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IDEA MAP FOR TODAY

Understanding the parallelism inherent in
an application can help us achieve high
performance with less effort.

|deally, by “aligning” the way we
express our code or solution with the way
Linux and the C++ compiler discover
parallelism, we obtain a great solution

There is a disadvantage to this, too. If we

write code knowing how that some version of the C++
compiler or the O/S will “discover” some opportunity
for parallelism, that guarantee could erode over time.

This tension between what we explicitly express and
what we “implicitly” require is universal in computing,
although people are not always aware of it
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MODERN SYSTEMS ARE FULL OF
OPPORTUNITIES FOR PARALLELISM

Hardware or software prefetching into a cache
File | /O overlapped with computing in the application

Threads (for example, in word count, 1 to open files and many to
process those files).

Linux processes in a pipeline
Daemon processes on a computer
VMs sharing some host machine

Parallel instructions in the Intel instruction set (and many others)
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TITLE SAID THIS IS A “FRAGILE” CONCEPT

With languages like C++ we can leverage and control parallel
computations

... but it isn’t as easy as you might hope, and small
misunderstandings can prevent you from getting the parallel
speedups you are after. There are many imposed rules to follow.

So code designed for parallelism is often fragile — easily broken.
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CONST AND CONSTEXPR AND TEMPLATES
HELP A LOT!

We will see that this fragility often involves rules tied to various
per-hardware-unit constants and properties

»  With such powerful compile-time support we can write simple
inlined methods and templates that “enforce” the hardware
requirements, in ways that package them to look elegant

» QOur code will be much more portable (we would just have to
send in the constants for a particular hardware device by
recompiling each time we move to a new device)
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WAYS TO SEND DATA INTO A COMPILER

The most powerful way to send a constant into a compile is called the
DEFINE feature. It is tied to bash variables.

Bash maintains a directory of variable names and values. You can
add more of them using a command called “export”

» export ROWLEN=20

You can also use a compiler option =DROWLEN=20. And your
compiler makefile can even use the ${ROWLEN} notation as needed
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WAYS TO SEND DATA INTO A COMPILER

A powerful option to send a constant into a compiler is called the
DEFINE feature. It is tied to bash variables.

Any variable name you like
Bash maintains a o
add more of ther

» export ROWLEN=20

alues. You can

Any substitution value you wish |

You can also use a compiler option =DROWLEN=20. And your
compiler makefile can even use the ${ROWLEN} notation as needed
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WAYS TO SEND DATA INTO A COMPILER

A powerful option to send a constant into a compiler is called the
DEFINE feature. It is tied to bash variables.

Bash maintains a directory of variable names and values. You can
add more of them using a command called “export”

» export ROWLEN=20

You can also use a compiler option =DROWLEN=20. And your
compiler makefile can even use the ${ROWLEN} notation as needed
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THERE ARE ALSO PREDEFINED VALUES

We obtain them from header files

Often they are header files for C, so they end with .h

Inside they have long lists of C-style constants:

Hdefine ROWLEN 20
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IN YOUR CODE THESE “DEFINED” VALUES
SHOW UP AS CONSTANTS

Anything that was given to the compiler with =D can be used as
a compile-time constant.

You can also access the environment variables directly using
getenv but this is a runtime, not a compile time, feature. Runtime
actions are (by definition) not constants.

We will see how these constants factor into parallelism
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A FEW WAYS TO OBTAIN PARALLELISM

Some of these are automatic. E.g.: if Linux notices that the file is
being scanned sequentially, it will prefetch blocks.

Some require special logic: To process many blocks in parallel, you
launch many threads, one per block. As long as these threads don'’t
interfere with one-another, we get an n-fold speedup.

Some depend on the compiler mapping your code to “parallel
instructions” supported by the CPU.
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EMBARASSING PARALLELISM

There are entire textbooks and courses on parallel algorithms

But most parallel computing opportunities are totally obvious —
things that can easily be done simultaneously if we understand
how to “launch” and “control” that pattern of execution.

We call this “embarrassing parallelism” when the opportunity is
just sitting there but we neglected to leverage it.
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OPPORTUNITIES FOR PARALLELISM

Consider this photo rotation:

Rotate 3-D

Does it have embarrassing parallism in the task?
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OPPORTUNITIES FOR PARALLELISM

Application

O/S kernel
~— A
Storage
device

The application has multiple threads and
they are processing different blocks.

The blocks themselves are arrays of pixels.
We need to multiply each pixel against a
small 4x4 tensor describing the rotation

File system could be doing prefetching

On disk, photo spans many blocks
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BUT THE EXAMPLE AS SHOWN HAS A “GOTCHA"!

Are these submatrices actually adjacent
data, in the image as held in memory?

In C++ (like most languages), a matrix is
represented in “row major” layout: first
all the data in row O, sequentially, then

row 1, etc.
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HOW IS AN IN-MEMORY ARRAY REPRESENTED?

float myArray[4][3]

Smallest —_— 1111 ] 32-bit float: 4 bytes each
address
2.222
3.333
4.444 —— Sixteen floats per cache
5.555 line (64 / 4)
Larger
addresses
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BUT THE EXAMPLE AS SHOWN HAS A “GOTCHA"!

... $0, data in a single row is contiguous. A
raster of the image is a row in a matrix!

... and a slice holding several complete rows
would also be contiguous

But these submatrices are “scattered” in the
larger matrix. They only look contiguous in
my grid overlay on the image!
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BUT THE EXAMPLE AS SHOWN HAS A “GOTCHA"!

On the left, | put grid lines as a person
might expect the data to look on
disk... but this assumed layout is wrong.

In a matrix, each single row is
contiguous in memory.

A photo is a matrix where each raster,
is like a row. But... one disk block
holds 4096 bytes. This high-res color
image has 24bits (3 bytes)/pixel...

1800 x 2250, 24-bit. Each raster is 1800x24 bits, and each disk block holds 4096*8 bits... one single raster occupies 1.3 blocks. The next raster starts when the
first one ends, with no padding of any kind — the file simply has the bytes in row-major (which for us is raster-major) order.
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BUT THE EXAMPLE AS SHOWN HAS A “GOTCHA"!

This one grid cell includes data from 562 rasters...

In fact even this slide is deceptive: it makes the rasters seem like
they at least line up in those blocks. But they won’t because the
full image raster isn't an exact power of 2. Each “grid cell
raster” will probably split over two disk blocks.

Computing on this one grid cell requires accessing ~1225
blocks. The only good news is that for this actual image, the
access pattern would still be pretty sequential, but it is easy to
come up with images where the pattern would look random!

And with different threads processing different grid cells, these
blocks are often read many times, even with file system caching
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HOW BAD COULD IT BE? ... PRETTY BAD!

Apparently, one thread will read hundreds or thousands of
blocks just to process a single grid cell in our rotation task, and
each block might be reread again and again.

This will be incredibly slow!
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OPPORTUNITIES FOR PARALLELISM

Smarter photo rotation:

Now each
slice we are
rotating is a
contiguous
submatrix of
the image!
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OPPORTUNITIES FOR PARALLELISM

Smarter: have each thread scan a series of sequential rasters.

With N threads, the first can scan the first 2250 /N rasters, the
second can do the next 2250/N, etc.

Each block is read sequentially and just once. 2 reads per raster
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WHAT DOES THIS SAY ABOUT “REQUIREMENTS™
FOR THE MAXIMUM DEGREE OF PARALLELISM?

A task must be able to run independently from any other tasks on

data that is independently accessible, and ideally, contiguous and in
distinct pages (normally 4K)

There should be an opportunity to have many of these running

Individual tasks shouldn’t “stall” (by waiting for 1/O, or paging, or a
lock). Our original partitioning of the photo might stall.
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ISSUES RAISED BY LAUNCHING THREADS:
“UNNOTICED” SHARING

Recall that we want Linux to prefetch each block.

With n threads, we have n separate tasks requesting blocks.

It will be important that Linux still sees these requests in order, as
sequential reads. If reads “jump around” in the file, as with our
original blocking, Linux won’t notice the sequence and won’t prefetch.

The reads “surprise” the OS and your reading threads stall...
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ISSUES RAISED BY LAUNCHING THREADS:
“UNNOTICED” SHARING

Suppose that your application uses a standard C++ library

If that library has any form of internal data sharing or
dependencies, your threads might happen to call those methods
simultaneously, causing interference effects.

This can lead to concurrency bugs, which will be a big topic for us
soon (but not in today’s lecture). Preventing bugs requires locks
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... LOCKING CAN INVOLVE WAITING (STALLS).

We will need to learn to use locking or other forms of concurrency
control (mutual exclusion). For example, in C++:

std::mutex my_mutex; // Defines a form of lock

{
std::lock_guard my_lock(my_mutex); // Obtains the lock, may wait here
... this code will be safe ...

}
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... LOCKING CA
Is O N E EXAMPL std::lock_guard works, but modern C++ has

other options too.

We will need to learn tc¢

) In an upcoming lecture we will see the “best
control (mutual exclusion

standard practice”, but it involves a C++
language feature we haven't talked about yet

std::mutex my_mutex;

std::lock_guard my_lock(my_mutex); // Obtains the lock, may wait here
... this code will be safe ...
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ANY FORM OF STALLING REDUCES PARALLELISM

Now thread A would wait for B, or vice versa, and the protected
object, such as a counter, is incremented in two separate actions

But if A or B paused, we saw some delay

This is like with Amdahl’s law: the lock has become a bottleneck!
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PARALLEL SOLUTIONS MAY ALSO BE HARDER
TO CREATE DUE TO EXTRA STEPS REQUIRED

Think back to our word counting programs. It avoided locks!

We used 24 threads, but ended up with 24 separate sub-counts

» The issue was that we wanted the heap for each thread to be a
RAM memory unit close to that thread

> So, we end up wanting each to have its own std::map to count words

> But rather than 24 one-by-one map-merge steps, we ended up going
for a parallel merge approach
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MORE COSTS OF PARALLELISM

These std::map merge operations are only needed because our
decision to use parallel threads resulted in us having many maps.

... code complexity increased
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IMAGE AND TENSOR PROCESSING

Images and the data objects that arise in ML are tensors:
matrices with 1, 2 or perhaps many dimensions.

Operations like adjusting the colors on an image, adding or
transposing a matrix, are embarrassingly parallel. Even matrix
multiply has a mix of parallel and sequential steps.

This is why hardware vendors created GPUs.
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CONCEPT: SISD VERSUS SIMD

A normal CPU is single instruction, single data

An instruction like movg moves a single quad-sized integer
to a register, or from a register to memory.

An instruction like addq does an add operation on a single register

So: one instruction, one data item
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Rotate 3-D

CONCEPT SISD VERSUS SIMD

A SIMD instruction is a single instruction, but it operates on a
vector or matrix all as a single operation. For example: apply a
3-D rotation to my entire photo in “one operation™

In effect, Intel used some space on the NUMA chip to create a
kind of processor that can operate on multiple data items in @
single clock step. One instruction, multiple data objects: SIMD
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Rotate 3-D

SIDE REMARK

In fact, rotating a photo takes more than one machine instruction.

It actually involves a matrix multiplication: the photo is a kind of
matrix (of pixels), and there is a matrix-multiplication we can
perform that will do the entire rotation.

So... a single matrix multiplication, but it takes a few instructions in
machine code, per pixel. SIMD could do each instruction on many
pixels at the same time.
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SIMD LIMITATIONS

A SIMD system always has some limited number of CPUs for
these parallel operations.

Moreover, the computer memory has a limited number of
parallel data paths for these CPUs to load and store data

As a result, there will be some limit to how many data items the
operation can act on in that single step!
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TURING TENSOR CORES
INT8

INTEL VECTORIZATION
COMPARED WITH GPU

A vectorized computation on an Intel machine is limited to a
total object size of 64 bytes.
Intel allows you some flexibility about the data in this vector.

It could be 8 longs, 16 int-32’s, 64 bytes, etc.

In contrast, the NVIDIA Tesla T4 GPU we talked about in lecture 4 has
thousands of CPUs that can talk, simultaneously, to the special built-in
GPU memory. A Tesla SIMD can access a far larger vector or matrix in a

single machine operation.
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EXAMPLE: PHOTO ROTATION

With a SIMD approach, we can rotate “one raster at a time”

We would want each raster to be a fixed number of cache lines
in length, holding a fixed set of pixels per raster. We also need
the entire image object to start on a cache-line boundary, and

we need C++ to realize this.

Then we would get a 16x or 32x speedup!
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IRREGULAR SIZES?

They will be slower because C++ will generate a mix of pixel
by pixel operations and cache-line parallel SIMD ones.

It does this transparently... yet your code will run more slowly!

So... as the developer... you will be rewarded (by a speedup)
for designing code to have the ideal properties!
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... C54414 1S ABOUT PROGRAMMING A
NUMA MACHINE, NOT A GPU

So, we won’t discuss the GPU programming case.

But it is interesting to realize that normal C++ can benefit from
Intel’s vectorized instructions, if your machine has that capability!

To do this we need a C++ compiler with vectorization support
and must write our code in a careful way, to “expose” parallelism
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... AND ABOUT ABSTRACTIONS

Unfortunately, we need new programming language ideas to do
a better job of abstracting parallelism opportunities

» Threads work well, and we’ll learn about them. Abstracted
concurrency.

> But the kind of parallelism where one instruction triggers a
“row” of micro-CPUs to transform a whole vector of data
in one shot is simply not easy to “abstract”. Leveraging it
feels very manuel (hands-on).
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THE INTEL VECTORIZATION INSTRUCTIONS

When the MMX extensions to the Intel x86 instructions were
released in 1996, Intel also released compiler optimization
software to discover vectorizable code patterns and leverage

these SIMD instructions where feasible.

The optimizations are only available if the target computer is an
Intel chip that supports these SIMD instructions.
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INITIALLY, C+-+ DID NOT SUPPORT MMX

It took several years before other C++ compilers adopted the MMX
extensions and incorporated the associated logic.

Today, C++ will search for vectorization opportunities if you ask for
it, via -ftree-vectorize or —O3 flags to the C++ command line.

... SO, many programs have vectorizable code that doesn’t exploit
vector-parallel opportunities even on a computer than has MMX
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INTEL IS NOT THE ONLY CPU DESIGNER. GCC
IS NOT THE ONLY C++ COMPILER...

AMD and ARM are other major players in the CPU design
space. They have their own vector-parallel design, and the
instructions are different (but similar in overall approach).

Clang is another major C++ compiler. It aligns with GCC on
most things, but has slightly different rules for how it detects
opportunities to generate parallel code
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MODERN C++ SUPPORT FOR SIMD

Requires —O3 option to gcc (older option name: -ftree-vectorize)

You must write your code in a vectorizable manner: simple for
oops that access the whole vector (the loop condition can only
nave a simple condition based on vector length), body of the
oop must map to the SIMD instructions.
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EXAMPLE OF A REQUIREMENT

A matrix should be “densely” layed out, in memory, and start on
a cache-line boundary (an address that is a multiple of 64)

We mentioned this earlier. Now we will see how it can be
harder than it sounds!
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EXAMPLE OF A REQUIREMENT

... Thought questions:
> |s a C++ std::vector<float> densely represented in memory?
> What about std::vector<std::vector<float>>2

> Do they start on cache-line boundaries? Even if so, will C++
know this at compile time?

» How long is a SIMD data vectoré This is something you supply
as a constant, so you can change it for different hardware
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WHY WOULD WE ASK THIS QUESTION?

std::vector<std:string™> stringVector = {"3.14","2.718", "42.0"};

When reading a table of

// Convert strings to floats

T TPRL
dGTCI ( d STrUCTured fl Ie ) std::vector<float> floatVector;
each line gene rO|||y is for (const auto& str : stringVector) {
. try {

read into a float value = std::stof(str);

e . . floatVector.push_back(value);

STd..VeCTOr<STd..S1'I'Ing >' } catch (const std::invalid_argument& e) {

but this is eqsily converted // Handle invalid strings (e.g., non-numeric)

std::cerr << "Error parsing string: " << str << std::endl;

to a std::vector<float> }
}
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... SO EACH ROW IS A STD::VECTOR<FLOAT>

A table with R rows becomes a vector of vectors! Suppose each
row has F floats in it.

std::vector<std::vector<float>>, with R*F entries in total

But to leverage parallel instructions, we need this to be
physically contigurous in memory
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HOW IS STD::VECTOR<FLOAT> “REPRESENTED™?

Internally, C++ has a small object holding the length, type and
a pointer to the actual data, which is allocated using malloc

Length, “float”, *

17.8761 |  3.14152| 1.416791| 9.097199 4.82604
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HOW IS STD::VECTOR<STD::VECTOR<FLOAT>> “REPRESENTED™?

Internally, C++ has a small object holding the length, type and a
pointer to the actual data, which is allocated using malloc

Length, “std::vector< float>", *

Length, “float”, *

Length, “float”, *
Length, “float”, *

Length, “float”, *

17.8761 3.14152| 1.416791 |_9.097190| ax.
17.8761|  3.14152] 1416791 |[_ocerionl s sncar]
1787611 3.14152] 14167911 9.0 174761 | 3.04152] 1.416791| 9.09719

These four vectors might not be contiguous in memory! And unless
you use aligned_malloc, they might not be cache-line aligned!
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REMINDER: DENSE IN-MEMORY ARRAY IS REPRESENTED

SEQUENTIALLY IN MEMORY

float myArray[4][3]

Smallest

e

address

Larger
addresses

e

1.111

2.222

3.333

4.444

5.555

32-bit float: 4 bytes each
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... AND THE MMX INSTRUCTIONS WANT A DENSE SEQUENCE!

float myArray[4][3]

Smallest
D
address

Larger
D
addresses

1.111

2.222

3.333

4.444

5.555

32-bit float: 4 bytes each

——  Eight floats per cache
line (64 / 4)
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... AND THE MMX INSTRUCTIONS WANT A DENSE SEQUENCE!

float myArray[4][3]

Smallest address
must be a multiple
of 64: ‘“cache-line
aligned” data

Entire data object
should be an exact
multiple of 64

32-bit float: 4 bytes each

—— Sixteen floats per cache
line (64 / 4)
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PARALLEL INSTRUCTIONS

They operate on an entire cache line in one shot, or two cache lines for
vector-vector operations

» Example: Multiply every float-32 by 2.5
» Example: Y = A + B
» Y = A + B*2.5 requires two instructions

» Can also perform row * column in one instruction

A cache-line is 64 bytes long, and a float-32 is a 4 byte object, so a single
instruction performs 16 operations
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HOW DOES IT HANDLE THE COLUMNS?

They aren’t “sequential in memory”, yet MMX also can handle
columns because rows have fixed length.

The distance from element k of column k to element k+1 will be
exactly the row length plus 1.

The feature is much faster if row length is power of 2, because it
allows MMX to “multiply” using shift-left, which is faster
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WHAT ABOUT NON-CACHE-LINE MULTIPLES

Cache-line boundary: A memory address that is a multiple of 64

C++ compiler will use one-by-one logic until it reaches a cache-
line boundary, then cache-line-at-a-time logic until there is less
than one cache-line of data still to do, then one-by-one again.

This is quite slow, and you’ll notice the slowdown if you measure
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THE COMPILER NEEDS YOUR HELP!

Random C++ code won’t be very vectorizable

But if you code in a careful way, you can arrange for your logic
to vectorize nicely. You need to give “hints” to help the compiler

C++ needs to be able to see that the data is properly cache
aligned, and dense in memory, and of fixed chunk-sizes that are
multiples of the cache-line length
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A HELPFUL DATATYPE DECLARATION:

For a vector or matrix declared inline, C++ will automatically
memory align it, and track that it did so.

For complex structures, declared inline, C++ might need help.
This example is GCC-specific but would work:

__declspec(align(64)) struct Str1{
inta, b, c, d, e;

}i
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WHAT ABOUT POINTERS?

For a pointer, use a declaration like this (GCCspecific):
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... BUT A WARNING

You could “lie” and it would result in strange program crashes

Once you promise to put an aligned pointer into your pointer
variable, C++ will trust that you did so, and will generate MMX
code that only works with an aligned pointer!

Type checking helps... but would be relatively easy to fool
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GNU C+-+ EXAMPLES THAT WOULD
PARALLELIZE AUTOMATICALLY

This simple addition

. Example 1:
can be done in parallel. e 2561, c[256]
foo () {
inti;
The compiler will eliminate the for (i=0; i<256; i++){
loop if a single operation suffices. }"['] = BIil + il
Otherwise it will generate one }

instruction per “chunk”
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GNU C+-+ EXAMPLES THAT WOULD
PARALLELIZE AUTOMATICALLY

Example 2:
Here we see more difficult int a[256], b[256], <[256];
foo (int n, int x) {
cases int i;

[* feature: support for unknown loop bound */
[* feature: support for loop invariants */
for (i=0; i<n; i++)

The compiler can’t predict }b[‘] =X
’rhe pOSSible VCIIUGS N COUId [* feature: general loop exit condition */

. . * f : for bitwi i *
hCIVG, mOIklng thS COCIe hCII’CI ‘/Nhielzi(unr-e-)s{uppori or bitwise operations */
to “chunk” ali] = blil&c[il; i++;

}

}
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GNU C+-+ EXAMPLES THAT WOULD
PARALLELIZE AUTOMATICALLY

Example 8:

Parallelizing a 2-d matrix T

seems “easy” but in fact foo (int x) {
i

data layout matters. o

[* feature: support for multidimensional arrays */
for (i=0; i<M; i++) {
for (j=0; j<N; j++) {

To successfully handle such alili] = x;
cases, the dimensions must }}

be constants known at ;
compile timel
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GNU C+-+ EXAMPLES THAT WOULD
PARALLELIZE AUTOMATICALLY

Example 9:

This sum over differences i G AT
is quite a tricky operation foo () {

. int i;
to parallelize! o

[* feature: support summation reduction.
note: in case of floats use -funsafe-math-optimizations

*/
C++ uses a femporq ry unsigned int diff = O;

. . for (i=0;i <N;it++){
object, generates the diff, udiff += (ub[i] - uelil);
then sums over the temporary !
array
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SUMMARY: THINGS YOU CAN DO

Apply a basic mathematical operation to each element of a
vector.

Perform element-by-element operations on two vectors of the
same size and layout

Apply a very limited set of conditional operations on an item by
item basis
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ADVICE FROM INTEL

Think hard about the layout of data in memory

Vector hardware only reaches its peak performance for carefully
“aligned” data (for example, on 16-byte boundaries).

Data must also be densely packed: instead of an array of structures
or objects, they suggest that you build objects that contain arrays of
data, even if this forces changes to your software design.

Write vectorization code in simple “basic blocks” that the compiler
can easily identify. Straight-line code is best.

“inline” any functions called on the right-hand of an = sign
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WITHIN THAT CODE...

On the right hand slide of expressions, limit yourself to accessing
arrays and simple “invariant” expressions that can be computed
once, at the top of the code block, then reused.

Avoid global variables: the compiler may be unable to prove to
itself that the values don’t change, and this can prevent it from
exploring many kinds of vectorization opportunities.
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LEFT HAND SIDE...

When doing indexed data access, try to have the left hand side
and right hand side “match up”: vectors of equal size, etc.

Build for loops with a single index variable, and use that
variable as the array index — don’t have other counters that are

also used.

SIMD code can access a register holding the for-loop index, but
might not be able to load other kinds of variables like counters
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THINGS TO AVOID

No non-inlined function calls in these vectorizable loops, other
than to basic mathematical functions provided in the Intel library

No non-vectorizable inner code blocks (these disable vectorizing
the outer code block)

No “data dependent” end-of-loop conditions: These often make
the whole loop non-vectorizable
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POTENTIAL SPEEDUP?

With Intel MMX SIMD instructions, you get a maximum speedup
of about 128x for operations on bit vectors.

More typical are speedups of 16x to 64x for small integers.

Future processors are likely to double this every few years
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FLOATING POINT

Given this form of vectorized integer support, there has been o
lot of attention to whether floating point can somehow be
mapped to integer vectors.

In certain situations this is possible: it works best if the entire
vector can be represented using a single exponent, so that we
can have a vector of values that share this same exponent, and
then can interpret the vector as limited-precision floating point.
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C++ VECTORIZATION FOR FLOATS

There is a whole ten-page discussion of this in the compiler
reference materials!

With care, you can obtain automatically vectorizable code for
floats, but the rules are quite complicated.

... However, GPU programming would be even harder!
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COULD THIS SOLVE OUR PHOTO ROTATION?

We can think of a photo as a flat 3-D object. Each pixel is a
square. A 3-D rotation is a form of matrix multiplication.

_X-Rotation in 3D__Z-Rotation in 3D _ Scale in 3D
1 0 0 Of| |cose-sing O Of [Sx O 0
0 cosd -sind Q| |sing cose¢ O O |0 Sy 0
0 sind cosd 0 0 1 0 0 ] Sz

| 0 0 o 1] L0 0 0 1] [0 0 0

(4x4)*(4x1) = (4x1)

—\DGDI

_Y-Rotation in 3D__Translation in 3D_ Matrix Multiplication

cos¢ 0 sine Of |1 O 0O Tx a b c djx X'
0O 1 0 0 o 1 0 Ty e f g hiy|_|Y

-sing 0 cosd O 0 o0 1 Tz i k 1|z z

0 0 0 1|0 0 0 1 m n o pj1
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TWO FLOATING POINT OPTIONS

We could “construe” our pixels as floating point numbers.

But we could also replace a floating point number by a rational
number.

For example: T = 22/7. So, x*n = (x*22)/7. We could relace
all operations involving 7 with 22 /7: integer arithmetic!

CORNELL CS4414/5416 - FALL 2025 75



RATIONAL ARITHMETIC LETS US LEVERAGE
THE INTEL VECTOR HARDWARE

The Intel vector instructions only work for integers.

But they are fast, and parallel, and by converting rational
numbers to integers, we can get fairly good results.

Often this is adequatel
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THIS IS WIDELY USED IN MACHINE LEARNING!

We noted that many ML algorithms are very powerhungry

Researchers have shown that often they are computing with far more
precision than required and that reduced-precision versions work just
as well, yet can leverage these vector-parallel SIMD instructions.

These are available in reduced-precision ML libraries and graphics
libraries today.
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TURING TENSOR CORES

GPU VERSUS SIMD

Why not just ship the parallel job to the GPU?

GPUs are costly, and consume a lot of power. A standard processor
with SIMD support that can do an adequate job on the same task
will be cheaper and less power-hungry.

Even if you do have a GPU, using it has overheads:
The system must move the data into the GPU. Like a calculator
where you type in the data.

Then it asks the GPU to perform some operation. “Press the button”
Then must read the results out.
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An earlier “new age”

NEW-AGE OPTIONS

These include TPU accelerators: “tensor processing units”

FPGA: A programmable circuit, which can be connected to other
circuits to build huge ultra-fast vision and speech interpreting
hardware, or blazingly fast logic for ML.

RDMA: Turns a rack of computers or a data center into a big NUMA
machine. Every machine can see the memory of every other machine
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STEPPING BACK WE FIND... CONCEPTUAL
ABSTRACTION PATTERNS.

When you look at a computer, like a desktop or a laptop, what
do you see?

Some people just see a box with a display that has the usual
applications: Word, Zoom, PowerPoint...

Advanced systems programmers see a complex machine, but
they think of it in terms of conceptual building blocks.
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SPEED VERSUS PORTABILITY

One risk with this form of abstract reasoning is that code might
not easily be portable.

We are learning about SIMD opportunities because most
modern computers have SIMD instruction sets (Intel, AMD, etc).

A feature available on just one type of computer can result in a
style of code that has poor performance on other machines.
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APPLICATIONS CAN HAVE BUILT-IN CHECKS

If you do create an application that deliberately leverages
hardware such as a particular kind of vectorization, it makes
sense to have unit tests that benchmark the program on each
distinct computer.

The program can then warn if used on an incompatible platform:
“This program has not been optimized for your device, and may
perform poorly”.
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SUMMARY

Understanding the computer architecture, behavior of the
operating system, data object formats and C++ compiler
enables us to squeeze surprising speedups from our system!

Because SIMD instructions have become common, it is worth
knowing about them. When you are able to leverage them, you
gain speed and reduce power consumption.
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SELF-TEST

Two C++ programs declare a variable of type int named x. List as
many factors as you can that could determine access speed for x.

Would those factors be the same? Or could access to x be slow in
one and fast in the other? Explain why!

What are all the factors that determine whether Intel’s vector
instructions (the MMX features)?

Is a GPU ever automatically used by the compiler, without you
needing to do anything to arrange that¢ Why or why not?

How could you figure out if your computer has been hacked, so that
you are using a virtual machine and not the actual machine?
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SELF-TEST

Consider the image or video rotation example. Assume the file is
huge and that we have many concurrent threads.

What would be the very worst access pattern you can devise?¢ You
can make assumptions about the size of the file, the amount of
memory assigned to the Ubuntu file system buffer pool, and the
behavior of the concurrent threads, but be sure to spell them out so

that a skeptic can verify your claims!

Is this a form of thrashing? Why or why not?¢
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SELF-TEST

A computer game was developed on Intel hardware. When
compiled without —=O3 it is terribly slow, but with —=O3 it
performs incredibly well, really a dramatic speedup.

Your the company is starting to use some AMD servers. What
worries might you have, and what changes could be required to
the source code to get the best performance on AMD hardware?
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