N\YFZANYIANYIANTVI ANV I ANTY I ANY S AN

% QﬂQﬂQﬂQﬂQﬂQﬂQ /
NYZANYZANYZANYZANYZANYZANTZAN
ZAN\YZANYZANVZANYZANYZANYZA\Y/
NYZANYZANYZANYZANYZANYZANTZAN

FJANVIANVIANVIANVIANVIANVIANYS

WHICH LANGUAGE SHOULD WE STUDY IF
OUR OBSESSION IS CONTROL (EXPLICIT | °°°°°°°°°°°°°°
AND IMPLICIT) AND PERFORMANCE? | ©54414/5416 Lecture3

TODAY’S MATERIAL WILL NOT APPEAR ON
PRELIM EXAMS

In fact, as will become clear, Ken is not really fond of Rust.

But there is a White House report from 2023 urging companies to
consider switching to this language, and some people like it

On prelims, we don’t want you to just “echo” Ken’s views, so this lecture
won’t be tested. You are responsible for all other lectures, including
slides we covered very quickly or even skipped over.

CORNELL CS4414/5416 - FALL 2025 2

FEATURES OF THE FASTEST WORD COUNTS

Multiple threads, including one for directory scan and file
opening.

Avoid creating extra objects

Each thread has its own counting data structure: merge them at
the end, using the special sort order we supplied.

Efficient ways of actually reading the data from the files, that
match with what the O/S is good at (encourages prefetching)

CORNELL CS4414/5416 - FALL 2025 3

WHY DIDN’T WE CONSIDER RUST?

It was in our list of candidate languages!

And is unquestionably a hot debate topic now, especially

because the US government encouraged switching to Rust for
improved program safety in a 2024 study.

Looks a lot like C++ and shares the same optimizing compiler
backend as the Clang version of C++ 23.

CORNELL CS4414/5416 - FALL 2025 4

IDEA MAP FOR TODAY

Many attacks exploit weak memory protection
C++ is built on C... and C is fundamentally unsafe

Rust idea How well does it work? What are the criticisms of Rust?

Today’s entire lecture borrows heavily from a lecture open-
sourced by Prof. Wu-chang Feng at Portland State University,
where they use Rust as their systems programming language

CORNELL CS4414/5416 - FALL 2025 5

START AT THE END...

Obviously, this course uses C++ 23

But we didn’t just pull that choice from
the air. Cis also a candidate

In fact so are Rust, Java, Julia, many more

CORNELL CS4414/5416 - FALL 2025 6

C++ IS DEEPLY CONNECTED TO C

The C++ optimizing compiler “transforms” your C++ code into
a C program for compilation. It precomputes many things, yet
the bottom line is that C++ reduces to “plain old C.”

Thus, many weaknesses of C translate to vulnerabilities in C++

In recitation we learn about runtime tools that help compensate
for this, such as Valgrind, the gdb debugger, gprof and more.

CORNELL CS4414/5416 - FALL 2025 7

YET... C++ IS MORE THAN C

In fact the compiler literally uses different rules when compiling
a .cpp file versus a .c file.

We consider C to be an unsafe language and we code entirely
in C++ both in this course and professionally.

So when people assume that C++ literally inherits C’s flaws, this
is mostly for an unprofessional style of coding, not for C++ 23.

CORNELL CS4414/5416 - FALL 2025 8

WHY C BECAME POPULAR (THE GOOD PARTS)

Efficient code especially in resource-constrained environments
Direct control over hardware such as network interfaces and GPUs

Performance over safety
> Memory managed in a controllable way that we will teach you
> No periodic garbage collection (pointers don’t become invalidated)
> Most important to advanced programmers: total control

CORNELL CS4414/5416 - FALL 2025 9

BUT...

Even with this help, both C and C++ make it very easy to make
mistakes involving misuse of pointers.

C also has issues with type coercion (C++ fixes them!):

Integer promotion/coercion errors (where the code specifies the size
of an integer, but then uses it in a way inconsistent with the size)

Unsigned vs. signed errors (in C, conversions back and forth are legal
and won’t even trigger a warning... C++ will warn)

Integer casting errors (easy to misunderstand the rules)

CORNELL CS4414/5416 - FALL 2025 10

AND... IN BOTH C AND C++...

Memory pointer errors are very easy to make

» Dereferencing a null pointer

» Buffer overflows, out-of-bound access (no array-bounds checking)
» Format string errors in printf or std:cout

» Dynamic memory errors (Memory leaks, use-after-free (dangling pointer),
double free of a pointer)

All of these can cause software crashes and security vulnerabilities.

CORNELL CS4414/5416 - FALL 2025 11

| EXAMPLE: C-STYLE POINTERS IN C OR C++

Lightweight, low-level control of memory

typedef struct { int a; int b; } Dummy; _
f Precise memory layout

void foo () {

Dummy *ptr = (QEEmy *) malloc(sizeof (struct Dummy)) ;
ptr->a = 2048; — Lightweight reference
free(ptfli¥

} Destruction

Stack Heclp CORNELL CS4414/5416 - FALL 2025 12

... ISSUE: ERRORS GO UNDETECTED

typedef struct { int a; int b; } Dummy;

void foo () {
Dummy *ptr = (Dummy *) malloc(sizeof (struct Dummy)) ;
Dummy *alias = ptr;
: free (ptr) ;
=)

int a = alias.a; e Use after free

free(alias);<~~~~~~~~~~
} Double free

Aliasing #m Mutation

Stack Heap

CORNELL CS4414/5416 - FALL 2025

THESE ISSUES ARE ALL SOLVED BY MANAGED
LANGUAGES, BUT THEY ARE OFTEN SLOW

Java, Python, Ruby, C#, Scala, Go...

All of them restrict direct access to memory with run-time management of
memory via garbage collection. But...

They pay a high overhead for tracking pointer use and array-index safety
Performance can be unpredictable due to GC (bad for real-time systems)
Limited concurrency (global interpreter lock typical)

In some cases a VM is required (like for Python)

VV YV VY

Need more memory and CPU power (i.e. not bare-metal)

CORNELL CS4414/5416 - FALL 2025 14

REQUIREMENTS FOR SYSTEM PROGRAMMING

The language must be fast and have minimal runtime overhead

Developer should be able to visualize every action the entire system is
performing and gain control over everything.

We often need direct memory access, but wish it was memory-safe

CORNELL CS4414/5416 - FALL 2025 15

N\YFZANYIANYIANTVIANTYIANTY I ANY S AN

Z Qﬂ%ﬂ%ﬂ%ﬂ%ﬂ\ﬂ% /
NYZANYZANYZANYZANYZANYZANTZAN
ZAN\YZANYZANVZANYZANYZANY/ZA\Y/
NYZANYZANYZANYZANYZANYZANTZAN

JANVIANVIANVIANVIANVIANVIANYS

-
X -
v .
W N o
.2 e e o
s ’ W
s,
»..l'. -y 4 1
: » ral o i
e, AR T B g i
el g A g e Tk a5 i 4
. it A " Fta - | - ;i 2 A, A & T -
iR RN A ST T e IR S D,
0 .;_!%,,p:_‘v_...: "?'i'.".‘\’_.?i_.."";:"§='1-’-"E;..‘-:i"_’ ol o S i OV ; F S
hatis Gi.akigess ot tadals
e Fo i bt » o S
<
£
5 %
Pt &
gk .
o, ¥

http://en.wikipedia.org/wiki/Rust_%28fungus%29

RUST

From the official website (http://rust-lang.org):

Rust is a true system programming language.
> No runtime requirement (runs fast)

» Control over memory allocation/destruction.

» Guarantees memory safety

Created by Monzilla to address severe memory leakage and corruption bugs
in Firefox. First stable release in 5/2015

CORNELL CS4414/5416 - FALL 2025 17

http://rust-lang.org/
http://rust-lang.org/
http://rust-lang.org/

RUST OVERVIEW

Performance, as with C or C++, similar look and feel as C++
Rust compiles to object code for bare-metal performance

Supports memory safety
Programs cannot dereference pointers that have been freed
Out-of-bound array accesses not allowed

Relatively low overhead
Compiler checks to make sure rules for memory safety are followed
Zero-cost abstraction in managing memory (i.e. no garbage collection)

CORNELL CS4414/5416 - FALL 2025 18

RUST OVERVIEW

How is this done? Like C++, much occurs at compile timel
» Advanced type system

> Novel language features to prevent memory and pointer issues

But there is a cost

» Cognitive cost to programmers who must think more about rules for
using memory and references as they program

> Less control of the kind needed for ML and HPC programming

CORNELL CS4414/5416 - FALL 2025 19

MORE ON THIS LAST POINT (1)?

Recall fast word-count. Sagar first turned every file into std::strings,
but then discarded most of the strings. A wasteful design.

Ken had a layer that operated directly on data in character buffers.
This uses pointers to ascii chars in arrays.

In Rust, pointer logic like what Ken did is much harder to implement
because the compiler perceives it as unsafe. Inserting safety checks
for every pointer dereference is similarly wasteful.

CORNELL CS4414/5416 - FALL 2025 20

MORE ON THIS LAST POINT (2)?

To maximize parallelism, we often need to control layout of
data structures in memory and ensure that the alignment rules
for data would be “visible” to the C++ compiler, and used
templates + inlining + constexpr to preserve code elegance.

In Rust it can be hard or impossible to get the same kinds of
guarantees. Rust lacks C++’s template “language”.

CORNELL CS4414/5416 - FALL 2025 21

RUST IS ALSO AT ODDS WITH DIRECT-
MAPPED GPU MEMORY, DMA AND RDMA

Today’s most important accelerators often are directly
integrated into the memory system. This includes GPUs and
direct memory transfer networking such as RDMA

All forms of direct memory transfers from network, disk or GPU
are inherently unsafe, as are shared segments and page
remapping: features we will learn about, and that advanced
C++ developers often use.

CORNELL CS4414/5416 - FALL 2025 22

N\YFZANYIANYIANTVIANTYIANTY I ANY S AN

Z Qﬂ%ﬂ%ﬂ%ﬂ%ﬂ\ﬂ% /
NYZANYZANYZANYZANYZANYZANTZAN
ZAN\YZANYZANVZANYZANYZANY/ZA\Y/
NYZANYZANYZANYZANYZANYZANTZAN

JANVIANVIANVIANVIANVIANVIANYS

RUST’S TYPE SYSTEM

RUST TYPES LOOK MUCH LIKE C/C++ TYPES

Primitive fypes Numeric types specified with width. The Unicode char
default might surprise some C or C++ developers.
> bool

char (4-byte unicode)
i8/il6/i32/i64/isize
u8/ul6/u32/u64/usize
F32/f64

YV V V VY

CORNELL CS4414/5416 - FALL 2025 24

C TYPES HAVE SOME IDIOSYNCRASIES.

C “overloads” integers to get Booleans. Can create ambiguity:
an integer isn’t limited to just O or 1.
» True, False, or Fail2 1,0, -12 Misinterpretations lead to security issues

» Example: In the PHP is a widely used C library for web programming. In it,
stremp returns O for both equality *and™ failure!

C++ offers a true Boolean type. If you use it, this can’t occur.
In fact C++ type checking is extremely powerful and strong.

CORNELL CS4414/5416 - FALL 2025 25

C, C++ ARRAY TYPE

In Rust, arrays stored with their length [T; N]

» Allows for both compile-time and run-time checks on
array access via | |

C Rust
void main () { * fn main() {
int nums[8] = {1,2,3,4,5,6,7,8}; let nunjs = ve{fl[l,z,.?-,,ri,S,ﬁ,T,E];
for (x = 0; x < 10; i++) - forxin 0..10 {
. . println!("{}",nums[x]);
printf (“$d\n”,nums[i]) ; }
} }
7
8

thread 'main’ panicked at '"index out of bounds: the len 1is 8 but the index is 8°',
note: Run with “RUST_BACKTRACE=1" for a backtrace.

CORNELL CS4414/5416 - FALL 2025 26

RUST AND BOUNDS CHECKING

But...
» Checking bounds on every access adds overhead

*~ fn main() {
let nums = vec![1,2,3,4,5,6,7,8];
- for x in 0..10 {

println!("{}",nums[x]);
}
}

> Arrays typically accessed via more efficient iterators to allow compile

time checking, avoid runtime overheads
~ fn main() {
let nums = vec![1,2,3,4,5,6,7,8];
- for num in &nums {
println!("{}",num);

»Can use x86 100p instruction

}

CORNELL CS4414/5416 - FALL 2025 27

RUST IS VERY CAUTIOUS ABOUT COERSIONS

In C code, you can cast any integer to an unsigned integer of the same
size, or back. C++ doesn’t allow this... except when compiling C

-1 casts to 2147483648 (largest uint32). Is this what a developer
intended? The C specification just says this is an “undefined” cast!

A European rocket once veered wildly off course, then exploded
because one module used unsigned int, but another used signed int.

CORNELL CS4414/5416 - FALL 2025 28

RUST VS C TYPING ERRORS

C has confusing implicit integer casts and promotion

-1 > 0U

21474836470 < -2147483648

Rust’s type system prevents such comparisons

void main() {
unsigned int a = 4294967295;
int b = -1;
if (a == b)
printf ("%u == %d\n",a,b);
}

mashimaro <~> 9:44AM % ./a.out
4294967295 == -1

fn main{) {
let a:u32 =
let b:i32 = -1;
if a==>0b{
println!{"{} == {}", a, b};
}
}

rustc 1.15.1 (©21bd294c 2017-02-08)
error[EO308]: mismatched types
--> <anon>:4:13
I
4 | ifa=>0{

error: aborting due to previous error
CORNELL CS4414/5416 - FALL 2025

29

RUST VS C TYPING ERRORS

Same or different?

void main() {
char a=251;
unsigned char b = 251;
printf("a = %$x\n", a);
printf ("b = %$x\n", b);

if (a == b)

printf ("Same\n") ;
else

printf ("Not Same\n");

mashimaro<> % ./a.out
a = fffffffb

b = fb

Not Same

fn main{} {
let a:i8
let b:u8

ifa==">b{
println!({"Same");
} else {
println!{"Not Same");
}

rustc 1.15.1 (021bd294c 2017-02-08)
error[EO308]: mismatched types
--> <anon=>:5:13

I
5 | ifa=>b{
error: aborting due to previous error

CORNELL CS4414/5416 - FALL 2025

30

201 > 2002

#include <stdio.h>
void main() {
unsigned int ui = 201;
char c=200;
if (ui > c)
printf ("ui(%d) > c(%d)\n",ui,c);
else
printf ("ui(%d) < c(%d)\n",ui,c);

mashimaro <~> 12:50PM $%
ui (201) < c(-56)

./a.out

RUST VS C TYPING ERRORS

fn main() {
let ui:u3d2 = -
let c:18 = ;
if ui = c {
println!{"ui({}) = c({})",ui,c);
} else {
println!{("ui({}) < c({})",ui,c)
}

rustc 1.15.1 (021bd294c 2017-02-08)
error[EQ308]: mismatched types
--> <anon>:4:13

4 | if ui > c {

CORNELL CS4414/5416 - FALL 2025

31

RUST VS C TYPING ERRORS

In Rust, casting is allowed via the “as” keyword
> Follows similar rules as C

» But, warns problem before performing the promotion with sign extension.
C++ does this too, but because C code can be pulled in so easily...

#include <stdio.h> fn main() {
void main() { :::Ec Ecleji? = C as ulz;
char c=128; println!("uc = {}", uc);
unsigned int uc; }
uc = (unsigned int) c; rustc 1.15.1 (021bd294c 2017-02-08)
printf ("%$x %u\n",uc, uc); warning: literal out of range for i8, #
} default

--= <anon=:2:16

mashimaro <~> 1:24PM % ./a.out |

f£££ff£f80 4294967168 2 | let c:18 = 128;
uc = 4294967168

CORNELL CS4414/5416 - FALL 2025 32

RUST VS C TYPING ERRORS

C has issues with unchecked underflow and overflow
» Silent wraparound in C caught by runtime check in Rust

void main() { fn main() {

unsigned int a = 4; let mut a:u32 =
= - 2. a=a - 3;
a=a-3; println! ("{}*, a - 2);
printf ("%u\n",a-2); }
}
mashimaro <~> 9:35AM % ./a.out rustc 1.15.1 (021bd294c 2017-02-08)
4294967295

thread 'main' panicked at 'attempt to subtract with overflow',
stack backtrace:

CORNELL CS4414/5416 - FALL 2025 33

EXAMPLE: A FAMOUS C VULNERABILITY

DNS parser vulnerability discussed in B&O, Chapter 2

»count read as byte, then count bytes concatenated to nameStr

char *indx;
int count;

char nameStr[MAX LEN]; //256

.. test.jim.com
memset (nameStr, '\0', sizeof (nameStr));
indx:(char*)(Pkt+rW>4test3]lmﬁcnmﬂ
count = (char) *indx;
while (count){ What if count = 128?

(char *)indx++; Sign extended then used in strncat

strncat (nameStr, (char *)indx, count);

indx += count; 6\\\\\\\\\\\

Type mismatch in Rust

count = (char) *indx;

strncat (nameStr, ".“, sizeof(nameStr) - strlen(nameStr));
}
nameStr[strlen(nameStr)-1] = '\0';

char *strncat(char *dest, const char *src, size_t n);

CORNELL (S4414/5416 - FALL 2025
http://www.informit.com/articles/article.aspx?p=686170&segNum=

34

ANOTHER C VULNERABILITY

2002 FreeBSD getpeername () bug (B&O Ch. 2)

»Kernel code to copy hostname into user buffer
»copy_from kernel () call takes signed int for size from user

»memcpy call uses unsigned size t

»>What if adversary gives a length of “-1” for his buffer size?

##define KSIZE 1024

char kbuf[KSIZE]
void *memcpy (void *dest, void *src, size_ t n);

int copy from kernel (void *user dest, int maxlen)¢— . .
"y . oy Type mismatch in Rust

/* Attempt to set len=min (KSIZE, maxlen) */46”///’//’,,,,

int len = KSIZE < maxlen ? KSIZE : maxlen;]
memcpy (user_dest, kbuf, len); (KSIZE < -1) is false,so len = -1

} return len; memcpy casts -1 to 232-1
Unauthorized kernel memory copied out

CORNELL CS4414/5416 - FALL 2025 35

RUST’S OWNERSHIP & BORROWING
ABmsitly 4= Mokefion

Compiler enforced:
Every resource has a unique owner.

Others can borrow the resource from its owner (e.g. create an
alias) with restrictions

Owner cannot free or mutate its resource while it is borrowed.

= | ™~

No need for runtime Memory safety Data-race freedom

CORNELL CS4414/5416 - FALL 2025 36

OWNERSHIP AND LIFETIMES

There can be only one “owner” of an object at a time.
»>When the “owner” of the object goes out of scope, its data is automatically freed

»Can not access object beyond its lifetime (checked at compile-time)

struct Dummy { a: i32, b: 132 }

£n foo() { r—Memory allocation

- let mut res = Box::new (Dummy {
a: 0,
b: 0
}) ;

res.a = 2048;

}
= T Resource owned by res is freed automatically

CORNELL CS4414/5416 - FALL 2025
Stack /

37

ASSIGNMENT CHANGES OWNERSHIP

//#[derive(Clone)]
struct Point { x: 132, y: 132 }

* fn main() {
let a = Point { x: 1, y: 2}3
let b = a3
println!("{}, {}", a.x, a.y)3s

hitp:/ /is.gd /pZKiBw

rustc 1.15.1 (021bd294c 2017-02-08)
error[E@382]: use of moved value: "a.x’
-=> <anon>:8:24

~n~n value used here after move

6 | let b = a;
| - value moved here

7]

8 | println!("{}, {}", a.x, a.y);
I
I

CORNELL CS4414/5416 - FALL 2025 38

http://is.gd/pZKiBw

OWNERSHIP TRANSFERS IN FUNCTION CALLS

struct Dummy { a: i32, b: i32 }

fn foo () {
let mut res = Box::new (Dummy {
a: 0,
b: 0

})

take (res) ; Compiler Error. If you plan to

- A\ ” * 111 77
pr1nt1n1(res.a = {}”, res.a); <— USeresagain, must employ borrow

22

semantics, not “move” semantics!
Ownership is moved from res to arg

v

fn take(arg: Box<Dummy>) {

e

arg is out of scope and the resource is freed automatically

CORNELL CS4414/5416 - FALL 2025 39

MUTABILITY: A STATIC FORM OF LOCKING

By default, Rust variables are immutable (read only)
» Usage checked at compile time

mut is used to declare a resource as mutable.

~ fn main() { fn main() {
let a: 1i32 03 let mut a: i32 = 0;
a = a+ 13 a=a-+1;

println! ("{}" , a); printint ("{}7 , a);

3 http://is.gd /OQDszP

rustc 1.14.0 (e8a012324 2016-12-16)
error[E0384]: re-assignment of immutable variable “a°
--> <anon>:3:5

rustc 1.14.0 (e8a012324 2016-12-16)
1
Program ended.

2 | let a: i32 = 0;

| - first assignment to “a°
3 a=a+1;

I

AAAAAAAAA re-assignment of immutable variable

error: aborting due to previous error CORNELL (54414/5416 - FALL 2025

40

http://is.gd/OQDszP

BORROWING

You cannot borrow mutable reference from immutable object

Or mutate an object immutably borrowed

You cannot borrow more than one mutable reference (to support atomicity)

You can borrow an immutable reference many times

There cannot exist a mutable reference and an immutable one
simultaneously (removes race conditions)

The lifetime of a borrowed reference should end before the lifetime of the
owner object does (removes use after free)

CORNELL CS4414/5416 - FALL 2025 41

BORROWING EXAMPLE (&)

You cannot borrow mutable reference from
immutable object

struct Dummy { a: i32, b: i32 }

fn foo () {
let res = Box::new(Dummy{a: 0, b: 0});

res.a = 2048; «— Error: Resource is immutable

let borrower = &mut res;

C Error: Cannot get a mutable borrowing

of an immutable resource

CORNELL CS4414/5416 - FALL 2025 42

BORROWING EXAMPLE (&)

You cannot mutate an object immutably borrowed

struct Dummy { a: i32, b: i32 }

fn foo () {
let mut res = Box::new (Dummy {
a: 0,
b: 0

}) g
take (&res) ;
res.a =/2048;
}
Resource is returned from arg to res

Resource is immutably borrowed by arg from res

fn take(arg: &Box<Dummy>) { Compijler Error: Cannot mutate via
arg.a = 2048; <
an immutable reference

‘L Resource is still owned by res. No free here. CORNELL SH414/5416 - FALLZ0S 43

BORROWING EXAMPLE (&MUT)

You cannot borrow more than one mutable reference

struct Dummy { a: i32, b: i32 } Aty 4= Mutation

fn foo () {
let mut res = Box::new(Dummy{a: 0, b: 0});

take (smut res); Mutably borrowed by arg from res but returned when

res.a = 4096;

take completes.

Multiple mutable borrowings

&mut res;

=il are disallowed

Returned from arg to res

fn take(arg: &mut Box<Dummy>) {
arg.a = 2048;

} CORNELL CS4414/5416 - FALL 2025 44

IMMUTABLE, SHARED BORROWING (&)

You can borrow more than one immutable reference
* But, there cannot exist a mutable reference and an immutable one simultaneously

struct Dummy { a: i32, b: i32 } Aliasing i Mukefian

fn foo () {
let mut res = Box::new(Dummy{a: 0, b: 0});

{

let aliasl = &res;
let alias2 = &res;
let alias3 = aliasZ2;
res.a = 2048

}

res.a = 2048;

CORNELL CS4414/5416 - FALL 2025 45

USE-AFTER FREE IN C OR C++

1~ vold some_dumb_function(){

2 int *used_after_free = malloc(sizeof(int)); Memory allocated to int
3

4~ [* ... after use */

5 free(used after_free); Then freed

6

7

8~ [* what the... */ Then used after free

9 | printf("%d", *used _after_free);

10 }

If these calls are far away from each other,
this bug can be very hard to find.

CORNELL CS4414/5416 - FALL 2025

46

RUST PREVENTS THIS!

The lifetime of a borrowed reference should end before the
lifetime of the owner object does

CORNELL CS4414/5416 - FALL 2025 47

USE AFTER FREE CAUGHT BY RUST AT
COMPILE-TIME

fn main() {

/ This binding lives in the main function
let name = from("Hello world!"});
Let mut name ref = &name;

{
let newname = from("Goodbye!");

name ref = &newname;

Unique ownership, borrowing, and | s s o e e,
Iifeﬁme rUIGS eCISily enforced rustc 1.15.1 (021bd294c 2017-02-08)

error: ‘newname does not live long enough
--> <anon>:8:5

I
7 | name ref = &newname;
[borrow occurs here
8 | }
9 | printlin!("name is {}", &name_ ref});
10 | }

| - borrowed value needs to live until here
error: aborting due to previous error

CORNELL CS4414/5416 - FALL 2025 43

DANGLING POINTER IN C

Famous scoping issues example (B&O Ch 3, Procedures)
int* func(int x) {

int n;

int * . Local variable is allocated in stack,

in np; a temporal storage of function.

n = x;

np = &n; Reference returned, but variable now out

of scope (dangling pointer)
return np;

}

What does NP point to after function returns?

What happens if 1P is dereferenced after being returned?

http://thefengs.com/wuchang/courses/cs201/class/08/invalid_ref. s s 6

CAUGHT BY RUST AT COMPILE-TIME

Ownership /Borrowing rules ensure objects are not accessed beyond lifetime

* fn a_dumb_function() -> &i32 {
let local_variable: 1323 I

borrowed pointer

&local_variable
cannot outlive

the ownerl!

*~ fn main() {
let raw_pointer = a_dumb_function()}

*raw_pointer = 1233

http://is.gd /3MTsSC

rustc 1.15.1 (021bd294c 2017-02-08)
error[E0106]: missing lifetime specifier
-=> <anon>:1:25

I
1| fn a dumb function() -> &i32 {

help: consider giving it a 'static lifetime

error: aborting due to previous error

CORNELL CS4414/5416 - FALL 2025

~ expected lifetime parameter

help: this function's return type contains a borrowed value,

50

http://is.gd/3MTsSC

SEEMS LIKE RUST WINS EVERY TIME!
BUT IT ISN'T SO SIMPLE!

C/C++ Haskell /Python

more control, less control,

less safety more safety
Rust

more control,
more safety

CORNELL CS4414/5416 - FALL 2025

51

RUST OWNERSHIP AND BORROWING CAN BE
ANNOYING!

* fn main() {
let mut v = vec![]} v is an owner of the vector

v.push("Hello")
let x = &v[0O] 3 By taking a reference to v[0], x borrows the vector from v

v.push("world")s now v cannot modify the vector
because it lent the ownership to x

println!("{}", x)3

http://is.gd /dEamuS

CORNELL CS4414/5416 - FALL 2025 52

http://is.gd/dEamuS

CONCURRENCY & DATA-RACE FREEDOM

struct Dummy { a: i32, b: i32 }

fn foo () {
let mut res = Box::new(Dummy {a: 0, b: 0});

— Spawn a new thread

std: : thread: : spawn (move || {
let borrower = &amut res;
borrower.a += 1; X__ —res is mutably borrowed

})

res.a += 1; «—— FError: res is being mutably borrowed

CORNELL CS4414/5416 - FALL 2025

53

MUTABLY SHARING

Mutably sharing is inevitable in the real world.

Example: mutable doubly linked list

struct Node {
prev: option<Box<Node>>,
next: option<Box<Node>>

We require two mutable pointers to the middle
mode. This is the essential feature of a list!

CORNELL CS4414/5416 - FALL 2025 54

WHY DOES A DOUBLY-LINKED LIST NEED TWO
MUTABLE POINTERS?

The problem is that when a node will be removed or added,
there are two nodes that need to be updated.

> The prior node will need an updated next pointer.

> The next node needs an updated prior pointer.

S0, each node’s next neighbor has a mutable pointer back to it.
And similarly for its prior neighbor. Thus: two mutable pointers to
a single node! But Rust will disallow this.

CORNELL CS4414/5416 - FALL 2025 55

PRE-2015 RUST SOLUTION: RAW POINTERS

prev

nhext

struct Node {
prev: option<Box<Node>>,

. * °
next: *mut Node . RCJW pomfer

}

Rust allows C-style pointers too.... With raw pointers, the compiler does
NOT check memory safety of most operations involving that pointer.

If possible, operations wrt. raw pointers should be encapsulated in an
unsafe {} syntactic structure.

CORNELL CS4414/5416 - FALL 2025 56

RUST RAW POINTERS BREAK RUST’S NORMAL
MUTABILITY RESTRICTIONS

let a = 3;

unsafe {
let b = &a as *const u32 as *mut u32;

*b = 4;
} L— | know what I’m doing

println! (Ya = {}”, a);

¥ Print “a = 4”

CORNELL CS4414/5416 - FALL 2025 57

MORE RECENT ADVICE

Check out this discussion on StackOverflow (very recent).

In summary, they recommend using std::collections, which has a
double-linked list.

But there now is a way to create them using something called o
Rust RefCell, combined with feature called a std::rc::Rc, which is
a form of reference-counter maintained (safely) at runtime.

CORNELL CS4414/5416 - FALL 2025 58

https://stackoverflow.com/questions/76649354/rust-double-linked-list

TALKING TO LIBRARIES: THE FOREIGN
FUNCTION INTERFACE (FFI)

You can call code in libraries written in other languages, but the
foreign functions are unsafe (e.qg. libc calls)

extern {
fn write(fd: i32, data: *const u8, len: u32) -> i32;

}

fn main() {
let msg = b”Hello, world!\n”;
unsafe {
write(l, &msg[0], msg.len());
}

CORNELL CS4414/5416 - FALL 2025 59

BIG DEAL?

It is, because libraries are really important.

In ML we rely on tools like LINPACK, MPI, etc. And most GEMM
kernels for ML tasks mix C or C++ with GPU or host parallelism.

Even if recoded in Rust they would still be unsafel

CORNELL CS4414/5416 - FALL 2025 60

SO THIS TELLS US THAT RUST...

often yields programs that are still unsafe! Partly due to hacking
around shared memory, but often due to using non-Rust libraries

Rust isn’t some sort of magic wand. It is more like a tool that we can
use to protect ourselves against certain kinds of errors

Monzilla found it super effective! But some hard-core C++
developers who play with Rust find it annoying. And people focused
on host parallelism may find the compiled code slow.

CORNELL CS4414/5416 - FALL 2025 61

WHAT ABOUT SPEED? IS RUST FAST LIKE
C++, OR SLOW LIKE PYTHON?

Used correctly, Rust code performs well — potentially, better than

Java and certainly better than Python. Sometimes as well as
C++

Rust can do most of what we do in C++, and often at the same
speed.

But it lacks templates + constexpr + inlining: C++ magic speedup

CORNELL CS4414/5416 - FALL 2025 62

| RUST (CURRENTLY) IS WEAK ON COMPILE
TIME OPTIMIZATIONS

With skilled use of templates and constexpr, a C++ program
can be extensively precomputed, leaving only things that must
occur at runtime.

Rust has generics but nothing analogous to the C++ template
language, so SIMD coding isn’t feasible. There are situations
where Rust might be dramatically slower than C++ (despite
using the same LLVM back end as Clang).

CORNELL CS4414/5416 - FALL 2025 63

AN UNWINABLE DEBATE!

People who love Rust aren’t going to switch back to C++

People who love C++ agree that Rust addresses many security
issues (but at a cost). And they find ownership and mutability
annoying, yet inadequate for even trivial data structures.

... the market adoption of Rust is good, but not overwhelming

CORNELL CS4414/5416 - FALL 2025 64

BOTTOM LINE?

Rust genuinely is a powerful tool, but not trivial to use correctly,
and limiting in important ways.

To get similar security in C++ requires systematic attention to
risks, careful coding style, verification of logic, testing.

But because systems programming involves external libraries,
GPUs and DMA, we sometimes have no other choice .

CORNELL CS4414/5416 - FALL 2025 65

FURTHER READING

Haozhong Zhang “An Introduction to The Rust Programming Language”

Aaron Turon, The Rust Programming Language, Colloquium on Computer
Systems Seminar Series (EE380) , Stanford University, 2015.

Alex Crichton, Intro to the Rust programming language,
http: / /people.mozilla.org /~acrichton /rust-talk-2014-12-10/

The Rust Programming Language, https: //doc.rust-lang.org /stable /book /
Tim Chevalier, “Rust: A Friendly Introduction”, 6/19/2013

CORNELL CS4414/5416 - FALL 2025 66

http://people.mozilla.org/%7Eacrichton/rust-talk-2014-12-10/
http://people.mozilla.org/%7Eacrichton/rust-talk-2014-12-10/
http://people.mozilla.org/%7Eacrichton/rust-talk-2014-12-10/
http://people.mozilla.org/%7Eacrichton/rust-talk-2014-12-10/
http://people.mozilla.org/%7Eacrichton/rust-talk-2014-12-10/
http://people.mozilla.org/%7Eacrichton/rust-talk-2014-12-10/
http://people.mozilla.org/%7Eacrichton/rust-talk-2014-12-10/
http://people.mozilla.org/%7Eacrichton/rust-talk-2014-12-10/
http://people.mozilla.org/%7Eacrichton/rust-talk-2014-12-10/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/

RESOURCES

Rust website: hitp:/ /rust-lang.org/

»Rust by example: http:/ /rustbyexample.com/
» Guide: https://doc.rust-lang.org /stable /book /
»User forum: https:/ /users.rust-lang.org/

»Book: https://doc.rust-lang.org /stable /book /academic-research.html

Speed of Rust versus C++7:

https: / /www.bairesdev.com /blog /when-speed-matters-
comparing-rust-and-c/

* Note: This guy never took CS4414! He means “if you code without giving it much thought” CORNELL C54414/5416 - FALL2025 67

http://rust-lang.org/
http://rust-lang.org/
http://rust-lang.org/
http://rustbyexample.com/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://users.rust-lang.org/
https://users.rust-lang.org/
https://users.rust-lang.org/
https://doc.rust-lang.org/stable/book/academic-research.html
https://doc.rust-lang.org/stable/book/academic-research.html
https://doc.rust-lang.org/stable/book/academic-research.html
https://doc.rust-lang.org/stable/book/academic-research.html
https://doc.rust-lang.org/stable/book/academic-research.html
https://www.bairesdev.com/blog/when-speed-matters-comparing-rust-and-c/
https://www.bairesdev.com/blog/when-speed-matters-comparing-rust-and-c/
https://www.bairesdev.com/blog/when-speed-matters-comparing-rust-and-c/
https://www.bairesdev.com/blog/when-speed-matters-comparing-rust-and-c/
https://www.bairesdev.com/blog/when-speed-matters-comparing-rust-and-c/
https://www.bairesdev.com/blog/when-speed-matters-comparing-rust-and-c/
https://www.bairesdev.com/blog/when-speed-matters-comparing-rust-and-c/
https://www.bairesdev.com/blog/when-speed-matters-comparing-rust-and-c/
https://www.bairesdev.com/blog/when-speed-matters-comparing-rust-and-c/
https://www.bairesdev.com/blog/when-speed-matters-comparing-rust-and-c/
https://www.bairesdev.com/blog/when-speed-matters-comparing-rust-and-c/
https://www.bairesdev.com/blog/when-speed-matters-comparing-rust-and-c/
https://www.bairesdev.com/blog/when-speed-matters-comparing-rust-and-c/

WHAT DID WE LEARN TODAY?

The course really could have picked any of those languages

Rust is quite an interesting option: less risk of memory and
concurrency issues (but forces unsafe code blocks in some cases).

We settled on C++ because it is elegant and strongly typed,
while also making it easy to visualize how execution will behave.

CORNELL CS4414/5416 - FALL 2025 68

BUT WHY DO WE NEED YOU TO LEARN C++?

Qur course isn’t a theory or ten mile high overview

Systems programming is about actually doing what we are
teaching. Actually writing great code that explicitly and
implicitly controls the hardware to achieve fantastic speed

... and yet is also correct, elegant, safe, and professional!

CORNELL CS4414/5416 - FALL 2025 69

cam, -

THEORY... VS. PRACTICE!

Cornell crypto club just made an amazingly profit.

This old car collector guy was on the losing side of
the trade, and your friend, who has only driven a Prius,
accepted this classic standard-shift Porche instead of cash.

Ready to jump in?

CORNELL CS4414/5416 - FALL 2025 70

SELF-TEST

Do we really need to implement data structures by hand?

Can’t we avoid these Rust criticisms by just relying entirely on
libraries that do everything where unsafe code is needed?

CORNELL CS4414/5416 - FALL 2025 Al

: |
Don’t worry, i 255UrE. you this

5" chest isfiogallyrea

SELF-TEST

SUppose YOU go CI” in on RUS"' Come a-r-l.d‘;et-.!:ia;::ﬁ";f‘r‘ee Flare Gun

You build a big intelligent knowledge retrieval application using
it. Now your company wants to brand it as the world’s first
totally safe intelligent document browser solution.

Would this be justified? What might a potential customer like a
bank or a hospital ask, and how would you respond?

CORNELL CS4414/5416 - FALL 2025 2

	Which Language should we study if our obsession is control (explicit and implicit) and performance?
	Today’s material will not appear on prelim exams
	Features of the fastest word counts
	Why didn’t we consider rust?
	Idea Map For Today
	Start at the end…
	C++ is deeply connected to C
	Yet… C++ is more than C
	Why C became popular (the good parts)
	But…
	and… in both C and C++…
	Example: C-style pointers in C or C++
	… issue: errors go undetected
	These issues are all Solved by managed languages, but they are often slow
	Requirements for system programMing
	Rust
	Rust
	Rust overview
	Rust overview
	More on this last point (1)?
	More on this last point (2)?
	Rust is also at odds with direct-mapped GPU memory, DMA and RDMA
	Rust’s type system
	Rust types look much like C/C++ types
	C types have some idiosyncrasies.
	C, C++ array type
	Rust and bounds checking
	Rust is very cautious about coersions
	Rust vs C typing errors
	Rust vs C typing errors
	Rust vs C typing errors
	Rust vs C typing errors
	Rust vs C typing errors
	Example: A famous C vulnerability
	Another C vulnerability
	Rust’s Ownership & Borrowing
	Ownership and lifetimes
	Assignment changes ownership
	Ownership transfers in function calls
	Mutability: a static form of locking
	Borrowing
	Borrowing example (&)
	Borrowing example (&)
	Borrowing example (&mut)
	Immutable, shared borrowing (&)
	Use-after free in C or C++
	Rust prevents this!
	Use after free Caught by Rust at compile-time
	Dangling pointer in C
	Caught by Rust at compile-time
	Seems like Rust wins every time!�But it isn’t so simple!
	Rust ownership and borrowing can be annoying!
	Concurrency & Data-race Freedom
	Mutably Sharing
	Why does a doubly-linked list need two mutable pointers?
	Pre-2015 Rust Solution: Raw Pointers
	Rust Raw Pointers break rust’s normal mutability restrictions
	More recent advice
	Talking to libraries: the foreign Function Interface (FFI)
	Big deal?
	So this tells us that Rust…	
	What about speed? Is RUST fast like C++, or Slow like Python?
	rust (currently) is weak on compile time optimizations
	An unwinable debate!
	Bottom line?
	Further reading
	Resources
	What did we learn today?
	But why do we need you to learn C++?
	Theory… vs. practice!
	Self-test
	Self-test

