL 2025 25

As written, this code is unsafe… we can’t fix it just by adding atomics or locks!

A PRODUCER OR CONSUMER WAITS IF NEEDED

Producer:

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 if(nfull == LEN) wait;
 buffer[free_ptr++ % LEN] = obj;
 ++nfull;
}

Consumer:

Foo consume()
{
 std::unique_lock clock(mtx);
 if(nfull == 0) wait;
 - - nfull;
 return buffer[next_item++ % LEN];
}

CORNELL CS4414/5416 - FALL 2025 26

Now safe… but we still need to implement “wait”

std::mutex mtx;

WHY DID WE SWITCH FROM SCOPED_LOCK
TO UNIQUE_LOCK (WHICH IS SLOWER)?
We can’t just wait while holding the lock – nobody else can enter the
critical section to consume something from the buffer.

But if we release the lock some other thread can instantly grab it

Now the buffer wouldn’t be full anymore, yet the producer waits…
forever. Also causes a deadlock!

CORNELL CS4414/5416 - FALL 2025 27

…
std::scoped_lock plock(mtx);
if(nfull == LEN) { release lock; wait; reacquire lock; }
… Right here, before wait, context switch could occur

WITH UNIQUE_LOCK, THERE IS A SAFE WAY TO WAIT.

Producer:

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 if(nfull == LEN) wait;
 buffer[free_ptr++ % LEN] = obj;
 ++nfull;
}

Consumer:

Foo consume()
{
 std:: unique_lock clock(mtx);
 if(nfull == 0) wait;
 - - nfull;
 return buffer[next_item++ % LEN];
}

CORNELL CS4414/5416 - FALL 2025 28

std::mutex mtx;

THE MONITOR PATTERN

Our example turns out to be a great fit to the monitor pattern.

A monitor combines protection of a critical section with
additional operations for waiting and for notification.

For each protected object, you will need a “mutex” object that
will be the associated lock.

CORNELL CS4414/5416 - FALL 2025 29

A MONITOR IS A “PATTERN”

It uses a scoped_lock to protect a critical section. You designate
the mutex (and can even lock multiple mutexes atomically).

Monitor conditions are variables that a monitor can wait on:
 wait is used to wait. It also (atomically) releases the scoped_lock.
 wait_until and wait_for can also wait for a timed delay to elapse.
 notify_one wakes up a waiting thread… notify_all wakes up all waiting
 threads. If no thread is waiting, these are both no-ops.

CORNELL CS4414/5416 - FALL 2025 30

SOLUTION TO THE BOUNDED BUFFER
PROBLEM USING A MONITOR PATTERN
We will need a mutex, plus two “condition variables”:

 std::mutex mtx;
 std::condition_variable not_empty;
 std::condition_variable not_full;

… our code will have a single critical section with two roles (one
to produce, one to consume), so we use one mutex.

CORNELL CS4414/5416 - FALL 2025 31

INITIALIZATION OF THE VARIABLES

First, we need our const int LEN, and int variables nfree, nfull,
free_ptr and next_item. Initially everything is free: nfree = LEN;

const int LEN = 8;
int nfree = LEN;
int nfull = 0;
int free_ptr = 0;
int next_item = 0;

CORNELL CS4414/5416 - FALL 2025 32

nfree =3
free_ptr = 15

nfull =5
next_item = 10

free

free

Item
11

Item
12

Item
13

Item
14

free

Item
10

0

1

2

3
4

5

6

7

INITIALIZATION OF THE VARIABLES

First, we need our const int LEN, and int variables nfree, nfull,
free_ptr and next_item. Initially everything is free: nfree = LEN;

const int LEN = 8;
int nfree = LEN;
int nfull = 0;
int free_ptr = 0;
int next_item = 0;

CORNELL CS4414/5416 - FALL 2025 33

nfree =3
free_ptr = 15

nfull =5
next_item = 10

free

free

Item
11

Item
12

Item
13

Item
14

free

Item
10

0

1

2

3
4

5

6

7

We don’t declare these as atomic or
volatile because we plan to only

access them only inside our monitor!

Only use those annotations for
“stand-alone” variables accessed

concurrently without locking

CODE TO PRODUCE AN ITEM

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 not_full.wait(plock, [&](){ return nfree != 0;});
 buffer[free_ptr++ % LEN] = obj;
 --nfree;
 ++nfull;
 not_empty.notify_one();
}

CORNELL CS4414/5416 - FALL 2025 34

CODE TO PRODUCE AN ITEM

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 not_full.wait(plock, [&](){ return nfree != 0;});
 buffer[free_ptr++ % LEN] = obj;
 --nfree;
 ++nfull;
 not_empty.notify_one();
}

CORNELL CS4414/5416 - FALL 2025 35

This lock is automatically held until
the end of the method, then

released. But it will be temporarily
released for the condition-variable

“wait” if needed, then automatically
reacquired

CODE TO PRODUCE AN ITEM

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 not_full.wait(plock, [&](){ return nfree != 0;});
 buffer[free_ptr++ % LEN] = obj;
 --nfree;
 ++nfull;
 not_empty.notify_one();
}

CORNELL CS4414/5416 - FALL 2025 36

CODE TO PRODUCE AN ITEM

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 not_full.wait(plock, [&](){ return nfree != 0;});
 buffer[free_ptr++ % LEN] = obj;
 --nfree;
 ++nfull;
 not_empty.notify_one();
}

CORNELL CS4414/5416 - FALL 2025 37

A condition variable implements wait in a
way that atomically puts this thread to

sleep and releases the lock. This
guarantees that if notify should wake A

up, A will “hear it”

When A does run, it will also
automatically reaquire the mutex lock.

CODE TO PRODUCE AN ITEM

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 not_full.wait(plock, [&](){ return nfree != 0;});
 buffer[free_ptr++ % LEN] = obj;
 --nfree;
 ++nfull;
 not_empty.notify_one();
}

CORNELL CS4414/5416 - FALL 2025 38

CODE TO PRODUCE AN ITEM

void produce(Foo obj)
{
 std::unique_lock plock(mtx);
 not_full.wait(plock, [&](){ return nfree != 0;});
 buffer[free_ptr++ % LEN] = obj;
 --nfree;
 ++nfull;
 not_empty.notify_one();
}

CORNELL CS4414/5416 - FALL 2025 39

The condition takes the form of a lambda
returning true or false. It checks “what you are

waiting for”, not “why you are waiting”.

CODE TO PRODUCE AN ITEM

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 not_full.wait(plock, [&](){ return nfree != 0;});
 buffer[free_ptr++ % LEN] = obj;
 --nfree;
 ++nfull;
 not_empty.notify_one();
}

CORNELL CS4414/5416 - FALL 2025 40

CODE TO PRODUCE AN ITEM

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 not_full.wait(plock, [&](){ return nfree != 0;});
 buffer[free_ptr++ % LEN] = obj;
 --nfree;
 ++nfull;
 not_empty.notify_one();
}

CORNELL CS4414/5416 - FALL 2025 41

We produced one item, so we only need to
wake up one of the waiting threads

CODE TO CONSUME AN ITEM
Foo consume()
{
 std::unique_lock clock(mtx);
 not_empty.wait(clock, [&]() { return nfull != 0; });
 ++nfree;
 --nfull;
 not_full.notify_one();
 return buffer[full_ptr++ % LEN];
}

CORNELL CS4414/5416 - FALL 2025 42

CODE TO CONSUME AN ITEM
Foo consume()
{
 std::unique_lock clock(mtx);
 not_empty.wait(clock, [&]() { return nfull != 0; });
 ++nfree;
 --nfull;
 not_full.notify_one();
 return buffer[full_ptr++ % LEN];
}

CORNELL CS4414/5416 - FALL 2025 43

The notify doesn’t need to be the last line of the
consume method – it still holds the mutex lock, so

nobody else can enter the critical section

CODE TO CONSUME AN ITEM
Foo consume()
{
 std::unique_lock clock(mtx);
 not_empty.wait(clock, [&]() { return nfull != 0; });
 ++nfree;
 --nfull;
 not_full.notify_one();
 return buffer[full_ptr++ % LEN];
}

CORNELL CS4414/5416 - FALL 2025 44

For the same reason, this return statement is safe:
C++ executes the expression used in this return

statement while still holding the lock.

CODE TO CONSUME AN ITEM
Foo consume()
{
 std::unique_lock clock(mtx);
 not_empty.wait(clock, [&]() { return nfull != 0; });
 ++nfree;
 --nfull;
 not_full.notify_one();
 return buffer[full_ptr++ % LEN];
}

CORNELL CS4414/5416 - FALL 2025 45

CODE TO CONSUME AN ITEM
Foo consume()
{
 std::unique_lock clock(mtx);
 not_empty.wait(clock, [&]() { return nfull != 0; });
 ++nfree;
 --nfull;
 not_full.notify_one();
 return buffer[full_ptr++ % LEN];
}

CORNELL CS4414/5416 - FALL 2025 46

This is where the scope is actually closed. It happens as
C++ performs the logic for actually returning the result
(the Foo item “computed” by the return statement). The

destructor for clock now runs and releases the lock

TEMPLATED AND WITH A STD::DEQUE

Why not create a templated class so that one implementation
covers all uses?

 Then use a std::deque for the circular buffer and only
 check the size() to see if it is empty.

 … but one caveat: a fast producer could create unlimited
 data. So, do keep the capacity limit.

CORNELL CS4414/5416 - FALL 2025 47

TEMPLATED AND WITH A STD::DEQUE

CORNELL CS4414/5416 - FALL 2025 48

template<typename T, const int LEN>
class Monitor {

std::mutex mtx;
std::condition_variable not_full, not_empty;
std::deque buffer;

public:
void produce(const T& obj) {

std::unique_lock plock(mtx);
not_full.wait(plock, & { return buffer.size() < LEN; });
buffer.push_back(obj);
not_empty.notify_one();

}

T consume() {
std::unique_lock clock(mtx);
not_empty.wait(clock, & { return !buffer.empty(); });
T ret = buffer.front();
buffer.pop_front();
not_full.notify_one();
return ret;

}
};

#include <mutex>
#include <deque>
#include <condition_variable>

RANDOM EXTRA STUFF Such
stuff!

CORNELL CS4414/5416 - FALL 2025 49

A FEW REMARKS

notify_one wakes up one thread, notify_all wakes all of them up.

… but, due to “spurious wakeups” you cannot assume that each
wakeup is tied to a specific notify_one.

Monitors do not guarantee fairness or even freedom from
starvation. But in practice nobody ever runs into problems.

CORNELL CS4414/5416 - FALL 2025 50

KEEP LOCK BLOCKS SHORT

It can be tempting to just get a lock and then do a whole lot of
work while holding it.

But keep in mind that if you really needed the lock, some thread
may be waiting this whole time!

So… you’ll want to hold locks for as short a period as feasible.

CORNELL CS4414/5416 - FALL 2025 51

CONSIDER THIS CODE… SUPPOSE IT NEEDS
A LOCK
How would we know it needs one?

We need a lock if myMap or even this particular item could be
modified. This code is reading the objects and if there are also
writers, locking is needed.

CORNELL CS4414/5416 - FALL 2025 52

auto item = myMap[some_city];
cout << “ City of “ << item.first << “, population = “ << item.second << endl;

WHAT ABOUT THIS VERSION?

Consider this protected critical section:

The code is correct and safe, but doing a print while holding the
lock is going to be very slow

CORNELL CS4414/5416 - FALL 2025 53

std::mutex mtx;
 ….
 {
 std::scoped_lock lock(mtx);
 auto item = myMap[some_city];
 cout << “ City of “ << item.first << “, population = “ << item.second << endl;
 }

WHAT ABOUT THIS VERSION?

Better :

CORNELL CS4414/5416 - FALL 2025 54

std::mutex mtx;
 std::list<City> ilist;
 …. in the inner loop …

 {
 std::scoped_lock lock(mtx);
 auto item = myMap[some_city];
 ilist.push_back(item); // Makes a copy “freezing” the state we saw at this instant
 }
 …. later …
 for(auto item: ilist)
 cout << “ City of “ << item.first << “, population = “ << item.second << endl;

HOW DO PEOPLE WORK AROUND THIS?

The idea here is to create a kind of log to print later, updating it
while still inside the critical section.

This way at the moment you did the list append, the data was
definitely right there, and you took a “snapshot” by making a copy
while you still held the lock.

Later you print the log outside the critical section.

CORNELL CS4414/5416 - FALL 2025 55

BUT BE CAREFUL!

The more subtle your synchronization logic becomes, the harder
the code will be to maintain or even understand.

Simple, clear synchronization patterns have a benefit: anyone
can easily see what you are doing!

This often causes some tradeoffs between speed and clarity.

CORNELL CS4414/5416 - FALL 2025 56

Yikes!
Avoid bad stuff!

QUESTIONS FOR SELF-TEST

Suppose the producer is much faster than the consumers. What
happens?

Suppose the buffer empties out. Now what happens?

Would be ideal to have a huge buffer with a tremendous
number of produced items in it?

CORNELL CS4414/5416 - FALL 2025 57

QUESTIONS FOR SELF-TEST

How do NUMA memory speeds create unfairness when using a shared
atomic mutex?

If you know which memory unit the mutex is in, does this tell you which
threads will get unfairly quick access, and which will be unfairly slow?

What would be a way to take control and eliminate this NUMA effect
without modifying the monitor pattern itself?

CORNELL CS4414/5416 - FALL 2025 58

QUESTIONS FOR SELF-TEST

Our readers and writers solution is asymmetric (new readers
always wait to allow writers to run first).

Why do you think this has been popular and seen as a good
choice (as distinct from using a symmetric monitor)?

What assumptions does it reflect about the computations
readers and writers are doing?

CORNELL CS4414/5416 - FALL 2025 59

QUESTIONS FOR SELF-TEST

In theory, with an endless stream of readers, std::shared_lock
could starve std::unique_lock: writers would never get in.

The issue is considered implementation-dependent and unlikely

As a self-test, implement a monitor that can’t have this issue.

CORNELL CS4414/5416 - FALL 2025 60

QUESTIONS FOR SELF-TEST

We wanted an elegant, simple, high performance solution to
problems like word count. List as many features of the program
as you can that contribute to these goals.

Would you have thought of designing the code this way at the
start? How can you develop mental patterns that lead directly
to great solutions? Hint: understand the ideas, but practice
using them!

CORNELL CS4414/5416 - FALL 2025 61

	Monitor Pattern
	Idea Map For Today
	C++ Atomics
	C++ Atomics
	Under the hood
	Under the hood
	How to safely lock, then unlock a mutex
	How to safely lock, then unlock a mutex
	What happens with caught exceptions?
	…. Thought puzzle
	…. Thought puzzle
	Std::shared_lock and std::unique_lock
	Std::atomic for class types
	Example pattern one: Readers/Writers
	Readers and Writers
	Readers and Writers pattern
	Readers and Writers as methods
	How to use the second version…
	Example pattern two: circular buffer
	Circular bufferS: A tool for thread-thread communication
	Aspects to consider
	A good solution
	Circular buffer implementS this pattern
	Circular buffer implements this pattern
	A producer or consumer waits if needed
	A producer or consumer waits if needed
	Why did we switch from scoped_lock to unique_lock (which is slower)?
	With unique_lock, there is a safe way to wait.
	The monitor pattern
	A monitor is a “pattern”
	Solution to the bounded buffer problem using a monitor pattern
	Initialization of the variables
	Initialization of the variables
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to consume an item
	Code to consume an item
	Code to consume an item
	Code to consume an item
	Code to consume an item
	Templated and With a std::deque
	Templated and With a std::deque
	Random extra stuff
	A few remarks
	Keep lock blocks short
	Consider this code… suppose it needs a lock
	What about this version?
	What about this version?
	How do people work around this?
	But be careful!
	Questions for Self-Test
	Questions for self-test
	Questions for self-test
	Questions for Self-Test
	Questions for self-test

