N\YFZANYIANYIANTVI ANV I ANTY I ANY S AN

Z Qﬂ%ﬂ%ﬂ%ﬂ%ﬂ\ﬂ% /
NYZANYZANYZANYZANYZANYZANTZAN
ZAN\YZANYZANVZANYZANYZANYZA\Y/
NYZANYZANYZANYZANYZANYZANTZAN

FJANVIANVIANVIANVIANVIANVIANYS

EXCEPTIONS AND UNUSUAL CONTROL | professor KenB o an
FLOW PATTERNS | C€S4414/5416 Lecture 8

IDEA MAP FOR TODAY

In many situations, we

have a normal control flow

but must also deal with The hardware has this
abnormal events. issue: an 1/O event might
finish more or less at any
instant. Interrupts are like

Can Dijkstra’s concept of

creating abstractions offer PrEsee e Gals et oy

a unified way to deal with “when needed”.

abnormal control flow?

Linux offers programmable signal handling
mechanisms that mimic interrupts.

C++ offers a similar concept via its throw
statement, and the try /catch control structure.

All forms of exceptions can disrupt computation,
making it very hard to write a “safe” handler!

CORNELL CS4414/5416 - FALL 2025 2

VISUALIZE AN OS DEVICE DRIVER AND THE
DEVICE IT TALKS TO

Y YNS S

e -----

KIND OF LIKE A THREAD PLUS A FORM OF
EXCEPTION NOTIFICATION!

The write... completed, read.... completed behavior is a lot like
a thread in a loop, where the “I/O action” occurs in hardware
but is like an asynchronous method finishing.

On the other hand the notification of the |/O error seems totally
unexpected. The driver is poked by the disk: “Hey you, it looks
like block B is messed up!”

CORNELL CS4414/5416 - FALL 2025 4

EXCEPTIONS HAVE A DEEP HISTORY: PRINTERS
APPARENTLY USED TO CATCH FIRE FAIRLY OFTEN!

HIGHLY EXCEPTIONAL CONTROL FLOW

234 | static int 1p check status(int minor)

235 | {

236 int error = 0;

237 unsigned int last = lp_table[minor].last_error;

238 unsigned char status = r str(minor);

239 if ((status & LP PERRORP) && ! (LP F(minor) & LP CAREFUL))
240 /* No error. */

241 last = 0;

242 else if ((status & LP POUTPA)) |

243 if (last != LP POUTPA) {

244 last = LP POUTPA;

245 printk (KERN INFO "lp%d out of paper\n", minor);
246 1

247 error = -ENOSPC;

248 } else if (! (status & LP_PSELECD)) {

249 if (last != LP PSELECD) {

250 last = LP_PSELECD;

251 printk (KERN INFO "lp%d off-line\n", minor);
252 } -

5 error = -EIO;

254 } else if (! (status & LP PERRORP)) {

255 if (last != LP PERRORP) {

256 last = LP PERRORP;

257 printk (KERN INFO "lp%d on fire\n", minor);
258 } -

259 error = -EIO;

260 } else {

261 last = 0; /* Come here if LP_CAREFUL is set and no
262 errors are reported. */

263 1

264

265 lpitable[minor].lastierror = last;

266

267 if (last != 0)

268 lp error(minor):

269

270 return error;

271 |}

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/lp.c?h=v5.0-rc3

CORNELL CS4414/5416 - FALL 2025

6

TODAY

How our “thread” with asynchronous completions really works: in
fact there are two threads (the one in the OS and the one the
hardware implements) and a notification from the disk to the OS

This same mechanism also reports exceptions

[Later in the lecture]: Linux signals

Programming language-level exceptions

C++ features for handling exceptions

CORNELL CS4414/5416 - FALL 2025 7

KERNEL THREADS

Linux has threads handling work concurrently with your process
executing. The logic to prefetch blocks you will need soon is a kind

of kernel thread.
These threads (like any thread) can be running or waiting.

In our disk /O example, each disk request is like a spun-off thread
that constructs and issues a request, then waits for completion.

CORNELL CS4414/5416 - FALL 2025 8

... AND DISKS REALLY DO HAVE THREADS T0O!

Modern hardware is often controlled by firmware written in C or
C++, running right on the disk “controller” (a small computer)

hardware to perform it.

That thread waits for a request, then interacts with the physical

CORNELL CS4414/5416 - FALL 2025 9

HOW DO THEY WAKE EACH OTHER UP?

In effect, the disk needs a way to poke the O/S: “wake up!”

If you dig deep into the design, the O/S wakes up the disk
controller thread, too. “Hey disk, | have work for you!”

And they talk to one-another using... “interrupts”

CORNELL CS4414/5416 - FALL 2025 1

CONTROL FLOW

Processors do only one thing:

» From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

» This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,;
. inst
Time .2
Inst,
inst,
<shutdown>

CORNELL CS4414/5416 - FALL 2025 11

ALTERING THE CONTROL FLOW

Up to now: two mechanisms for changing control flow:
» Jumps and branches... Call and return

> In effect, we change control flow to react to changes in program state

Insufficient: We also need to react to changes in system state
» Data arrives from a disk or a network adapter
» Instruction divides by zero

» User hits Ctrl-C at the keyboard... Timer expires...

CORNELL CS4414/5416 - FALL 2025 12

EXCEPTIONS: SEVERAL “FLAVORS” BUT
MANY COMMONALITIES

All exceptions “seize control,” generally by forcing the immediate execution
of a handler procedure, no matter what your process was doing.

When a hardware device wants to signal that something needs attention, or
has gone wrong, we say that the device triggers an interrupt. Linux
generalizes this and views all forms of exceptions as being like interrupts.

Once this occurs, we can “handle” the exception in ways that might hide it, or
we may need to stop some task entirely (like with *C).

CORNELL CS4414/5416 - FALL 2025 13

BIGGEST CONCERN

An exception can occur in the middle of some sort of expression
evaluation, or data structure update.

For example, if your code manages a linked list, the exception
could occur in the middle of adding a node!

So... the handler cannot assume that data structures are intact!

CORNELL CS4414/5416 - FALL 2025 14

HOW WE HANDLE THIS

We think in terms of “recoverable” exceptions and “non
recoverable” ones.

A recoverable exception occurs if the kernel or the program can
handle the exception, then resume normal execution.

A non-recoverable exception terminates the task (or perhaps just
part of some task).

CORNELL CS4414/5416 - FALL 2025 15

LET’S LOOK FIRST AT MECHANISMS, BUT THEN WE
WILL SEE AN ABSTRACTION EMERGE

A mechanistic perspective looks at how each class of event
arises. Each form of abnormal control flow has a concrete cause

Because the hardware features are diverse, we could end up
with a diverse set of language features to deal with them.

In practice, there is a surprisingly degree of uniformity
representing one abstraction that is applies in various ways

CORNELL CS4414/5416 - FALL 2025 16

THIS ILLUSTRATES CONCEPTUAL ABSTRACTION

Rather than abstracting storage, the way a file system abstracts
the storage blocks on a device, control flow abstractions have a
conceptual flavor.

They illustrate a reused design pattern and a way of thinking
about abnormal control flow. This concept is universal, yet the
embodiment varies.

CORNELL CS4414/5416 - FALL 2025 17

THIS DESIGN PATTERN IS A LINUX FEATURE

An exception often causes a transfer of control to the OS kernel
in response to some event (i.e., change in processor state)

» Examples: Divide by O, arithmetic overflow, page fault, |/O request
completes, typing Cirl-C

User code Kernel code
Event — | _current ¥, Exception R
|_next Exception processing

by exception handler
* Return to |_current
* Return to |_next
* Abort

CORNELL CS4414/5416 - FALL 2025 18

EXCEPTION TABLES

Each type of event has o
unique exception number k

k = index into exception table
(a.k.a. interrupt vector)

Handler k is called each time
exception k occurs

Exception
numbers

Exceptiin

Table

Code for
exception handler 0

0~

Code for
exception handler 1

1

2/

Code for
exception handler 2

n-1\

Code for
exception handler n-1

CORNELL CS4414/5416 - FALL 2025 19

EXCEPTION TABLES

The kernel has one for interrupts.
Each process has one for signails.

The entries are simply the addresses of the handler methods. A
special exception handler turns the exception into a kind of
procedure call, at which the handler runs like normal code.

CORNELL CS4414/5416 - FALL 2025 20

' (PARTIAL) TAXONOMY

ECF

Asynchronous

/

Interrupts

Synchronous

T

Traps

Faults

Aborts

CORNELL CS4414/5416 - FALL 2025 21

ASYNCHRONOUS EXCEPTIONS (INTERRUPTS)

Caused by events external to the processor
» Indicated by setting the processor’s interrupt pin
» Handler returns to the instruction that was about to execute

Examples:
» Timer interrupt

» Every few ms, an external timer chip triggers an interrupt.

» Used by the kernel to take back control from user programs

» 1/O interrupt from external device
» Typing a character or hitting Ctrl-C at the keyboard

> Arrival of a packet from a network, or data from a disk

CORNELL CS4414/5416 - FALL 2025 22

SYNCHRONOUS EXCEPTIONS

Caused by events that occur as a result of executing an instruction:
» Traps

» Intentional, set program up to “trip the trap” and do something
» Examples: system calls, gdb breakpoints. Control resumes at “next” instruction

» Faults

» Unintentional but possibly recoverable
» Examples: page faults (recoverable), protection faults (unrecoverable), floating point exceptions
» Either re-executes faulting (“current”) instruction or aborts

> Aborts

» Unintentional and unrecoverable... Aborts current program
» Examples: illegal instruction, memory parity error, hardware malfunction

CORNELL CS4414/5416 - FALL 2025 23

SYSTEM CALLS

m Each Linux system call has a unique ID number
m Examples:

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file
57 fork Create process

59 execve Execute a program
60 _exit Terminate process

62 kill Send signal to process

CORNELL CS4414/5416 - FALL 2025 24

SYSTEM CALL EXAMPLE: OPENING FILE

User calls: open (f1lename, options)

Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 fO ff ff cmp SOxfffffffffffff001,%rax

e5dfa: c3 retq

e5d79: b802000000 mov SOx2,%eax # open is syscall #2

User code Kernel code Srax contains syscall number
Other arguments in $rdi,
syscalld Exception $rsi, $rdx, $r10, 3r8, $r9

cmp ‘\l OP€nfiIe
Returns

A 4

Return value in $rax

Negative value is an error
corresponding to negative

errno
CORNELL (S4414/5416 - FALL 2025

25

SYSTEM CA-AI-mos-tI‘iI:ea.fJn-ct;n-czm SomrstRre =

* Transfer of control
User calls: open (£ilie On return, executes next instruction

Call functi * Passes arguments using calling convention
alls__openrunclion, , - Gets result in $rax

00000000000e5d70 <__op Qe Important exception!

Executed by Kernel

e5d79: b8 02 00 0000 Diff t set of obrivil

eSd7e: Of 05 - ifferent set of privi eges

e5d80: 483d01foffff ¢ © And other differences: -

* e.g., “address” of “function” isin $rax
e5dfa: c3 retq e Useserrno

* Etc.

m 3%rax contains syscall number

m Otherargumentsin $rdi,

syscally Exception $rsi, $rdx, $r10, 3r8, $r9

cmp : m Returnvaluein $rax
Open file
Returns m Negative value is an error

| corresponding to negative
errno

<

CORNELL CS4414/5416 - FALL 2025

FAULT EXAMPLE: PAGE FAULT iz @ 110001;

{
a[500] = 13;

User writes to memory location)

That portion (page) of user’'s memory is
currently paged out (on disk)

80483b7: c¢7 05 10 9d 04 08 0d movl $0xd, 0x8049d10

User code Kernel code

Exception: page fault

movl % >
N Copy pagefrom
Return and disk to memory

reexecute movl

CORNELL CS4414/5416 - FALL 2025 27

FAULT EXAMPLE: INVALID MEMORY REFERENCE

int a[1000];
main ()
{
al[b5000] = 13;
80483b7: c7 05 10 94 04 08 0d movl SO0xd, 0x8049d10)
User code Kernel code
l Exception: page fault
movl >
Detect invalid address
» Signal process

Sends SIGSEGYV signal to user process

User process exits with “segmentation fault”

CORNELL CS4414/5416 - FALL 2025 28

SOME FLAVORS OF SEGMENT FAULTS

Trying to read or write into memory that isn’t part of your
address space.

Trying to modify a write-protected data or code segment.

Trying to jump into (execute) a data segment (this is actually
possible, but you have to do something special).

CORNELL CS4414/5416 - FALL 2025 29

YET EXCEPTIONS ALSO ALLOW US TO
EMULATE “INFINITE NUMBER OF CORES”

Basic idea: if we have more threads than cores, we can use timer
exceptions to switch from thread to thread (or process to process)

This is called a “context switch” and involves saving the state of
the interrupted thread: the contents of the registers.

Then we can load the state of the thread we wish to switch to.

CORNELL CS4414/5416 - FALL 2025 30

CONTEXT SWITCHES BETWEEN PROCESSES

For the hardware, a process is simply a set of threads plus a
memory map that tells which memory pages belong to the
process, and what protection rules to apply.

As part of the context switch, the kernel simply tells the
hardware which “page table” to use for this process.

CORNELL CS4414/5416 - FALL 2025

TODAY

Exceptional Control Flow

Linux signals

Programming language-level exceptions

C++ features for handling exceptions

CORNELL CS4414/5416 - FALL 2025 32

LINUX SIGNALS

Linux uses a variety of signals to “tell” an active process about exceptions
relevant to it. The approach mimics what the hardware does for interrupts.

The signal must be caught or ignored. Some signals are ignored by default.
Others must be caught and will terminate the process if not.

To catch a signal, a process (or some library it uses) must register a “signal
handler” procedure. Linux will pause normal execution and call the handler.
When the handler returns, the interrupted logic resumes.

CORNELL CS4414/5416 - FALL 2025 33

LIST OF LINUX SIGNALS

SIGABRT
SIGALRM
SIGBUS
SIGCHLD
SIGCONT
SIGEMT
SIGFPE
SIGHUP
terminated
SIGILL
SIGINFO
SIGINT
SIGIO
SIGIOT
SIGKILL
SIGLOST
SIGPIPE
SIGPOLL

Abort signal from abort(3)

Timer signal from alarm(2)

Bus error (bad memory access)

Child stopped or terminated

Continue if stopped

Emulator trap

Floating-point exception

User logged out or controlling process

lllegal Instruction

A synonym for SIGPWR

Interrupt from keyboard

|/O now possible (4.2BSD)

|IOT trap. A synonym for SIGABRT

Kill signal (cannot be caught or ignored)
File lock lost (unused)

Broken pipe: write to pipe with no readers
Pollable event (Sys V); synonym for SIGIO

SIGPROF
SIGPWR
SIGQUIT
SIGSEGYV
SIGSTOP
SIGTSTP
SIGSYS
SIGTERM
SIGTRAP
SIGTTIN
SIGTTOU
SIGURG
SIGUSRT
SIGUSR2
SIGVTALRM
SIGXCPU
SIGXFSZ
SIGWINCH

Profiling timer expired

Power failure (System V)

Quit from keyboard

Invalid memory reference

Stop process

Stop typed at terminal
Bad system call (SVr4)
Termination signal

Trace /breakpoint trap

Terminal input for background process
Terminal output for background process
Urgent condition on socket (4.2BSD)
User-defined signal 1

User-defined signal 2

Virtual alarm clock (4.2BSD)

CPU time limit exceeded (4.2BSD)
File size limit exceeded (4.2BSD)
Window resize signal (4.3BSD, Sun)

CORNELL CS4414/5416 - FALL 2025 34

GDB — LINUX DEBUGGER

Allows you to understand where an exception occurred.
You can set breakpoints, examine variables, see the call stack
You can even watch individual variables

Uses exception handlers for all of this!

CORNELL CS4414/5416 - FALL 2025 35

UNFORTUNATELY, NO TIME FOR A DEMO TODAY...
| WOULD HAVE DONE ONE HERE (A PROCESS WITH
AN ERROR TRIGGERING A SEGMENT FAULT)

BUGS THAT CAUSE EXCEPTIONS ARE COMMON... WE “DEBUG”
THEM USING GDB

GDB cheatsheet - page 1

gdb <program> [core dump]
Start GDB (with optional core dump).

gdb --args <program> <args..>
Start GDB and pass arguments
gdb --pid <pid>
Start GDB and attach to process.
set args <args...>

Set arguments to pass to program to
be debugged.

Run the program to be debugged.

kill
Kill the running program.

Breakpoints

break <where>
Set a new breakpoint.

delete <breakpoint#>
Remove a breakpoint.

clear
Delete all breakpoints.

enable <breakpoint#>
Enable a disabled breakpoint.

disable <breakpoint#>
Disable a breakpoint.

watch <where>
Set a new watchpoint.

delete/enable/disable <watchpoint#>
Like breakpoints.

<where>

function name
Break/watch the named function.

line number
Break/watch the line number in the cur-
rent source file.

file:line number
Break/watch the line number in the
named source file.

break/watch <where> if <condition>
Break/watch at the given location if the
condition is met.
Conditions may be almost any C ex-
pression that evaluate to true or false.

condition <breakpoint#> <condition>
Set/change the condition of an existing
break- or watchpoint.

Examining the stack

backtrace
where
Show call stack.

backtrace full

where full
Show call stack, also print the local va-
riables in each frame.

frame <frame#>
Select the stack frame to operate on.

Stepping

step
Go to next instruction (source line), di-
ving into function.

© 2007 Marc Haisenko <marc@darkdust.net>

next
Go to next instruction (source line) but
don‘t dive into functions.

finish
Continue until the current function re-
turns.

continue

Continue normal execution.

Variables and memory

print/format <what>
Print content of variable/memory locati-
on/register.

display/format <what>
Like ,print®, but print the information
after each stepping instruction.

undisplay <display#>
Remove the ,display” with the given
number.

enable display <display#>

disable display <display#>
En- or disable the ,display” with the gi-
ven number.

x/nfu <address>
Print memory.
n: How many units to print (default 1).
f: Format character (like ,print®).
u: Unit.
Unit is one of:
b: Byte,
h: Half-word (two bytes)

w: Word (four bytes)
g: Giant word (eight bytes)).

CORNELL CS4414/5416 - FALL 2025

37

mailto:marc@darkdust.net

GDB cheatsheet - page 2

disassemble
disassemble <where>

Format
Pointer.
Read as integer, print as character.
Integer, signed decimal.
Floating point number.
Integer, print as octal.
Try to treat as C string.
Integer, print as binary (t = ,two*).
Integer, unsigned decimal.
Integer, print as hexadecimal.

S ol O M Q QD

|

expression
Almost any C expression, including

function calls (must be prefixed with a
cast to tell GDB the return value type).

file name::variable name

Content of the variable defined in the

named file (static variables).

function::variable name

Content of the variable defined in the

named function (if on the stack).

{type}address
Content at address, interpreted as
being of the C type type.

Sregister

Content of named register. Interesting
registers are $esp (stack pointer), $ebp
(frame pointer) and $eip (instruction

pointer).

thread <thread#>
Chose thread to operate on.

Manipulating the program

set var <variable name>=<value>

Change the content of a variable to the
given value.

return <expression>

Force the current function to returnim-
mediately, passing the given value.

directory <directory>

list
list
list
list

Add directory to the list of directories
that is searched for sources.

<filename>:<function>
<filename>:<line number>
<first>,<last>
Shows the current or given source con-
text. The filename may be omitted. If
last is omitted the context starting at
start is printed instead of centered a-
round it.

set listsize <count>

Set how many lines to show in list*.

handle <signal> <options>

Set how to handle signles. Options are:

(no)print: (Don‘t) print a message when
signals occurs.

(no)stop: (Don't) stop the program
when signals occurs.

(no)pass: (Don't) pass the signal to the
program.

© 2007 Marc Haisenko <marc@darkdust.net>

info

info

info

info

info

info

info

show

show

Disassemble the current function or
given location.

args
Print the arguments to the function of
the current stack frame.

breakpoints
Print informations about the break- and
watchpoints.

display
Print informations about the ,displays®.

locals
Print the local variables in the currently
selected stack frame.

sharedlibrary
List loaded shared libraries.

signals
List all signals and how they are cur-
rently handled.

threads
List all threads.

directories
Print all directories in which GDB sear-
ches for source files.

listsize
Print how many are shown in the ,list*
command.

whatis variable name

Print type of named variable.

CORNELL CS4414/5416 - FALL 2025

38

mailto:marc@darkdust.net

TODAY

Exceptional Control Flow

Linux signals

Programming language-level exceptions

C++ features for handling exceptions

CORNELL CS4414/5416 - FALL 2025 39

UNHANDLED SEGMENTATION FAULTS

Our program dereferenced a null pointer, causing a segmentation
fault. gdb showed us the line and variable responsible for the crash.

Notice the contrast with the cases where Linux was able to handle the
fault: page faults and stack faults... in those, the program hadn’t done
anything wrong... The instruction that caused the fault can be retried
(and will succeed) once the new page is mapped in.

With a segmentation fault, there is no way to “repair” the issue.

CORNELL CS4414/5416 - FALL 2025 40

WHAT CAN WE DO?

Segmentation faults terminate the process.

But you could also “imagine” catching them and just terminating
some thread that triggered the fault.

Other kinds of exceptions might be user-designed ones intended
to reflect program logic, like “divide by 0” in Bignum

CORNELL CS4414/5416 - FALL 2025 41

... LEADING TO

The C++ concept of a “thrown” exception, and try /catch

We use this feature to manage many kinds of exceptions that
we anticipated and want to handle in code

But it can be a bit tricky to get this right without leaking memory
or other kinds of resources, as we will see next

CORNELL CS4414/5416 - FALL 2025 42

TODAY

Exceptional Control Flow

Linux signals

Programming language-level exceptions

C++ features for handling exceptions

CORNELL CS4414/5416 - FALL 2025 43

EXCEPTIONS AT THE LANGUAGE LEVEL

Many programming languages have features to help you manage exceptions.

For Linux signals, this is done purely through library procedures that register that register the
desired handler method.

But for program exceptions, a program might halt, or there may be a way to manage the
exception and resume execution.

One big difference: Linux can restart a program at the exact instruction and in the exact state
it was in prior to an interrupt or signal. But a programming language generally can’t resume

the same instruction after an event like a zero divide, so we need a way to transfer control to
“alternative logic”

CORNELL CS4414/5416 - FALL 2025 44

WHAT CAN WE DO IF A FAULT MIGHT OCCUR,
BUT CAN BE HANDLED?

Most languages, including C++, offer a way to attempt some
action, but then “catch” exceptions that might occur.

As part of these mechanisms the application is given a way to
“throw” an exception if the logic detects a problem.

CORNELL CS4414/5416 - FALL 2025 45

C++ CONSTRUCT

fry

{

}

catch (exception-type) // Something went wrong!

{
J

do_something...

handler for exception // “Fix” the issue (or report it)

CORNELL CS4414/5416 - FALL 2025 46

C++ CONSTRUCT

fry

{

}

catch (EmployeeUnknown) // “Employee unknown”

{
J

salaries[employee] *= 1.05;// Give a raise...

handler for exception // Print an error msg

CORNELL CS4414/5416 - FALL 2025 47

“DO_SOMETHING” WON'T BE RETRIED

When Linux handled a page fault, it restarted the program on
the same instruction and in the same state as it had at the fault.

When C++ catches this “not found” error and prints the error
message, we just continue with the next line of code.

CORNELL CS4414/5416 - FALL 2025 43

A COMMON ISSUE THIS CAN RAISE

Suppose that your program was working with a resource such as
an open file, or was holding a lock (we’ll discuss locks soon...)

The try/catch can jump to a caller, exiting from one or more
code blocks and method calls that were active.

Thus the resource could be left “dangling”, causing memory
leaks or open files or other potential problems.

CORNELL CS4414/5416 - FALL 2025 49

VISUALIZING THIS ISSUE

void annual_sip(float standard_raise)

{

for(auto emp: emp_list)

{
fry

{
}
catch(EmployeeNotFound)

{
}

give_raise(emp.name, .05);

cout << “Salary DB is missing an employee!” << end];

void give_raise(char® name, float raise)

{

FILE *fp = fopen(“Paychecks.dat”);
salaries[name] *= 1.0 + raise;

.... write a record in the paychecks file...

fclose(fp);

}

CORNELL CS4414/5416 - FALL 2025

50

VISUALIZING THIS ISSUE

void annual_sip(float standard_raise)

{

for(auto emp: emp_list) If this employee is not in

{ the salaries database,

fry

exception is thrown here.

{
}
catch(EmployeeNotFound)

{
}

give_raise(emp.name, .05);

cout << “Salary DB is missing an employee!” << end];

void give_raise(char® name, float raise)

{

o = fopen(“Paychecks.dat”);
salaries[name] 3= 1.0 + raise;

.... write a record in the paychecks file...

fclose(fp);

}

CORNELL CS4414/5416 - FALL 2025

51

VISUALIZING THIS ISSUE

void annual_sip(float standard_raise)

{

for(auto emp: emp_list)

{

The exception transfers control to the catch block
in annual_sip. The stack frame of give_raise is
released. But this means that the line that calls

fclose will never execute, so we “leak” open files!

catch(EmployeeNotFound)

{
}

cout << “Salary DB is missing an employee!” << end];

void give_raise(char® name, float raise)

{

FILE *fp = fopen(“Paychecks.dat”);
salaries[name] *= 1.0 + raise;

.... write a record in the paychecks file...
E fclose(fp); D

}

CORNELL CS4414/5416 - FALL 2025

52

f_;il'lu|!||' Linked list

LINKED LIST EXAMPLE Koy BN prg o B g e

Suppose that your code is adding a node in a linked list. Now
the exception handler tries to access that list data structure.

The list might sometimes “seem to be broken” because not all the
pointers will have their correct valuesl!

Any data that your program updates could be seen during the
update, rather than just before or after!

CORNELL CS4414/5416 - FALL 2025 53

EXCEPTIONS RUN A RISK OF BUGS!

If an exception handler were to look at this list while it was
changing, it could crash! Similarly, an exception handler can’t
allocate new memory objects, or print a message — all of those
could be unsafe at some random moment when the handler runs!

Solution? Sometimes you can temporarily disable exception
handling. Additionally, it is always best for exceptional handlers
to be short, self-contained, and to not invoke library methods!

CORNELL CS4414/5416 - FALL 2025 54

ANOTHER SOLUTION

Often we package pointers as std::shared_ptr<T> obijects.
These have a getter that pretends the object is of type T*.

But they are reference counted: each time a “pointer” goes out
of scope, the count decrements. They automatically call free
when the count drops to 0. And this works even with exceptions!

CORNELL CS4414/5416 - FALL 2025 55

C++ CATCH WON’T AUTOMATICALLY HELP
BUT AT LEAST ENABLES “WORK AROUNDS™

For cases where we don’t just have a pointer to worry about, a
throw /catch sequence won't resume the code that threw the

exception. But you can catch anticipated exceptions and do any
needed cleanup.

Moreover, in C++ we will have run the destructors for all stack
allocated objects that went out of scope before running catch.
This is why shared_ptr<T> works even with exceptions.

CORNELL CS4414/5416 - FALL 2025 56

COULD C++ THROW/CATCH REPLACE
SIGNALS?

It may seem natural to think about using throw /catch as a signal
replacement, but this won’t work.

The problem is that a signal is asynchronous and unpredictable.
With throw /catch the exception is synchronous and usually involves a
software “choice” to throw the exception.

This is a shame, in fact, because it is so hard to write safe signal
handlers.

CORNELL CS4414/5416 - FALL 2025 57

REVIEW: THE EXCEPTION ABSTRACTION

Normal flow of events triggers some exception {

if (automatically fixable) {
OS kernel fixes the issue, resumes invisibly.

} else if catchable and there is a catch block {
control transfers to the catch block

} else {
abort terminates the program, creates a
core file you can examine using gdb

J

Can’t find your Ubuntu core file? Read these instructions. CORNELL (S4414/5416 - FALL 2025 58

https://askubuntu.com/questions/1349047/where-do-i-find-core-dump-files-and-how-do-i-view-and-analyze-the-backtrace-st?newreg=1a08096c4ab749a4a12f04a91d1babbf

SUMMARY

The exception pattern is very widely seen in Linux and C++. Broadly,
exception handling mimics hardware interrupts. But hardware
interrupts and signals can be “inhibited”.

C++ try/catch control flow can’t be inhibited and can easily disrupt
updates and resource management: a potential source of serious bugs.

Per-resource wrappers offer an elegant solution.

CORNELL CS4414/5416 - FALL 2025 59

SELF-TEST QUESTIONS

In C++ we almost always use std:ishared_ptr<T> rather than *T.

Can you invent a scenario where you would much rather use true
pointers, not these separate objects¢ (Hint: think about prior
lectures on parallelism).

We mentioned that in Rust, “use after free” cannot occur. Does
a program that uses shared_ptr<T> instead of *T risk “use after

free” errorse

CORNELL CS4414/5416 - FALL 2025 60

SELF-TEST QUESTIONS

People who work on “product sustainability” often need to
correct rare bugs seen in deployment.

Sometimes they have the idea of catching exceptions, as a way
to work around a bug,.

Why is this often found to introduce new memory leaks?

CORNELL CS4414/5416 - FALL 2025 61

SELF-TEST QUESTIONS

We saw that Linux supports signals that can be used by
programmers, for one process to notify another process.

What kinds of bugs can arise if a signal handler runs at an
arbitrary instant while the receiver process is actively running?
(Hint: think about data structures, critical sections).

What sorts of logic is always safe in a signal handler?

CORNELL CS4414/5416 - FALL 2025 62

	Exceptions and unusual control flow patterns
	Idea Map for today
	Visualize an OS device driver and the device it talks to
	Kind of like a thread plus a form of exception notification!
	Exceptions have a deep history: Printers apparently Used to Catch Fire fairly often!
	Highly Exceptional Control Flow
	Today
	Kernel threads
	… and disks really do have threads too!
	How do they wake each other up?
	Control Flow
	Altering the Control Flow
	Exceptions: several “flavors” but many commonalities
	Biggest concern
	How we handle this
	Let’s look first at mechanisms, but then we will see an abstraction emerge
	This illustrates conceptual abstraction
	This design pattern is a Linux feature
	Exception Tables
	Exception tables
	 (Partial) Taxonomy
	Asynchronous Exceptions (Interrupts)
	Synchronous Exceptions
	System Calls
	System Call Example: Opening File
	System Call Example: Opening File
	Fault Example: Page Fault
	Fault Example: Invalid Memory Reference
	Some flavors of segment faults
	Yet Exceptions also allow us to emulate “infinite number of cores”
	context switches between processes
	Today
	Linux signals
	List of Linux signals
	GDB – Linux Debugger
	Unfortunately, no time for a demo today… I would have done one here (a process with an error triggering a segment fault)���Bugs that cause exceptions are common… we “debug” them using gdb
	Slide Number 37
	Slide Number 38
	Today
	Unhandled Segmentation faults
	What can we do?
	… leading to
	Today
	Exceptions at the language level
	What can we do if a fault might occur, but can be handled?
	C++ construct
	C++ construct
	“do_something” won’t be retried
	A common issue this can raise
	Visualizing this issue
	Visualizing this issue
	Visualizing this issue
	Linked List example
	Exceptions run a risk of bugs!
	Another solution
	C++ catch won’t automatically help but at least enables “work arounds”
	Could C++ throw/catch replace signals?
	Review: The Exception abstraction
	Summary
	Self-Test Questions
	Self-Test Questions
	Self-Test Questions

