
MEMORY MANAGEMENT Professor Ken Birman
CS4414/5416 Lecture 5

CORNELL CS4414/5416 - FALL 2025 1

IDEA MAP FOR TODAY

CORNELL CS4414/5416 - FALL 2025 2

Understanding where an
object resides is very
important in modern
systems. In C++, you can’t
write correct code unless
you master this topic

Global objects live in data segments

Inline objects live on the stack

Dynamically created objects live in the heap

Address space for a Linux process:
many kinds of segments

If time permits: How malloc
manages the heap

A LINUX PROCESS IS CREATED USING FORK AND EXECL
(FROM BASH, THOSE ARE AUTOMATIC).

A parent process (which is often the bash shell) calls fork

 This clones the address space of the parent (+ file descriptors, user-id, current folder, etc.)
 Clone adjusts std::cin and std::cout as needed.
 Then via execl, the address space is “replaced” with a new one that has a code & data
 segment at address 0x400000 and new heap and stack segments
 Linux loads the binary image of the new process, then jumps to address 0x400000.

 The new process initially doesn’t have any dynamically loaded libraries (DLLs). Calls
 to DLLs jump to a loader method via an indirection table. The first call loads the DLL

Note that bash can also run shell scripts “as if” they were processes.

CORNELL CS4414/5416 - FALL 2025 3

ADDRESS SPACE?

Every program runs in an isolated virtual address context.

All the addresses your program sees are “virtual”. They don’t
match directly to addresses in physical memory.

A “page table” managed by Linux maps virtual to physical, at a
granularity that would usually be 4k (4096) bytes per page. The
same physical page can be mapped into multiple page tables.

CORNELL CS4414/5416 - FALL 2025 4

A page is a 4K
block of memory

0

…

… PAGES ARE GROUPED INTO SEGMENTS

Rather than just treating memory as one range of pages from
address 0 to whatever the current size needed might be, Linux is
segmented. There are often gaps between them.

Definition: A segment is just a range of virtual memory with some
base address, and some total size, and access rules.

One segment might be as small as a single page, or could be huge
with many pages. We don’t normally worry about page boundaries

CORNELL CS4414/5416 - FALL 2025 5

A FEW SEGMENT TYPES LINUX SUPPORTS

Code: This kind of segment holds compiled machine instructions

Data: Uses for constants and initialized global objects

Stack: A stack segment is used for memory needed to call
methods, or for inline variables (I’ll show you an example).

Heap: A heap segment is used for dynamically allocated
memory that will be used for longer periods (again, I’ll show you)

Mapped files: The file can be accessed as a byte[] vector!

CORNELL CS4414/5416 - FALL 2025 6

GAPS

The address space will often have “holes” in it.

These are ranges of memory that don’t correspond to any
allocated page.

If you try and access those regions, you’ll get a segmentation
fault and your process will crash.

CORNELL CS4414/5416 - FALL 2025 7

STACKS, HEAPS

Our programs often need to dynamically allocate memory to
hold new objects. Later they might free that memory.

The stack and the heap are two resources for doing this.

CORNELL CS4414/5416 - FALL 2025 8

STACKS VERSUS HEAPS

A stack is a managed region of memory that has a concept of a
stack pointer. You “push” objects on the stack, and the stack
pointer changes (the value gets smaller) by the size of the object

… later you “pop” the object and the stack pointer gets larger.

CORNELL CS4414/5416 - FALL 2025 9

In Linux, stacks always grow from big
addresses down towards small addresses

Stack pointer points
to the top element

Bottom Bottom
77

Push 77
Bottom

77

… pop 91

91

Bottom
77

Stack segment encloses the entire stack.
But not all of it is “in use”

Push 91

… HEAPS

A heap is a memory region allocated via malloc(size)/free.
Access the memory via pointers. Use a “static cast” to tell C++
what type of data your region will hold!

The C++ operators include the * operator, as in *ptr = 17, and
the → operator (typed as –>). * is used for vectors or arrays. →
is used if your memory region holds a data structure of some kind.

CORNELL CS4414/5416 - FALL 2025 10

WHAT ABOUT OBJECTS IN THE HEAP?

In C++ all objects need to live somewhere, and the heap is a
very common choice.

The C++ keyword new will automatically do the malloc and
then call the object constructor.

When an object goes out of scope, its destructor will run.

CORNELL CS4414/5416 - FALL 2025 11

INITIALIZATION IS VERY IMPORTANT!

Malloc doesn’t zero or initialize the region. In C++ we normally use
objects with constructors that initialize the fields to desired values:
RAII (resource allocation is initialization).

For this reason, new memory won’t be automatically zeroed: that
would be wasted work. A program’s data segment is initially zero,
but that is really a special case.

Of course you can always zero a memory region “by hand”. Use
calloc tor bzero.

CORNELL CS4414/5416 - FALL 2025 12

YOUR C++ PROGRAM IMPLICITLY CONTROLS
WHERE VARIABLES RESIDE

// This is typical of what you might find in a .hpp file

// The example describes a class called Cat, with some fields and methods

 int cat_count; // Global: Lives in a data segment

class Cat { // Definition: Used only by g++
 public:
 int cat_id; // The object will have space for a 32-bit int
 std::string name; // … and for a “string object”
 Cat(std::string& given_name); // Constructor to initialize a new Cat instance
};

CORNELL CS4414/5416 - FALL 2025 13

YOUR C++ PROGRAM IMPLICITLY CONTROLS
WHERE THE VARIABLES IT USES WILL LIVE
// In the .cpp file, we give these values

 int cat_count = 0; // Global: Lives in a data segment

Cat::Cat(std::string& given_name) { // Constructor to initialize a new Cat instance
 Cat::name = given_name;
 Cat::cat_id = cat_count++;
 }
}

CORNELL CS4414/5416 - FALL 2025 14

YOUR C++ PROGRAM IMPLICITLY CONTROLS
WHERE THE VARIABLES IT USES WILL LIVE
external Cat fluffy; // Global, initialized “elsewhere”

external int cat_count;

Cat irma(“Irma”); // Global, initialized here. Object will live in data segment

int main(int argc, char** argv) {

 Cat streetcat(“Grizabella”); // Stack, created now, actually on the stack.
 // The object will be deallocated when scope exits

 Cat *catptr = new Cat(“Mistophelles”); // Heap! Remains allocated until you call delete

}

CORNELL CS4414/5416 - FALL 2025 15

Scope: The execution block in
which the variable is accessible

PUZZLE: WHERE IS THE BYTE[] FOR STRINGS?

We used std::string to hold the cat names. But when the Cat object
was created the string length was not yet known! In fact a Cat has a
std::string object within it. And this std::string counts bytes in the name
and then calls malloc to create space for a copy of it.

Internally, a std::string includes a pointer to a character array: a byte
vector, terminated with a null byte (‘\0’).

Where is the string itself, in memory?
You can access it as obj.c_str()…

CORNELL CS4414/5416 - FALL 2025 16

In the heap! std::string makes a copy
using malloc and memcpy

If you copy a std::string, a heap char
string is made by the copy constructor

GLOBAL AND STACK ALLOCATION

A global object will be assigned space in the data segment.
The compiler handles this, and runs the constructor either at
compile time, or (if the constructor uses things that aren’t
constants), when the program starts execution.

A stack allocated object will be assigned a chunk of space on
the stack when the line of code executes to create the object.
The constructor runs when this occurs.

CORNELL CS4414/5416 - FALL 2025 17

THE STACK IS ALSO USED FOR METHOD CALLS

Roles of the stack:
 Hold return PC
 Hold stack-allocated data
 Hold values of registers that will temporarily be used
 but then restored to whatever was previously in them
 Hold method arguments that don’t fit into registers
 Hold results from a method, if the result is “large”

CORNELL CS4414/5416 - FALL 2025 18

CALLING A METHOD…

C++ generates code to put arguments into registers, or onto the
stack. It has its own rules to decide which case applies.

The Intel hardware automatically pushes the caller’s PC to the
stack. Later it uses this to return to where the call was done.

On return, Intel pops the PC from the stack. C++ pops anything
it pushed, and we are back to the state from before the call.

CORNELL CS4414/5416 - FALL 2025 19

VARIABLES VERSUS POINTERS

Suppose some variable cat is in the current scope, and we
access it. Some examples:

 auto cat2 = cat; // Constructs a copy

 cid = cat.cat_id; // References a member

 auto cptr = &cat; // Creates a pointer to cat

CORNELL CS4414/5416 - FALL 2025 20

POINTER: A VARIABLE HOLDING AN
ADDRESS
A pointer variable has a 64-bit number in it: a memory location.

You need to make sure it points to a sensible place!

But then can access members, like cptr → cat_id. (*cptr).cat_id
is equivalent: (*cptr) “is” the cat object that cptr points to.

CORNELL CS4414/5416 - FALL 2025 21

ACCESS BY REFERENCE
Often you see methods with types like this:

 int sum(const int& a, const int& b) { return a+b; }

The & “a will be a reference to the argument” Thus, a acts like a
second name – an alias – for the argument supplied by the caller.
Const says that sum won’t modify this argument.
The by reference notation, &, can only be used if the passed
argument is a variable – it could appear on the left side of an “=“

CORNELL CS4414/5416 - FALL 2025 22

C++ ALLOWS REFERENCE RETURN VALUES

For example, you can write a method that returns a reference to
some object that is in an array, or even one it just created!

But beware…. A reference or pointer to an object on the stack
will be “unsafe” if that stack scope terminates!

And a reference or pointer into the heap is only valid as long as
you haven’t deleted the object in the heap that it points to!

CORNELL CS4414/5416 - FALL 2025 23

SHARED_PTR

When working with pointers, people often call malloc, but then
forget to call free. C++ isn’t garbage collected, so the
malloc’ed objects will linger for as long as the program runs.

This is called a memory leak. The heap segment grows and
grows. Eventually a process can run out of space and crash.

CORNELL CS4414/5416 - FALL 2025 24

SHARED_PTR

Professional C++ developers prefer not to use pointers directly.
We “wrap” them in a shared_ptr template.

With a shared_ptr, when the object has no more references to it,
the delete method is called automatically.

This adds garbage collection to C++, in a controlled form!

CORNELL CS4414/5416 - FALL 2025 25https://docs.microsoft.com/en-us/cpp/cpp/how-to-create-and-use-shared-ptr-instances?view=vs-2019

SHARED_PTR

Example:
 auto my_ptr = new shared_ptr<foo>(constructor args);

 auto ptr_2 = my_ptr; // Auto-increments reference count!

 When a shared_ptr goes out of scope, the reference count is
 decremented automatically. Delete is called if it reaches 0.

CORNELL CS4414/5416 - FALL 2025 26

USE A SHARED_PTR LIKE ANY POINTER

Suppose foo has a field “name”.

With a foo* pt, you write pt→name; pt holds an address.

With a shared_ptr<foo> pt, you use the identical notation! The
shared pointer object holds the address of the foo object. By
overloading the → operator, the shared_ptr mimics a pointer!

CORNELL CS4414/5416 - FALL 2025 27

MEMORY LEAK

Suppose that your program includes code that might be causing
a memory leak.

The memory is consumed, but never released, so the heap gets
larger and larger. You’ll see this in “top” and your program will
slow down when the memory region gets really large.

Best tool for finding leaks: valgrind
CORNELL CS4414/5416 - FALL 2025 28

MALLOC IS “INEXPENSIVE” BUT NOT FREE

It maintains a big pool of memory and uses various techniques
to try and keep memory compact.
 Fragmentation. Refers to an accumulation of tiny chunks of memory
 that can’t be reused because they are too small for most purposes.
 Compaction. Free looks for chances to combine small chunks into
 larger ones, which are more likely to be useful in future mallocs.

This is different from garbage collection, which refers to mechanisms that
automatically free an object that no longer has any references to it.

CORNELL CS4414/5416 - FALL 2025 29

WHICH SEGMENTS HOLD WHICH KINDS OF
MEMORY?
Let’s tour the computer from the hardware “up”.

The NUMA computer has a big memory region that encompasses
all memory on the machine. Any thread with permission can
access any part of this memory (local memory is cheapest).

There may also be memory regions associated with devices such
as computer displays, cameras, etc.

CORNELL CS4414/5416 - FALL 2025 30

VISUALIZING AN ACTIVE PROCESS

CORNELL CS4414/5416 - FALL 2025 31

Thread, has an
associated stack

Stack

Code segment

void main(int argc, char* argv) { …. }

Data segment

int my_counter = 0;

DLL segment

C++ Standard Library

Data segment for DLL

Heap segment

Managed by malloc/free

DLL segment

Linux system calls

Data segment for DLL

Mapped File

VISUALIZING AN ACTIVE PROCESS

CORNELL CS4414/5416 - FALL 2025 32

Stack
Shared DLL segment

C++ Standard Library

Shared Data segment for DLL

Heap segment

Managed by malloc/free

Shared DLL segment

Linux system calls

Shared Data segment for DLL
Threads, each has
an associated stack

Stack

Heap segment

Managed by malloc/free

Stack

Shared code segment

void main(int argc, char* argv) { …. }

Shared global data segment

int my_counter = 0;

One heap per RAM pool
Managed by malloc/free

Mapped File

DIFFERENT PROCESSES HAVE DISTINCT
ADDRESS SPACES
Each distinct process has its own address space mapping.

Thus an address can mean different things: my 0x10000 might
contain code for fast-wc, but your 0x10000 could be part of a
data segment.

The hardware knows which process is running, so it can use the
proper page table mapping to know which memory it wants.

CORNELL CS4414/5416 - FALL 2025 33

SOME SEGMENTS ARE SHARED BY MULTIPLE
PROCESSES
A mapped file appears in memory, like char* array. You can
access the bytes directly.

Linux picks the “base address” (hence the same file can easily
show up at different places in different processes!)

Changes are automatically rewritten back to the disk. Only one
process can do updates; others are “read only”

CORNELL CS4414/5416 - FALL 2025 34

MAPPED FILES

Linux has a system call that will map a file into memory so that
the bytes are directly accessible without doing read/write

Mapped files can be used for sharing between processes
(particularly helpful across programming languages!).

 Updates are written to disk… limited to one writer.

 For pure sharing, use shmget. Same idea, but no file I/O.

CORNELL CS4414/5416 - FALL 2025 35

… USED TO IMPLEMENT DLLS

Either when the program is launched (DLL methods “needed
immediately”), or on the first time a method in a DLL is called,
 The DLL file is mapped via mmap
 The data segment used by the DLL is cloned
 Calls into the DLL are “relocated”
 Note that DLL base addresses can vary! Each process mmaps the DLL independently
 For this reason, we compile DDLs as “position independent code” and then “relocate” the
 method calls by literally editing the calling instructions, or by calling indirectly through a table
 of pointers that we build after mmapping the DLL into memory.

CORNELL CS4414/5416 - FALL 2025 36

SOME SEGMENTS GROW DYNAMICALLY

Heaps and stacks are the two kinds of segments that can grow as
needed, or shrink.

A stack has a limited maximum size, but Linux initially makes it small.
As methods call each other and stack space is needed, Linux finds
out and quietly grows the “top” of the stack.

This is a case of a “handled” segmentation fault. If you use up the
limit, then you get a “stack overflow” error, and a crash.

CORNELL CS4414/5416 - FALL 2025 37

HOW SEGMENTS GROW

The heap has an initial size, but can be expanded by calling the
“sbrk” Linux system call.

Malloc uses this to request extra space. The heap grows at the
bottom, towards larger addresses.

With NUMA, there is one heap per RAM, and memory is
allocated on a RAM close to the thread that called malloc.

CORNELL CS4414/5416 - FALL 2025 38

SUMMARY AND TAKE-AWAYS

Visualize your application as a collection of memory segments.

Some are restricted in various ways: read only, can or cannot
grow (and if so, from which end), executable.

Mapped files are a form of segment that allow distinct processes
to share memory (even if coded in different languages!)

CORNELL CS4414/5416 - FALL 2025 39

SELF TEST

What are all the segment types used by Linux?
Why might a program map a file rather than just reading it?
Why might two programs want to use shrm_get? Describe a
concrete reason and list as many benefits as you can.
shrm_get won’t necessarily map a segment at the same place in all
processes. Why could this matter? What would you do about it?
Suppose it was your job to implement the DLL concept. Which
memory features would you use?

CORNELL CS4414/5416 - FALL 2025 40
Some of these will require a bit of research – “Claude” from Anthropic is helpful.

SELF-TEST

There is a famous worst case for virtual memory thrashing: it
arises when every page reference requires that one page be
paged out, and one other page to be loaded!

Design a program that will trigger this behavior. Hint: read
about the limit command. You will need one number from it!

CORNELL CS4414/5416 - FALL 2025 41

SELF-TEST

Imagine some DLL shared by many processes.

We remarked that Linux makes a personal copy of the data
segment of the DLL for each. Why is it doing this?

The methods are automatically called “indirectly”. Why can’t we
just assume the DLL is always loaded at the same virtual address?

CORNELL CS4414/5416 - FALL 2025 42

SELF-TEST

You’ve developed the world’s fasted LLM! Your boss is thrilled.

… but when the solution is handed off to the operational people
who deploy and monitor running solutions, it slows down
dramatically.

What would be your first hypothesis for the issue? How could
the deployment team investigate to see if your guess is right?

CORNELL CS4414/5416 - FALL 2025 43

SELF-TEST

Your program uses a number of libraries, but the executable is small,
because it links to them as DLLs.

Now the program will be deployed on a new server. The
deployment team copies the binary to the server, but it instantly
crashes. Then they recompile from source code and now it works!

Why might this happen with DLLs?

CORNELL CS4414/5416 - FALL 2025 44

SELF-TEST

An important program has been working perfectly.

One day the deployment team reports that a recent update replaced
a few files with newer versions, and it stopped working. It loads and
runs but hangs. Recompiling didn’t help. Now the main company web
site is unavailable. This is an emergency and needs to be fixed now!

What would be a possible cause, and what quick solutions can you
suggest? There isn’t enough time to modify the program source code.

CORNELL CS4414/5416 - FALL 2025 45

SELF-TEST

Several processes in a gaming application running on the same
server share a data structure through a mapped file. One of them
modifies it, and the others do purely readonly access.

In the past, this file was needed for offline debugging, but now the
program is finished and your boss wants it to be as fast as possible.

What overheads could be arising and how can they be eliminated?

CORNELL CS4414/5416 - FALL 2025 46

C++ BY-REFERENCE SELF-TEST…
Fluffy had a kitten! Assume that a Cat object has a field std::vector<Kitten> litter; Tonight the family wants to put an unnamed kitten object
into Fluffy’s litter. But they will also keep the kitten object in scope to use it later (for example, k.name = “Fuzzy”, issued in the method that
called AddKitten).

void Cat::AddKitten(Kitten k) { // As a method in Cat
 litter.pushback(k);
}

void Cat::AddKitten(Kitten& k) { // As a method in Cat
 litter.pushback(k);
}

void AddKitten(Cat c, Kitten k) { // As a global method
 c.litter.pushback(k);
}

void AddKitten(Cat& c, Kitten& k) {
 c.litter.pushback(k);
}

void AddKitten(Cat *c, Kitten *k) {
 c->litter.pushback(*k);
}

void AddKitten(Cat& c, const Kitten*& k) {
 c.litter.pushback(*k);
}

void AddKitten(Cat& c, Kitten& k) {
 auto kprime = k;
 c.litter.pushback(&kprime);
}

void AddKitten(const Cat& c, const Kitten& k) {
 c.litter.pushback(new Kitten(k));
}

CORNELL CS4414/5416 - FALL 2025 47

Which of these won’t compile? Which doesn’t do as expected? Which is “best”?
Note: the two yellow highlighted ones are instance methods of the Cat class. The
others are just globally scoped methods that could show up anywhere.

	Memory Management
	Idea map for today
	A Linux process is created using fork and execl �(from bash, those are automatic).
	Address space?
	… pages are grouped into segments
	A few segment types Linux supports
	Gaps
	Stacks, Heaps
	Stacks versus Heaps
	… Heaps
	What about objects in the heap?
	Initialization is very important!
	Your C++ program implicitly controls where variables reside
	Your C++ program implicitly controls where the variables it uses will live
	Your C++ program implicitly controls where the variables it uses will live
	Puzzle: Where is the byte[] for strings?
	Global and Stack allocation
	The stack is also used for method calls
	Calling a method…
	Variables versus pointers
	Pointer: A variable holding an address
	Access by reference
	C++ allows reference return values
	Shared_ptr
	Shared_ptr
	Shared_ptr
	Use a shared_ptr like any pointer
	Memory Leak
	Malloc is “inexpensive” but not free
	Which segments hold which kinds of memory?
	Visualizing an active process
	Visualizing an active process
	Different processes have distinct address spaces
	Some segments are shared by multiple processes
	Mapped files
	… used to implement DLLs
	Some segments grow dynamically
	How segments grow
	Summary and take-aways	
	Self test
	Self-test
	Self-Test
	Self-test
	Self-Test
	Self-test
	Self-Test
	C++ by-reference self-test…

