N\YFZANYIANYIANTVI ANV I ANTY I ANY S AN

/ QﬂQﬂ\ﬂQﬂQﬂQﬂQ /
\YZANYZANYZANYZANYZANYZANYZAN
ZANYZANYZANYZANYZANY/ANY/A\YV/
\YZANYZANYZANYZANYZANYZANYZAN

FJANVIANVIANVIANVIANVIANVIANYS

ABSTRACTION VERSUS PERFORMANCE | ''''''''' ETZ E::::L

TODAY’S LECTURE

Linux files and segmented address spaces are a form of “abstraction”. This
concept is s’rrongllz' associated with object-oriented programming, yet in the O/S
fte

we see it in a different form.

Today we’ll look at the importance of abstractions in systems programming: why
they are useful but also how in systems settings we sometimes peek behind the
curtain to gain big efficiencies.

Our two examples will be the Linux file system abstraction (POSIX) and Linux
virtualization of the address space (or even the computer). lecture 5 will examine
segment roles and the reasons the virtual address space is segmented.

CORNELL CS4414/5416 - FALL 2025 2

IDEA MAP FOR TODAY

Complex tensions: Simplicity /expressiveness.
A thing should be as simple as possible. Performance /elegance
This argues for elegant abstractions Correctness and Security / convenience

Virtualization arises in many forms in Linux:
Yet some things are just not simple, like

NUMA hardware! This argues for powerful APls
that expose performance-critical controls

virtual memory, the process abstraction, full
virtual machines, container virtualization.
These offer good examples of those tensions

To illustrate this idea we will look at the file system abstraction
and at virtualization (docker containers use this concept)

CORNELL CS4414/5416 - FALL 2025

BACK TO THE FUTURE

Back to word-count again... it came down to:
» Doing things efficiently (like not creating extra objects)

> Doing things concurrently (like using multiple counting threads)

» Doing things elegantly (not wasting effort where it doesn’t help)

Often, efficiency seemed to require a implicit control over things
actually happening inside the O/S (file system)

CORNELL CS4414/5416 - FALL 2025 4

... IN WORD COUNT

In any language, the fastest solutions need to use:

Multiple threads to do the counting, but also a separate
thread to “pre-open” the files. The permissions checking runs
concurrently with word counting on previously opened files.

Sequential reads of the files (or loading the entire file
info memory in one shot). Avoids delays while scanning

because the data is already in memory when a word counting
thread starts to count.

CORNELL CS4414/5416 - FALL 2025 5

THIS FILE SYSTEM STUFF
RAISES A WEIRD PUZZLE

Toto pulls back the curtain

... shouldn’t we think of the operating system as a black box?
The implementation of a black box is supposed to be hidden!

s it right to be peeking behind the curtains by coding our word
count as if it was sort of a “partner” of the file system?

» And if so, shouldn’t the file system abstraction explicitly
expose the features we are trying to control and “assist’?

CORNELL CS4414/5416 - FALL 2025 6

DEFINITION: A SYSTEM ABSTRACTION

Abstraction is the process of filtering out — ignoring - the
characteristics of patterns that we don't need in order to
concentrate on those that we do.

In systems, abstractions arise we filter out details to focus on key
ideas. The O/S kernel APl offers many abstractions.

CORNELL CS4414/5416 - FALL 2025 7

Layer 6 Cperator

Layer 5

User Programs

0/S ABSTRACTIONS

Layer 4 Input/ Output
Management

Layer 3 Operator Console

Dates to Edsger Dijkstra and others.
Before this, abstractions were mostly
used in programming.

Layer 2

Memory Managament

Layer 1 CPU Sheduling and
Semaphores

Layer O

Hardware

... think of a complex system as a layered structure, in which each
layer transforms layers below it into a higher-level abstraction

> At every layer we have data types, and abstract operations

> Each hides its implementation and introduces properties and guarantees

CORNELL CS4414/5416 - FALL 2025 8

ABSTRACTION BECAME REALLY POPULAR!

Once people started to view O/S functionality as a set of
abstraction interfaces, doing so became a huge success

> Instead of a disk being an array of “disk blocks”, think of files

> Files can have “types.” A file could hold source code, input datg,
or even a compiled program ready to execute.

» Each process on the computer could have its own “address
space” composed of “segments”

But even in the early days, abstraction brought a dark side

CORNELL CS4414/5416 - FALL 2025 9

THE DARK SIDE

Abstractions can be deceptive, too

The way you use an APl can have cost impacts, yet the API
often won’t warn you or provide any feedback

An APl can pretend something is true, yet hackers might know
it really is an illusion and work around that API

Some O/S abstractions oversimplify and deny control that
you need in order to build the most effective solution

CORNELL CS4414/5416 - FALL 2025 10

FAST FORWARD TO THE MODERN ERA:
POSIX FILE SYSTEM API

In Linux, we access files via the “POSIX” API.

A process first must open the file:

int fd = open(“filename”, O_RDWR);

Now the file descriptor, fd, can be used to access the bytes.
Linux considers all data files to just be buckets of bytes.

CORNELL CS4414/5416 - FALL 2025 11

POSIX FILE SYSTEM API

Many Linux system calls take extra arguments, often as bit masks,
where each set bit requests some feature.

O_RDWR is a mask that means “open for reading and writing...

A process first must open thedile:
int fd = open(“filenam&”, O_RDWR);

Now the file descriptor, fd, can be used to access the bytes.
Linux considers all data files to just be buckets of bytes.

CORNELL CS4414/5416 - FALL 2025 12

POSIX FILE SYSTEM API

You can also create a file with “open”:

fd = open(“file”, O_CREAT, S_IRWXU|S_IRGRP|S_IROTH);

For O_CREAT you specify “permissions” on the new file, for
yourself (as owner), your “group” (team members) and “others

CORNELL CS4414/5416 - FALL 2025 13

TYPICAL POSIX REQUEST SEQUENCE

Iseek(fd, location, SEEK_SET); // Move file “pointer”
nb = read(fd, buffer, nbytes); // nb will be “bytes actually read”
write(fd, buffer, nbytes); // Write nbytes at the current pointer

close(fd); // Releases resources

... many of these have also have options.

CORNELL CS4414/5416 - FALL 2025 14

THESE METHODS ARE “SYSTEM CALLS”

You can access them from your code (in any languagel) via
subroutine calls.

But those subroutines use a special form of exception to “trap” into
the O/S, which is where the functionality is really implemented.

The O/S has its own address space and stronger permissions. So it
can do things your process would not have been allowed to do.

CORNELL CS4414/5416 - FALL 2025 15

EXAMPLE: THE POSIX API (1)

open() Opens a file and returns a file descriptor.

close() Closes an open file descriptor.

read() Reads data from a file descriptor into a buffer.

write() Writes data from a buffer to a file descriptor.

Iseek() Repositions the file offset of an open file descriptor.

stat() / fstat() / Istat() Retrieves file metadata (size, permissions, timestamps, etc.).
unlink() Deletes a file.

rename() Renames or moves a file or directory.

mkdir() Creates a new directory.

rmdir() Removes an empty directory.

CORNELL CS4414/5416 - FALL 2025 16

EXAMPLE: THE POSIX API (2)

opendir() Opens a directory stream for reading entries.

readdir() Reads the next entry in a directory stream.

closedir() Closes a directory stream.

chmod() Changes the permissions of a file or directory.

chown() Changes the owner and group of a file or directory.

access() Checks a file’s accessibility (e.g., readable, writable, executable).
truncate() Shrinks or extends a file to a specified size.

fsync() Flushes all buffered data of a file to disk.

mmap() “Memory maps” the file into a new segment in memory, returns the base address

CORNELL CS4414/5416 - FALL 2025 17

HOW LINUX IMPLEMENTS THE ABSTRACTION

Linux stores data in fixed-sized blocks. Each file has a length, in
bytes. The last block might be partially filled.

A process can’t read beyond the end of the file (EOF): read indicates
this by returning nb < nbytes. nb can be zero

You can create a gap by seeking beyond the end of a file and then
writing. Linux returns O’s if an application reads the gap.

CORNELL CS4414/5416 - FALL 2025 18

THE FILE “DESCRIPTION™ RESIDES IN
STRUCTURES CALLED “INODES”

Each storage volume has a table of inodes on it. Each inode has
an integer number: an index into the table. The O/S keeps
track of which volume a given inode lives on, to avoid ambiguity

One inode represents one file. Just like for blocks, inodes can
be free or in use and there is a free list of inodes available for

use to create new files. (If we run out, the volume is full)

CORNELL CS4414/5416 - FALL 2025 19

INODES HOLD VARIOUS INFORMATION
ABOUT THE FILE

We refer to this as the file “meta-data”

» Count of how many “true” names there are for the file (also
called “true links”, as on the next slides)

> Access permissions, owner id, “group” id
» Size of the file

> Access time, update time, initial creation time

The inode also has a structure telling us the list of blocks in the file. It looks
like a tree and has several formats depending on the size of the file

CORNELL CS4414/5416 - FALL 2025 20

FILE NAMES AND ““LINKS”: A DIFFERENT
FORM OF META-DATA

We consider naming to be separate from other information.

> The file name is used to find a directory in which the name
is paired with (“linked with”) an inode number.

» The pair (storage-volume-id, inode number) is unique and used
to fetch the file meta-data structure.

> In fact, one file can be named with multiple names (aliases, in
effect). There are two styles of these extra links

CORNELL CS4414/5416 - FALL 2025 21

TRUE LINKS, SYMBOLIC LINKS

From the outset, it was possible to just create additional (name,
inode-number) references to the identical inode. “True links”.

» Example: in any directory, “.” is a name that links to the
directory itself. This is how ./myFile.cpp works

» And “..” is a link to the parent directory

CORNELL CS4414/5416 - FALL 2025 22

SYMBOLIC LINKS

But true links were not flexible enough: they only work within a single
storage volume (like one SSD), because the inode number implicitly
means “in the current storage volume”. So, Linux added “symbolic links”

These are normal files that contain a pathname

If you search /a/b/c... and “b” is a symbolic link containing
a path like /x/y, then Linux jumps to /x/y to search for c.

In effect, Linux appends the rest of the search path to the symbolic
link and restarts its search for the file using this new path.

CORNELL CS4414/5416 - FALL 2025 23

LINUX FILE SYSTEM — RANDOM ADDITIONAL
THINGS TO KNOW

In fact, a file system directory tree can span multiple storage
devices, but we will focus on one for the rest of today’s lecture.

» Those other devices can be on networked servers

> We talk about the “local” file system and the “global” one.

In the docker containers we provided to you, there is a local file
system with various applications, pre-installed, like the C++
compiler and Visual Studio Code editor, gprof and gdb, etc.

CORNELL CS4414/5416 - FALL 2025 24

LINUX FILE SYSTEM — RANDOM ADDITIONAL
THINGS TO KNOW

For this lecture, we also need to know one thing about local disks
in Linux: they are almost never very full.

Normally, a disk has LOTs of free blocks and free inodes.

Physical media can suffer from wear and tear. To avoid disk
failures, Linux tries to balance its use of blocks — a recently
freed inode or block won’t be reused for a while.

CORNELL CS4414/5416 - FALL 2025 25

WHY WOULD THIS MATTER?

Imagine that Chandler and other friends are sharing a
top-secret plan for the big surprise party for Rachel.

Rachel has access to his computer, so once he prints the plan
he deletes all the copies — including any backup copies. Rachel

is able to log in using Chandler’s login and password. But the
party plan is gone!

CORNELL CS4414/5416 - FALL 2025 26

PROTECTION OF THE FILE SYSTEM

Rachel herself is not really a computer hacker.

But she has a friend who is a “disk forensics specialist”...

CORNELL CS4414/5416 - FALL 2025

... WHEN HER FRIENDS DELETED ‘““PARTY-PLAN.DOCX"

In fact the actual disk | /O that occurred was this:

» Linux accessed the block containing the directory, zeroed the inode
number next to the file name, rewrote the block.

» Linux accessed the tree node for the file (called an “inode”) and
changed its state from allocated to free. It put the inode on a freelist

» Linux walked down the list of blocks in the file, and put them on the
freelist for disk blocks, and wrote that back to the disk.

What did Linux not do?¢

CORNELL CS4414/5416 - FALL 2025 28

... WHEN HER FRIENDS DELETED ‘““PARTY-PLAN.DOCX"

Linux never zeroed the actual contents of the inode, it only was put

on the inode freelist. It never overwrote the file name — it just
changed the inode number in the directory to O.

And it never zeroed the contents of the file, either. It simply put the
blocks on the freelist for blocks.

Thus, if you can “find” the inode, you can still reconstruct the whole

file, until those blocks are actually reused for some other purposel

CORNELL CS4414/5416 - FALL 2025 29

WHY WAS THE KERNEL SO “LAZY™?

Linux is optimized for speed.

And it tends to assume that the developers and users know this,
and even know how it really works.

In some sense, Linux assumes that you realize that its abstractions
were just for convenience.

CORNELL CS4414/5416 - FALL 2025 30

RACHEL’S FORENSIC TOOLKIT

Her friend’s program opens the disk as a raw block device

“RAW BLOCK DEVICE”?

For Linux, any device is initially considered to be a “raw device”. A
storage device is a “raw block device”.

... a list of storage blocks (raw mode also exposes various special
control options like rewinding a tape drive).

The raw device is in the Linux folder hierarchy, with a special name.
The inode itself has the information about which volume it refers to.

CORNELL CS4414/5416 - FALL 2025 32

RACHEL’S FORENSIC TOOLKIT

To open a raw device, Rachel normally would need
administrative (superuser) privileges.

Rachel only knows Chandler’s login and password. The
administrative account uses a different login: “root”.

Same account as is used for “sudo” in bash.

CORNELL CS4414/5416 - FALL 2025 33

A COMMON MISTAKE!

Many people use the same password for their normal login and
for the special “superuser” login. This is to make the “sudo”
command easier to use when in a hurry.

So if Rachel has Chandler’s normal login, that same password
would often work as a sudo password, too!

CORNELL CS4414/5416 - FALL 2025 34

RACHEL’S FORENSIC TOOLKIT

Now that the forensic tool can open the raw device, it

> Scans the inode freelist looking for inodes that were freed but
haven’t been reused for some other purpose yet

> Accesses the corresponding blocks, copying their data

> Because the disk has so many blocks and inodes, they are probably
exactly as they were when the file was deleted.

This allows it to generate “recovered files” without the proper name, but
with most or all of the data that they had when deleted!

CORNELL CS4414/5416 - FALL 2025 35

IS IT POSSIBLE TO “REALLY” DELETE A FILE?

There are special Linux tools to help you do this. Banks use them...
but most users don’t even know about them.

They overwrite the file bits with random garbage dozens of times.

But for most mortals, the real answer is: Maybe not. Any file you
create, or download — including a web page — may linger on your
machine!l (And web pages can even have hidden content)

CORNELL CS4414/5416 - FALL 2025 36

WHAT IF YOU DON’T HAVE
THE PASSWORD?

Another way to bypass passwords is to remove the SSD disk
(which is easy) and plug it into some other computer as an extra
disk. Most computers can support extra disks.

The second computer will consider it to be a raw disk... and the
relevant root password will be the one on the second computer.

At computer repair shops, they do this all the time!

CORNELL CS4414/5416 - FALL 2025 37

HACKER TOOLS BYPASS FILE SYSTEM SECURITY

Rachel would not have had permission to do this.

But these tools aren’t following the normal pathway. They tell
you about the file, but don’t respect those permissions.

Hacker’s often use non-standard paths to take control. They
could arise from bugs in Linux or administrative errors by the user

CORNELL CS4414/5416 - FALL 2025 38

39

... HOW WOULD RACHEL FIGURE OUT THE
FILE NAMES?

The recovered files do have inodes and we probably can see
when they were last edited. The tools sort in that order.

Moreover the directory that had the list of file names and inode
numbers is also a form of Linux file, with an inode number. We
can see when it was last modified.

Just lining the times up will probably work!

CORNELL CS4414/5416 - FALL 2025

... OF COURSE IT MAY NOT BE TRIVIAL TO
MATCH THE NAME TO THE FILE

But in this case, Rachel sees a recovered file with:
> A best guess of its old name (“Possibly PartyPlan.docx”)
> The correct list of blocks

> Most or all of the data it used to contain

Rachel realizes her mom is not coming
to her baby shower. ®

KEY INSIGHT?

The file system abstraction is incredibly valuable.

We depend on it— and on file protection — all the time.

Yet this abstraction is only “skin deep”. The same Linux system
can be accessed in other ways that pull back that curtain.

CORNELL CS4414/5416 - FALL 2025 41

ABSTRACTIONS AREN’T JUST ABOUT FILES

There are many other storage units that can be abstracted as if
they were file systems.

And the O/S offers many abstractions that aren’t simply about
pretending that a storage system is a file system.

Let’s consider one more: “virtualization”

CORNELL CS4414/5416 - FALL 2025 42

VIRTUALIZATION

The term is used for situations where we pretend that some
abstraction is the true situation — the abstraction “is reality”.

For example, each process has a Linux-managed address space.

This “virtual address space” can be larger than physical memory
(you learned how the hardware supports this in CS3410).

CORNELL CS4414/5416 - FALL 2025 43

VIRTUALIZATION

Dijkstra urged us to accept that the entire computing experience is
virtual. He sees layers and layers of abstractions.

Today, the entire computer actuallycan be “virtualized™:
» Docker creates a snapshot of some computer + a set of processes
» This virtual machine image can be moved easily, then restarted!

CORNELL CS4414/5416 - FALL 2025 44

VIRTUALIZATION IS A VALUABLE TOOL!

It is extremely useful to be able to “move” programs or entire
servers from place to place.

A virtual machine image is like a “program” that simulates your
entire computer (even the file system, background jobs, etc).

You can even virtualize a legacy system and run it on a modern
computer, if the modern system is compatible with the virtual image.

CORNELL CS4414/5416 - FALL 2025 45

PROS AND CONS OF VIRTUALIZATION

Suppose a process has a huge virtual address space...

What if it is far larger than physical memory?
» This can happen due to a lack of physical memory

» Linux also supports a command, limit, that can limit per-process resources

... the process will begin thrashing. The program runs “correctly” yet very
slowly. The O/S spends all its time paging in and out.

CORNELL CS4414/5416 - FALL 2025 46

PROS AND CONS OF VIRTUALIZATION

Moreover...

> Some programs depend on things they access over the network, such
as default printers, remote file systems, databases

» These might not work if you move the VM to a setting where those
other systems aren’t available, or even if they have different host names

» Even if they work perfectly well, there can be overheads

CORNELL CS4414/5416 - FALL 2025 47

CONTAINER VIRTUALIZATION IS USED IN
OUR COURSE

When we give you a docker container, multiple distinct users could
run it on the same machine. Yet each sees a private file system (in
reality these are folders in a master file system, but they can’t see
the higher levels of it)

Each thinks they have private control over configurations, files, etc.

Sudo seems to work, but really works only within the scope of the
user’'s own jobs. For example, a “su” user can’t kill processes
someone else actually owns (and can’t see them, either).

CORNELL CS4414/5416 - FALL 2025 43

CONTAINERS OFFER A PATH TO THE CLOUD

In cloud settings, virtualization and containers are widely used
You pay much more if you need raw access to your machines.

But this means you probably are sharing your cloud servers with
other people: “multi-tenancy”. This drives costs down... but

cloud operators are constantly worried about hackers!

CORNELL CS4414/5416 - FALL 2025 49

WHAT WE LEARNED? FIRST, ABOUT
ABSTRACTIONS AND SECURITY

Abstractions simplify and allow us to work with a layered computing
model. The OS was one of the earliest large abstractions, at a time
when language features like objects were still emerging.

In programming languages we try to avoid violating abstraction
boundaries, but with the OS we view the abstractions as porous.

We often need to think about how they are really implement and work.

CORNELL CS4414/5416 - FALL 2025

MORE INSIGHTS

We also saw that there can be legitimate reasons to break an
abstraction boundary.

With a file system, we try to “work with it” to encourage
efficiency, prefetching and to optimize caching.

Even file forensic tools are useful for recovering data from a
crashed disk.

CORNELL CS4414/5416 - FALL 2025 51

Everything should be made as simple

3 =t 1 I - -
B as possible, but not simpler.

CONCLUSION

Abstraction is a powerful tool for improving specifications, verifying systems
and introducing protective boundaries.

> A file system abstracts storage: The device just hold bytes

> We can abstract a system as a VM /container, use this to move applications
to a new environment like a cloud.

Yet excessive simplicity through an abstraction that hides performance-critical
aspects can harm performance and even create security issues!

CORNELL CS4414/5416 - FALL 2025 52

DID YOU UNDERSTAND TODAY’S LECTURE?

List abstractions you are familiar with on your Windows or Macbook
system, focusing on the display.

Why could an abstraction have performance costs you can avoid by

understanding how it was implemented? In what situations would this
be important?

Why are systems programmers so interested in this duality
(abstractions, but also the mechanisms that implement them)?

CORNELL CS4414/5416 - FALL 2025 53

FILE SYSTEMS AND... VIRTUAL MEMORY?

Word count speed depends on knowing how the file system
works. Suppose your LLM or LRM uses a really big pretrained
ML model. How might virtualization impact query performance?

What if we use an LLM for document (knowledge) retrieval?
In what ways do both kinds of costs matter?

CORNELL CS4414/5416 - FALL 2025 54

MORE SELF-TESTING QUESTIONS

Suppose that you want to edit /a/b/c and /a/b is a symbolic
link containing /x/Yy.

Will the link reference count in the inode for ¢ include this as an
extra reference?

Hint: We didn’t answer this in the lecture. But you can easily
research it and learn the answer. And knowing it is useful.

CORNELL CS4414/5416 - FALL 2025 55

MORE SELF-TESTING QUESTIONS

Suppose that you want to edit /a/b/c and /a/b is a symbolic
link containing /x/y.

Suppose that someone renames ¢, and its new name is /a/b/d.

Is it still possible to open the file using the old path, /a/b/c?

CORNELL CS4414/5416 - FALL 2025 56

MORE SELF-TESTING QUESTIONS

Suppose that you want to edit /a/b/c and it has a true link to it
from /x/y/c, which is on the same storage volume

Suppose that someone renames /a/b/c, and its new name is
/a/b/d. They do not rename the secondary link /x/y/c

Is it still possible to open the file using the old path, /x/y/c@

CORNELL CS4414/5416 - FALL 2025 57

MORE SELF-TESTING QUESTIONS

Suppose that we replace /a/b/c with a totally new file, d, by
removing the old /a/b/c and renaming d as /a/b/c.

Now suppose that /x/y/c was a true link created before this
replace operation occurred. We open /x/y/c. Do we see the old
content from before the file replace, or the new content from after

d was renamed /a/b/c?

CORNELL CS4414/5416 - FALL 2025 58

MORE SELF-TESTING QUESTIONS

Suppose that we replace /a/b/c with a totally new file, d, by
removing the old /a/b/c and renaming d as /a/b/c.

Now suppose that /x/y/c was a symbolic link created before this

replace operation occurred. We open /x/y/c. Do we see the old
content from before the file replace, or the new content from after

d was renamed /a/b/c?

CORNELL CS4414/5416 - FALL 2025 59

MORE SELF-TESTING QUESTIONS

Recall from slide 7 that the reference count field of the inode meta-
data doesn’t have any count for the number of symbolic links to an
inode... it only counts true links.

In a nutshell, they had no choice because tracking symbolic links is
hard: they often are on other storage volumes and in a cloud, might
even be on different file system servers.

A symbolic link to a deleted file is a kind of dangling pointer.
Should this bother us¢ Could it ever cause confusing behavior?

CORNELL CS4414/5416 - FALL 2025 60

MORE SELF-TESTING QUESTIONS

Give an example of a situation where the name /user/ken/a
definitely exists and can be seen in folder /user/ken, but when
you fry to open “a” you get the error “File does not exist”.

If /user/ken/a is a symbolic link to /user/alicia/b, would it be
safe to replace “a” (delete it and then create another file

named “a”)?2 What could go wrong? How would you fix this?

CORNELL CS4414/5416 - FALL 2025 61

OFFLINE DEBATE TOPIC

Names are an abstraction mechanism. But Linux has evolved to have
two side by side link semantics under a single namespace abstraction.
As a result we need to be very aware of links and symbolic links.

Should large-scale ML storage like the databases used by RAG MLs
guarantee a single naming abstraction and a single semantics¢ What
costs would such a decision bring? Hint: We haven’t talked about

distributed computing yet, but think about it anyhow!

CORNELL CS4414/5416 - FALL 2025 62

ML-SELF TESTING QUESTION

Linux enables the “abstraction” that all memory used by a process is in its
address space.

» On NUMA systems we use malloc/free to manage memory in pools,
one pool per core. By default memory a thread allocates is in a local pool.

» The GPU programming environment, cuda, has an additional memory
pool. cuda malloc allocates from this pool.

Pointers work the same way no matter which pool an object is in. Are there
important location-based considerations that might matter in your code?

CORNELL CS4414/5416 - FALL 2025 63

ML-PERFORMANCE SELF TESTING QUESTION

Many ML systems center on linear algebra. Often matrix multiply is
the most important computing step.

Yet pure compute might not be the limiting factor on the critical path.

What other factors have we learned about that could shape the
performance of matrix multiply?

CORNELL CS4414/5416 - FALL 2025 64

WE MENTIONED THAT LLMS AND LRMS
OFTEN FAVOR A KEY-VALUE STORAGE MODEL

Suppose that a system has vast numbers of K/V obijects

Would this put an old-style Linux system under stress, if each key
was viewed as a file name?

How might a K/V storage system reduce the number of system
calls for accessing huge numbers of objects?

CORNELL CS4414/5416 - FALL 2025 65

ONE LAST SELF-TEST DEBATE QUESTION

Think about performance. If we optimize word-count for a particular
platform our solution won't be equally efficient on different hardware.

Violating abstraction boundaries makes programs less portable. |f
everything is evolving incredibly quickly, portably is important.

When should we violate abstraction boundaries even so?

CORNELL CS4414/5416 - FALL 2025 66

	Abstraction Versus Performance
	Today’s lecture
	Idea Map For Today
	Back to the future
	… in word count
	this file system stuff�raises a weird puzzle
	Definition: A System Abstraction
	O/S Abstractions
	Abstraction became really popular!
	The dark side
	Fast Forward to the modern era:�POSIX File System API
	POSIX File System API
	POSIX File System API
	Typical POSIX request sequence
	These methods are “system calls”
	Example: The POSIX API (1)
	Example: The POSIX API (2)
	How Linux Implements the abstraction
	The file “description” resides in structures called “Inodes”
	Inodes hold various information about the file
	File names and “links”: A different form of meta-data
	True links, symbolic links
	symbolic links
	Linux File System – random additional things to know
	Linux File System – random additional things to know
	Why would this matter?
	Protection of the File System
	…. when her friends deleted “party-plan.docx”
	…. when her friends deleted “party-plan.docx”
	Why was the kernel so “Lazy”?
	Rachel’s forensic toolkit
	“Raw block device”?
	Rachel’s forensic toolkit
	a common mistake!
	Rachel’s forensic toolkit
	Is it possible to “really” delete a file?
	What if you don’t have �the password?
	Hacker tools bypass file system security
	… how would Rachel figure out the file names?
	… Of course it may not be trivial to match the name to the file
	Key insight?
	Abstractions aren’t just about files
	Virtualization
	Virtualization
	virtualization is a valuable tool!
	Pros and Cons of Virtualization
	Pros and cons of virtualization
	Container Virtualization is used in our course
	Containers offer a path to the cloud
	What we learned? First, about Abstractions and security
	More insights
	Conclusion
	Did you understand today’s lecture?
	File systems and… virtual memory?
	More self-testing questions
	More self-testing questions
	More self-testing questions
	More self-testing questions
	More self-testing questions
	More Self-testing questions
	More self-testing questions
	Offline debate topic
	ML-Self Testing Question
	ML-Performance Self Testing Question
	We mentioned that LLMs and LRMs often favor a key-value storage model
	One last self-test debate question

