N\YFZANYIANYIANTVI ANV I ANTY I ANY S AN

Z Qﬂ%ﬂ%ﬂ%ﬂ%ﬂ\ﬂ% /
NYZANYZANYZANYZANYZANYZANTZAN
ZAN\YZANYZANVZANYZANYZANYZA\Y/
NYZANYZANYZANYZANYZANYZANTZAN

FJANVIANVIANVIANVIANVIANVIANYS

AVOIDING RUNTIME COMPUTE: | professor Ken B irman
PRECOMPUTING AT COMPILE TIME | cs4414/5416 Lecture 6

IDEA MAP FOR TODAY

Many things can be “precomputed”. In C++ these
include the loop bounds we saw in lecture 6, the types
used in “auto” declarations, and code-inlining and refactoring

The C++ compiler is especially famous for this

Why is this technique so valuable? How do other languages handle the same issue?

Keywords: const, constexpr, consteval

Templates are also a compile-time feature

CORNELL CS4414/5416 - FALL 2025 2

CONNECTION TO ABSTRACTION

As we saw in prior lectures, abstract thinking isn’t limited just to
designing ADTs and modules implementing data structures

Dijkstra taught us to think about abstractions that might span
entire layers of the operating system (like file systems).

In systems programming we often want to give names to constants
used by the system and even computed expressions.

CORNELL CS4414/5416 - FALL 2025 3

HOW DO PROGRAMS IN C OR C+-+ BECOME
EXECUTABLES?

Languages like Python and Java are highly portable. They
compile to byte code... Java does “just in time” compilation to
machine code. A JIT or interpreter must be rapid.

In contrast, C++ is compiled using an optimization-driven model:
on this architecture, what is the best way to turn your code into
machine instructions? It is willing to spend a lot of time during
compilation to reduce delay at runtime.

CORNELL CS4414/5416 - FALL 2025 4

CONSIDER THE HUMBLE PROCEDURE CALL...

In fact, let’s look at an example:

int fibonacci (int n)

fibonacci(n) computes the n'th
: . if (n <= 1)
fibonacci integer eturn n:

return fibonacci(n-1)+fibonacci (n-2) ;

}
O 1123581321....

21 =8+ 13

CORNELL CS4414/5416 - FALL 2025 5

... FIBONACCI IS THE MOST FAMOUS
EXAMPLE OF RECURSION

When first introduced to recursion, many students are confused
because

1. The method is invoking itself,
2. The variable n is being used multiple times in different ways,

3. We even call fibonacci twice in the same block!

Over time, you learn to think in terms of “scope” and to view each
4
instance as a separate scope of execution.

CORNELL CS4414/5416 - FALL 2025 6

WHERE IS FIBONACCI PROCESSED?

In the case of Java or Python, we would know that Fibonacci is
performed at runtime, and we learn all about the costs (will
review these costs in a moment).

But the bottom line is: The function is translated to a highly
efficient data structure (Python) or intermediate code that maps
to instructions (Java), then this logic is interpreted or executed.

CORNELL CS4414/5416 - FALL 2025 7

WHERE IS FIBONACCI PROCESSED?

In C++ there are several possible answers.

The compiler generates any required code but with a more
complete analysis: Python and Java types cannot be fully known
until runtime, whereas C++ types are known at compile time.

But there are also cases where less code or no code is needed!

CORNELL CS4414/5416 - FALL 2025 8

... DOES N NEED A MEMORY LOCATION?

Where does the memory for argument n reside? In Java or Python,
n resides on the stack. Each time fibonacci is called:

>
>
>

YV VYV

Push any registers to the stack, including the return PC
Push arguments (in our case, the current value of n)

Jump to fibonacci, which allocates space on the stack for local
variables (in our case there aren’t any), and executes

When finished, fibonacci pops the PC and returns to the caller
The caller code pops data it pushed (and perhaps also the result)

CORNELL CS4414/5416 - FALL 2025 9

FIBONACCI(5)

F(5)

int fibonacci (int n) #H#H,afrfhnnhhhhhh
{

if(n <= 1) F(4) E(3)

return n;

return fibonacci (n-2)+fibonacci (n-1); ;’Hfﬂxkkx f’fﬁﬁx\\.
} F(3) F(2) F(2) F(1)
fibonacci (5) fibonacci (3) +Fibonacci (4) /\ /\ /\
fibonacci (4) fibonacci (2) +Fibonacci (3) P{Z] P{l] F{l} FIU} Fll} F{U)

fibonacci (3)
fibonacci (2)
fibonacci (1)
Fibonacci (0)

fibonacci (1) +Fibonacci (2)
fibonacci (0) +Fibonacci (1)

. F(1) F(0)

Due to repeatitive pattern, requires 15 calls to Fibonaccil

CORNELL CS4414/5416 - FALL 2025 10

COMMON OPTIMIZATION

In CS2110 we teach about caching (memoization). But a
compiler would not automate this solution: it “changes the code”

int fibonacci (n)

{

if(n <= 1)
return n;
if ('known results.contains(n)) {
known results[n] = fibonacci (n-1)+fibonacci (n-2);

}

return known results[n];

CORNELL CS4414/5416 - FALL 2025 11

WITHOUT MEMOIZATION, WHERE IS TIME
BEING SPENT?

How many instructions really relate to computing fibonacci?

We have an if statement: a comparison (call it
compare “a and b”) then branch “if a >=b”.

% 9
Two recursive calls, one addition, then return. Q T]D

CORNELL CS4414/5416 - FALL 2025 12

THE COST OF THE RECURSIVE CALLS?

They each

> Push registers. Probably 1 is in use.

> Push arguments. In our case, value of n. <

> Push the return PC, iurﬁp to fibonacci «—

» After the call, we need to pop the arguments

and also pop the saved registers.

CORNELL CS4414/5416 - FALL

HEEE

2025 1

... NOW WE CAN FILL IN THE “?” WITH 6

We have an if statement: a comparison (call it
compare “a and b”) then branch “if a >=b”.

Two recursive calls, one addition, then return. @ + 2D

CORNELL CS4414/5416 - FALL 2025 14

How many instructions really relate to computing fibonacci? @

HOW MANY INSTRUCTIONS TO PUSH AND
POP ARGUMENTS?

About 15 instructions per call to fibonacci. Of these, 1 is the actual
addition operation, and the others are “housekeeping”

For example: fibonacci(5)=0...1...1...2...3...5

Our code needs to do the required 5 additions. However, to
compute it we will do 15 recursive calls at a cost of about 15
instructions each: 255 instructions... 51x slower than ideal!

CORNELL CS4414/5416 - FALL 2025 15

SOME QUESTIONS WE CAN ASK

When C++ creates space for us to hold n on the stack, why is it
doing this?

We should have a copy of n if we will make changes, but then
would want them discarded, or perhaps if the caller might be
running a concurrent thread that could make changes to n “under
our feet” (if the caller is spawning concurrent work).

But Fibonacci does not change n!

CORNELL CS4414/5416 - FALL 2025 16

C++ “CONST” ANNOTATION

Expresses the promise that something will not be changed. (At
least, won’t be changed by this piece of code).

The compiler can then use that knowledge to produce better
code, in situations where an opportunity arises.

Can only be used if you genuinely won’t change the value!

CORNELL CS4414/5416 - FALL 2025 17

FIBONACCI WITH CONST

Our code doesn’t change n, so we could try:

int fibonacci (const inté& n)

{
if(n <= 1)
return n;

return fibonaccfibonacc;

}

... but n-1 and n-2 aren’t guaranteed to be in memory, so C++
will need to create a temporary variable for them.

CORNELL CS4414/5416 - FALL 2025 18

C++ CONST ANNOTATION

The easiest case:

const int MAXD = 1000; // Length of myvec
char myvec[MAXD]; // digits is an array 8-bit ints

Here, we are declaring a “compile time constant”. C++ knows
that MAXD is constant and can use this in various ways.

CORNELL CS4414/5416 - FALL 2025 19

WHAT IF | DON'T KNOW AHEAD OF TIME?

Sometimes you can be conservative and declare a constant
length that really is the largest value permitted.

Another option is to pass MAXD in as a compiler argument!
g++ -std=ct++20 —DMAXD=value myprog.cpp —0 myprog

Many companies do this for things like photo dimensions where they have
a general purpose program and want to specialize it for common photo
sizes to get a better quality of code from C++

CORNELL CS4414/5416 - FALL 2025 20

HOW DOES C+-+ LEVERAGE THIS CONST?

... for example, consider

myvec[MAXD-k-1] = ¢; movb %rbx,_myvec(999-%rax)

This sets the item “k” from the end to 8. C++ can compute MAXN-1 as
a constant, and index directly to this item as an offset relative to myvec.

By having ¢ and k in registers, only a single instruction is needed!

CORNELL CS4414/5416 - FALL 2025 21

WHY IS THIS SO GREAT?

If C++ had not been able to anticipate that these are constants,
it would have needed to compute the offset into digits.

» That would require more instructions.

Here, we are leveraging knowledge of (1) which items are
constants, and also (2) that C++ puts “frequently accessed”
variables in registers.

CORNELL CS4414/5416 - FALL 2025 22

MORE EXAMPLES USING “CONST”

We can mark an argument to a method with “const”.

This means “this argument will not be modified”.

» C++ won't allow that argument to be used in any situation where it
might be modified.

» C++ will also leverage this knowledge to generate better code.
> But the argument must correspond to a variable in memory

CORNELL CS4414/5416 - FALL 2025 23

CONSTEVAL AND CONSTEXPR

The consteval keyword says that “this expression should be
entirely constant”. The expression can even include function calls.

C++ will complain if for some reason it can’t compute the result
at compile time: a constant expression turns into a “result” during

the compilation stage.

If successful, it treats the result as a const.

CORNELL CS4414/5416 - FALL 2025 24

CONSTEVAL AND CONSTEXPR

In contrast, the constexpr keyword says “try to evaluate this at
compile time, but runtime code is ok if the evaluation fails.”

C++ will not complain if your constexpr is not, in fact, a constant
expression. It just creates some code and evaluates at runtime.

But, if successful, it treats the result as a const.

CORNELL CS4414/5416 - FALL 2025 25

CONSTEVAL AND CONSTEXPR

The consteval keyword says that “this expression should be

e constexpr float x = 42.0;

constexpr float z = exp(5, 3);

constexpr int i; // Not an error... but not a constant! | isn’t initialized
intj = 0;

constexpr int ¢ = j + 1; //Legal, but will be computed at runtime
consteval int k =j + 1; //Error! j isn’t const, so can’t be fully evaluated

If successful, it treats the result as a const.

CORNELL CS4414/5416 - FALL 2025 26

FUNCTIONS USED IN CONSTANT EXPRESSIONS

To use a function in as an initializer for a const, or in a constexpr,
the function itself must be marked as a constexpr.

The compiler will complain if any aspect of the function cannot
be fully computed at compile time.

CORNELL CS4414/5416 - FALL 2025 27

WE CAN COMBINE THESE ANNOTATIONS

Here we declare that exp is a constant expression using a
recursive method to compute x”*n

constexpr float exp(const float x, const int n)
{
if(n == 0)
return 1;
if(n $ 2 == 0)
return exp(x * x, n / 2);
return exp(x * x, (n - 1) / 2) * x;

}

CORNELL CS4414/5416 - FALL 2025 2

HOW DOES THIS IMPACT FIBONACCI(N)?

If n is a constant, fibonacci(n) can actually be computed as a constant
expression too.

The C++ consteval concept focuses on this sort of optimization. If
something is marked as a consteval, C++ computes it at compile time,
and gives an error if this fails!

Constexpr is very similar but with no error message if it fails. It just
generates normal code if needed.

CORNELL CS4414/5416 - FALL 2025 29

WE CAN COMBINE THESE ANNOTATIONS

C++ can compute fibonacci(5) as a constexpr entirely at
compile time. It will just turn this into the constant 5. Same with
consteval... but only if you supply a constant argument.

constexpr int fibonacci (const int n)

{

return n <= 1? n: fibonacci (n-1)+£fibonacci (n-2) ;

};

CORNELL CS4414/5416 - FALL 2025 30

int sum (const int &a, const inté& b)
I N I-I N E return a+b;
}s;

Inline tells C++ to “expand” the code of the method. For example:
c = sum(a, b);
would expand into

c=a+b;

CORNELL CS4414/5416 - FALL 2025 31

INLINING IS AUTOMATIC... YET THE
KEYWORD IS STILL COMMONLY USED

In effect, when we write “inline” we often are giving a hint both
to the compiler (which probably ignores the hint and makes its
own decisionl) and also to other readers of the code.

We are saying “l wrote this code as a method, but in fact | am
anticipating that this is really a “code pattern” that will be
expanded for me, then optimized in place”.

CORNELL CS4414/5416 - FALL 2025 32

WHAT IF INLINING ISN’T FEASIBLE?

C++ will warn you that you requested inlining but something about
zour code makes it necessary to compile the method as a normal
unction. -Wall compiler argument ensures this.

Coding choices can have huge impact on program performance.
Read those warningsl!

-Wpedantic is useful too. It enforces C++ rules rigidly, which
improves portability in situations where Clang or Gec are using
experimental features.

CORNELL CS4414/5416 - FALL 2025 33

CONSTEVAL WILL SAVE 255 INSTRUCTIONS!

A big win for Fibonacci, as long as the compiler can actually
compute the desired value at compile time.

If it can’t, the value isn’t a legitimate consteval. For the constexpr
case, C++ will try inlining your code (and you can “force” it)

CORNELL CS4414/5416 - FALL 2025 34

HOW ARE THEY USED TODAY?

Elegant, portable code needs a way to express complicated
ideas, and often code that computes something is the only option

But const and constexpr allow us to give such things abstracted
names and to use them in a higher-level way

This keeps our code simpler and easier to understand!

CORNELL CS4414/5416 - FALL 2025 35

TEMPLATES

In C++, templates are a major “user” of const and constexpr

In fact, a C++ template is expanded at compile time, making
them a form of constexpr!

The templating language is very elaborate and looks a bit like
Haskell (a famous functional programming language)

CORNELL CS4414/5416 - FALL 2025 36

BEWARE OF “TEMPLATES GONE WILD™'!

Sounds like a bad fall break movie...

... but it is a real thing. Some people joke that C++ templates
have become a virus that selectively infects PL nerds

They start to try to define everything using templates, which
leads to some very complex templating features in C++

CORNELL CS4414/5416 - FALL 2025 37

VARIADIC TEMPLATES

The idea is a bit “brain bending”!

But this feature is a form of compile-time recursion in the template
language system, and it allows you to handle variable argument lists
with different types for each item.

For printf: we end up with a series of printf calls, each for a single
argument. The “remaining arguments” are dealt with recursively.

CORNELL CS4414/5416 - FALL 2025 38

SAFE_PRINTF (BASE CASE ON LEFT, RECUSIVE ON RIGHT)

// In the .hpp file, this comes first, so that

/| C++ will know how to compile the “lone” call to
/| safe_printf with no arguments, when it sees it.
void safe_printf(const char *s)

{

/| We processed all the arguments, scan remainder
while (*s) {

if (*s

—— '%') {

if (*(s +1)=="%"{

}

++s;

else {

}

throw "invalid format: missing arguments™’;

template<typename T, typename... Args>
void safe_printf(const char *s, T& value, Args... args)

{

while (*s) { // Scan up to the next format item
if (*s =="'%’) { // found it
if (*(s+1)=="%"){
++s;

hould check that *s matches T...

all even whexs == 0 to detect extra arguments
safe_printf(s + 1, args...);
return;

I Only these lines ‘‘generate code’! }

Base Case

@ / Output text part of the format

throw "extra arguments provided to printf";

}

. CORNELL CS4414/5416 - FALL 2025 39
Recursive Case /

SAFE_PRINTF (BASE CASE ON LEFT, RECUSIVE ON RIGHT)

// In the .hpp file, this comes first, so that

/| C++ will know how to compile the “lone” call to
/| safe_printf with no arguments, when it sees it.
void safe_printf(const char *s)

{

/| We processed all the arguments, scan remainder
while (*s) {

if (*s

—— '%') {

if (*(s +1)=="%"{

}

++s;

else {

}

throw "invalid format: missing arguments™’;

template<typename T, typename... Args>
void safe_printf(const char *s, T& value, Args... args)

{

while (*s) { // Scan up to the next format item
if (*s =="'%’) { // found it
if (*(s+1)=="%"){
++s;

hould check that *s matches T...

all even whexs == 0 to detect extra arguments
safe_printf(s + 1, args...);
return;

I Only these lines ‘‘generate code’! }

Base Case

@ / Output text part of the format

throw "extra arguments provided to printf";

}

. CORNELL CS4414/5416 - FALL 2025 40
Recursive Case /

KEY TO UNDERSTANDING THIS TEMPLATE

It creates a whole series of “safe_printf” calls, each calling the
next one, for use with this specific sequence of types

template<typename T, typename... Args>
void safe_printf(const char *s, T& value, Args... args)

{

std::cout << value; // At this point C++ “knows” value is of type T!
safe_printf(s + 1, args...); // We’ve removed one argument

CORNELL CS4414/5416 - FALL 2025 41

KEY TO UNDERSTANDING THIS TEMPLATE

It creates a whole series of “safe_printf” calls, each calling the
next one, for use with this specific sec

Template expansion will replace these with a
series of properly typed parameters, each with an

template<typename T, typename... Args> auvtomatically generated name

void safe_printf(const char *s, T& valu§, Args... args)

{
std::cout << value; // At this point C++ “knows” value is of type T!
safe_printf(s + 1, args...); // We’ve removed one argument

CORNELL CS4414/5416 - FALL 2025 42

KEY TO UNDERSTANDING THIS TEMPLATE

It creates a whole series of “printf” methods, each calling the
next one, for use with this specific sequence of types

template<typename T, typename... Args>
void safe_printf(const char *s, T& value, Args... args)

{

std::cout << values

safe_printf(s @

Template expansion will replace these a list of
those automatically generated variable names
¥+ "knows” valueis of fype 1!
e’ve removed one argument

CORNELL CS4414/5416 - FALL 2025 43

HOW DOES THIS EXPAND?

A call to safe_printf(“%d,%s,%f", n, s, f):

safe_printf(char* format, int __ a0, char* __al, float _ a2)

std::cout to print ___aO (format %d), then calls safe_printf(“,%s,%f”,

safe prlntf(chﬁ%]forgat char* __al , float __a2)

' prints __al (format %d), then calls safe_printf(“,%f”, __a2)
safe_printf(char® format, float _ a2)

' prints __a2 (format %f), then calls safe_printf(*”)

safe_printf(char* format)

CORNELL CS4414/5416 - FALL 2025 44

HOW DOES THIS RECURSION TERMINATE?

The very last call to safe_printf will match a second safe_printf
template: one with a format string but no parameters.

> We need to place this base case first in the .hpp file. C++
looks for a match in sequential order and will stop when it sees one

» This second won’t be recursive... so the template expansion ends.

» Variadic lists can match an empty sequence, so if we omit it, we
really would get an infinite recursion!

CORNELL CS4414/5416 - FALL 2025 45

EVEN STD::COUT IS A TEMPLATE!

It expands to something like this:

outbuf[optr++] = c;

if (¢ =="\n"){
write(stdout, outbuf, optr);
optr = 0;

J

... and this “if” statement can be constexpr evaluated too

CORNELL CS4414/5416 - FALL 2025 46

* PRINTF(“%D, %F,%D, %S\N”, 2, 3.0, 4, “5.7);

... Will be transformed to
outbuf[optr++] =
outbuf[optr++] = */;
outbuf[optr++] =

outbuf[optr++] = ‘\n’;
write(stdout, outbuf, optr);
optr = 0;

CORNELL CS4414/5416 - FALL 2025 47

VISUALIZE HOW CONSTEVAL HANDLES THIS

First, the recursive variadic logic is expanded.
Next, all the consteval “ work” is performed

Last, the optimizing compiler does everything it can to simplify
and cleanup the code...

CORNELL CS4414/5416 - FALL 2025 43

PRINTF(**%D,%F,%D,%S\N”, 2, 3.0, 4, “5.7");

... printf ends up looking like this

outbuf[0] = ‘2’;
OUTbUf] — ‘I’; C++ can statically combine these...
OUTbUf 2 — ‘3’; memcpy(outbuf, “2, 3.0, 4, 5.7\n”, 15);
ceoe ... and then might even eliminate outbuf
— ’ i i isn’
outbuf[16] = “\n’; reviod nt henee the valus lft m i

write(stdout, outbuf, 15); is nimportant)

CORNELL CS4414/5416 - FALL 2025 49

CONCEPT: STATIC ANALYSIS

Modern computing environments often include tools that do some
form of analysis of programs or other objects before the
execution actually occurs.

For the C++ compiler, constexpr and inline illustrate forms of
static analysis that benefit the compilation stage.

CORNELL CS4414/5416 - FALL 2025 50

HOW STATIC ANALYSIS IS DONE

Focusing on the C++ compiler, it first scans your program and
forms a parsed code representation based on applying the
syntax rules.

Next, it can study this graph structure to learn things.

What sorts of things can static analysis discover?

CORNELL CS4414/5416 - FALL 2025 51

MORE STATIC ANALYSIS OPPORTUNITIES

We saw constants, arguments by reference and inlining

Static analysis might also discover loop bounds, “dead” code
(an if statement that is never true, or always true), variables that
do or do not need space allocated, etc.

Static analysis is also at the core of type checking.

CORNELL CS4414/5416 - FALL 2025 52

CONSIDER THE “AUTO” DECLARATION

In C++ we often ask the compiler to figure out types:

std::map<std::string, Bignum> the_map;
for(auto item: the_map) {

cout << “The next item is ““ << item.to_string() << end|l;
do_something(item);

Here we created a map from string “names” to Bignum obijects, then
iterate through the map (item will be a sequence of std::pair objects)

CORNELL CS4414/5416 - FALL 2025 53

CONSIDER THE “AUTO” DECLARATION

In C++ we often ask the compiler to figure out types:

auto requires a form of constexpr computation I

std::map<std sfring, Bignum> the_map;

: the_map) {

< “The next item is * << item.to_string() << end]l;
do_something(item);

Here we created a map from string “names” to Bignum obijects, then
iterate through the map (item will be a sequence of std::pair objects)

CORNELL CS4414/5416 - FALL 2025 54

EXAMPLE OF AN AUTO-DISCOVERED TYPE

This is from a C++ “bignum” class:

std::pair<typename std::_Rb_tree<_Key, std::pair<const _Key, _Tp>, std::_Select1st<std::pair<const _Key, _Tp> >,
_Compare, typename ___gnu_cxx::__alloc_traits<_Allocator>::rebind<std::pair<const _Key, _Tp> >::other>:iterator,
bool> std:map<_Key, _Tp, _Compare, _Alloc>:insert(const value_type&) [with _Key =

std::__cxx1 1:basic_string<char>; _Tp = Bignum; _Compare = std::less<std::__cxx1 1::basic_string<char> >; _Alloc =
std::allocator<std:pair<const std::__cxx1 1:basic_string<char>, Bignum> >; typename std::_Rb_tree<_Key,
std::pair<const _Key, _Tp>, std::_Select1st<std::pair<const _Key, _Tp> >, _Compare, typename
__gnu_cxx::__alloc_traits<_Allocator>:rebind<std::pair<const _Key, _Tp> >::other>:iterator =
std::_Rb_tree_iterator<std::pair<const std::__cxx1 1::basic_string<char>, Bignum> >; std::map<_Key, _Tp, _Compare,
_Alloc>::value_type = std::pair<const std::__cxx1 1:basic_string<char>, Bignum>]

®

CORNELL CS4414/5416 - FALL 2025 55

WHAT IN THE WORLD WAS THAT???

The first thing to know is that C++ often generates its own variables.
To avoid name conflicts, it puts underscore characters (_) at the front.

The second thing to know is that a std::map has a “comparison” function
and an iterator, which (in my case) were defaults.

And so... this was the complete type for std::map<std:string,Bignum>.

CORNELL CS4414/5416 - FALL 2025 56

IN FACT, C++ WOULDN’T BE USEFUL
WITHOUT TYPE INFERENCE!

Const and constexpr are “natural fits” for C++ because the
compiler is already doing so much automatic inference.

These annotations simply advise the compiler to do what it
wanted to do in any casel

... just a glimpse of the true complexity of modern languages

CORNELL CS4414/5416 - FALL 2025 57

BUT BEWARE: NOT EVERY STATIC ANALYSIS
PROBLEM CAN BE SOLVED!

We dalready saw this with constexpr and inlining: recursion can
exceed the limitations of the compiler.

In fact, static analysis can even run into “unsolvable” problems!

» Type inference (auto) is potentially undecidable. Even the decidable
versions have high complexity. Auto normally is successful.

> But experts can construct cases in which C++ may not be sure
what the type of a variable is... and will give an error

CORNELL CS4414/5416 - FALL 2025 58

IMPLICIT CONTROL

We've seen that a language like C++ lets you ensure that your logic
will be precomputed by the compiler

These features are explicit, yet the involve implicit control.

The choice to code in this way was governed by the expectation
that the resulting logic would match capabilities of the compiler.

Coded in some other way, the same logic would be executed but
evaluation would occur at runtime: the program would be slower

CORNELL CS4414/5416 - FALL 2025 59

SUMMARY FROM TODAY

C++ has advanced features that permit compile-time code analysis,

compile-time type inference, and compile-time expression evaluation. This
even includes recursive functions!

When we use const / consteval / constexpr, we “control” the compiler, which
lets us ensure that the optimized code will use specialized instructions or
achieve other kinds of efficiencies.

We code in an elegant, high-level way yet can control the compilation
process down to ensuring that C++ will make the choices we want.

CORNELL CS4414/5416 - FALL 2025 60

MORE SUMMARY

Today’s lecture had one big idea:shifting computation from
runtime to compile time is a very good tactic that can benefit us in
many situations.

Then it had a dozen illustrations of that one big idea.

In your future career you may encounter other opportunities to
apply this same idea in settings we did not include today.

CORNELL CS4414/5416 - FALL 2025 61

SELF-TEST

Which of the following can’t be defined as a constexpr?
A test to decide if a float has 8 bits or more accuracy

A test to decide if a value computed by a process is less then
or equal to zero

The data width a particular kind of SIMD instruction assumes

A test to see if an array size is a multiple of the SIMD data
width.

CORNELL CS4414/5416 - FALL 2025 62

SELF-TEST

Consider some computation that can be done ahead of time, like

a constexpr, but can also be performed at runtime, like when an
LLM receives a query.

s it always preferable to precompute answers the way that
constexpr does?

CORNELL CS4414/5416 - FALL 2025 63

A DEBATE QUESTION

We saw that printf can be rebuilt as a template that maps to
std::cout

Why does printf as a function still exist? In fact, it actually is
more popular than the templated approach!

CORNELL CS4414/5416 - FALL 2025 64

SELF-TEST

Suppose we can spend time C compiling a complex program,
and doing this reduces runtime by an amount R.

Under what conditions is it worthwhile to spend C units of time
for this purpose. It is tempting to say “if C < R” but is this a
correct answer¢ Could there be reasons to spend time C to save

runtime R even if C >> R?¢

CORNELL CS4414/5416 - FALL 2025 65

	Avoiding Runtime Compute: precomputing at compile time
	Idea Map For Today
	Connection to abstraction
	how do programs in C or C++ become executables?
	Consider the humble procedure call…
	… Fibonacci is the most famous example of recursion
	Where is Fibonacci processed?
	Where is Fibonacci processed?
	… does N need a memory location?
	Fibonacci(5)
	Common optimization
	Without memoization, Where is time being spent?
	The cost of the recursive calls?
	… now we can fill in the “?” with 6
	How many instructions to push and pop arguments?
	Some questions we can ask
	C++ “CONST” ANNOTATION
	Fibonacci with const
	C++ const annotation
	What if I don’t know ahead of time?
	How does C++ leverage this const?
	Why is this so great?
	More examples using “const”
	Consteval and constexpr
	Consteval and constexpr
	Consteval and constexpr
	Functions used in constant expressions
	We can combine these annotations
	How does this impact Fibonacci(n)?
	We can combine these annotations
	Inline
	Inlining is automatic… yet the keyword is still commonly used
	What if inlining isn’t feasible?
	Consteval will save 255 instructions!
	How are they used today?
	Templates
	Beware of “Templates gone wild”!
	Variadic templates
	safe_printf (base case on left, recusive on right)
	safe_printf (base case on left, recusive on right)
	Key to understanding this template
	Key to understanding this template
	Key to understanding this template
	How does this expand?
	How does this recursion terminate?
	Even std::cout is a template!
	printf(“%d,%f,%d,%s\n”, 2, 3.0, 4, “5.7”);
	Visualize how consteval handles this
	printf(“%d,%f,%d,%s\n”, 2, 3.0, 4, “5.7”);
	Concept: Static Analysis
	How static analysis is done
	More Static Analysis opportunities
	Consider the “auto” declaration
	Consider the “auto” declaration
	Example of an auto-discovered type
	What in the world was that???
	In fact, C++ wouldn’t be useful without type inference!
	But beware: Not every static analysis problem can be solved!
	Implicit control
	Summary from today
	More summary
	Self-Test
	Self-Test
	A debate question
	Self-test

