
THE EVOLUTION AND ARCHITECTURE
OF MODERN COMPUTERS

Professor Ken Birman
CS4414/5416 Lecture 2

CORNELL CS4414/5416 - FALL 2025 1

IDEA MAP FOR TODAY

Goal: Learn just a little about NUMA architectures.

We are not trying to be an architecture course. But we do need
to be able to visualize what we are “asking the hardware to do”

CORNELL CS4414/5416 - FALL 2025 2

Computers are multicore
NUMA machines capable

of many forms of parallelism.
They are extremely complex

and sophisticated.

Individual CPUs don’t make this NUMA
dimension obvious. The whole idea is
that if you don’t want to know, you can

ignore the presence of parallelism

Compiled languages are
translated to machine language.

Understanding this mapping will allow us to
make far more effective use of the machine.

WHAT’S INSIDE? ARCHITECTURE = COMPONENTS
OF A COMPUTER + OPERATING SYSTEM

CORNELL CS4414/5416 - FALL 2025 3

GPUs

INTEL XENON NVIDIA TESLA

CORNELL CS4414/5416 - FALL 2025 4

Each core is like a little computer, talking to the others
over an on-chip network (the CMS)

The GPU has so many cores that a photo of the chip is
pointless. Instead they draw graphics like these to help
you visualize ways of using hundreds of cores to process

a tensor (the “block” in the middle) in parallel!

HOW DID WE GET HERE?

In the early years of computing, we went from machines built from
distinct electronic components (earliest generations) to ones built
from integrated circuits with everything on one chip.

Quickly, people noticed that each new generation of computer
had roughly double the capacity of the previous one and could run
roughly twice as fast! Gordon Moore proposed this as a “law”.

CORNELL CS4414/5416 - FALL 2025 5

BUT BY 2006 MOORE’S LAW
SEEMED TO BE ENDING

CORNELL CS4414/5416 - FALL 2025 6

WHAT ENDED MOORE’S LAW?

To run a chip at higher and higher speeds, we
use a faster clock rate and keep more of the
circuitry busy.

Computing is a form of “work” and work generates heat… as
roughly the square of the clock rate.

Chips began to fail. Some would (literally) melt or catch fire!
CORNELL CS4414/5416 - FALL 2025 7

If you overclock your
desktop this can happen…

BUT PARALLELISM SAVED US!

A new generation of computers emerged in which we ran the
clocks at a somewhat lower speed (usually around 2 GHz, which
corresponds to about 1 billion instructions per second), but had
many CPUs in each computer.

A computer needs to have nearby memory, but applications
needed access to “all” the memory. This leads to what we call a
“non-uniform memory access behavior”: NUMA.

CORNELL CS4414/5416 - FALL 2025 8

MOORE’S LAW WITH NUMA

CORNELL CS4414/5416 - FALL 2025 9

Graph from prior slide

AMDAHL’S LAW

Gene Amdahl was a leading research on parallelism and
supercomputing in IBM’s HPC division.

He became interested in a basic question. How fast can
computations be performed, with infinite parallelism?

CORNELL CS4414 - SPRING 2023 10

Gene on the family farm in Norway

A DAY TRIP TO NIAGARA FALLS

You and your friends want to check out Niagara falls.

There are six of you. One option
is to rent a plus-sized car (but
those big vehicles are slow)

CORNELL CS4414 - SPRING 2023 11

A DAY TRIP TO NIAGARA FALLS
Better plan: You rent three convertible sports cars.
Each holds two people, and these are “insanely fast”.

 But as you head north, the narrow road has a

 bottleneck! Until you all pass this slow tractor, the

 group will have to wait.

CORNELL CS4414 - SPRING 2023 12
Gene Amdahl’s Tractor in Norway

HOW AMDAHL THOUGHT ABOUT PARALLELISM

In any computation, we have some parts that are highly parallel, such
as scanning our 74,000 different files. Parallelism can speed those up.

But the computation will also have sequential tasks, which could include
sequential logic buried in the operating system or the hardware.

The sequential work will limit the speedup due to parallelism!

CORNELL CS4414 - SPRING 2023 13

HOW AMDAHL EXPRESSED HIS LAW

Suppose that p represents the percentage of the task that can be
parallelized and we have N parallel CPUs.

Then 1
1−𝑝𝑝+𝑝𝑝𝑁𝑁

 is the maximum speedup

Insight: The parallel tasks could all be done
simultaneously, yet we would still
have to do the sequential parts step by step.

CORNELL CS4414 - SPRING 2023 14

… MAKING MODERN PERFORMANCE-FOCUSED
PROGRAMMING COMPLICATED!

Prior to 2006, a good program

 Used the best algorithm: computational complexity, elegance

 Implemented it in a language like C++ that offers efficiency

 Ran on one machine

CORNELL CS4414/5416 - FALL 2025 15

… MAKING MODERN PERFORMANCE-FOCUSED
PROGRAMMING COMPLICATED!

Today, a good program

 Used the best algorithm: computational complexity, elegance

 Implemented it in a language like C++ that offers efficiency

 Uses many threads and perhaps runs on many machines

 Shows smart awareness of hardware properties that can
 shape performance, forcing us to take implicit measures to
 ensure that the compiler and optimizer will produce great code

CORNELL CS4414/5416 - FALL 2025 16

… MAKING MODERN PERFORMANCE-FOCUSED
PROGRAMMING COMPLICATED!

Today, a good program

 Used the best algorithm: computational complexity, elegance

 Implemented it in a language like C++ that offers efficiency

 Uses many threads and perhaps runs on many machines

 Shows smart awareness of hardware properties that can
 shape performance, forcing us to take implicit measures to
 ensure that the compiler and optimizer will produce great code

CORNELL CS4414/5416 - FALL 2025 17

Vibe coding is often easier but
won’t win performance prizes!

THE HARDWARE SHAPES THE
APPLICATION DESIGN PROCESS

We need to ask how a NUMA architecture impacts our designs.

If not all variables are equally fast to access, how can we
“code” to achieve the fastest solution?

And how do we keep all of this hardware “optimally busy”?

CORNELL CS4414/5416 - FALL 2025 18

HOW A SINGLE THREAD COMPUTES

In CS4414 we think of each computation in terms of a “thread”

A thread owns a pointer into the program instructions. The CPU
loads the instruction that the “PC” points to, fetches any operands
from memory, does the action, saves the results back to memory.

Then the PC is incremented to point to the next instruction

CORNELL CS4414/5416 - FALL 2025 19

Common way to
depict a single thread

ASSEMBLY/MACHINE
CODE VIEW
Programmer-Visible State
 PC: Program counter
 Address of next instruction
 Called “RIP” (x86-64)

 Register file
 Heavily used program data

 Condition codes
 Store status information about most recent
 arithmetic or logical operation
 Used for conditional branching

Memory
Byte addressable array
Code and user data
Stack to support procedures

Puzzle:
 On a NUMA machine, a CPU is near a fast
 memory but can access all memory.
 How does this impact software design?

CORNELL CS4414/5416 - FALL 2025 20

NUMA OFFERS THE ILLUSION THAT NOTHING
HAS CHANGED!
You can write code exactly the way you did before.

The only issue is… it might run very slowly in ways caused by the
hardware trying to pretend to be an old single core system.

Understanding the causes enables us to write the same code in
slightly smarter ways to avoid these overheads.

CORNELL CS4414/5416 - FALL 2025 21

ASSEMBLY/MACHINE
CODE VIEW
Programmer-Visible State
 PC: Program counter
 Address of next instruction
 Called “RIP” (x86-64)

 Register file
 Heavily used program data

 Condition codes
 Store status information about most recent
 arithmetic or logical operation
 Used for conditional branching

Memory
Byte addressable array
Code and user data
Stack to support procedures

Puzzle:
 On a NUMA machine, a CPU is near a fast
 memory but can access all memory.
 How does this impact software design?

CORNELL CS4414/5416 - FALL 2025 22

This memory is
slower to access!

Same with this one…

…

I’m the local
DRAM module!

…

Example: With 6 on-board DRAM modules and 12 NUMA CPUs, each pair of
CPUs has one nearby DRAM module. Memory in that range of addresses will be
very fast. The other 5 DRAM modules are further away. Data in those address
ranges is visible and everything looks identical, but access is slower!

C++ ADDRESSING MODES AND NUMA ACCESS COSTS
Addressing Mode Estimated Access Cost (ns)

Register or D-cache 0.3 - 1 ns (1-3 cycles)

Local NUMA memory 30 - 60 ns (100-200 cycles)

Remote NUMA memory 90 - 150 ns (300-500 cycles)

Pointer dereference Varies with memory location

Data Structure Estimated Access Cost (ns)

Array of ints 0.3 - 1 ns (in cache), 30-150 ns (memory)

Array of 64-bit floats 0.3 - 1 ns (in cache), 30-150 ns (memory)

std::vector Similar to array, with bounds checking overhead

std::list 100 - 300 ns (pointer chasing)

2D matrix Depends on layout and access pattern

Data structures often cost more (“pointer chasing”)

HOW DOES THIS CHANGE YOUR CODING?

Knowing these implicit costs, you need to design your code with the
cost model in mind.

Decisions about data structures, how to perform computations on
larger objects such as matrices, and where objects live in memory
start to reshape the design process!

Some people love “vibe coding”… but MLs mess this type of design
up. They always pick code styles they were trained to favor, without
attention to the properties of today’s common NUMA servers.

CORNELL CS4414/5416 - FALL 2025 24

…. IN EFFECT

NUMA servers pretend to be old fashioned single core servers

This means old coding styles work, even if they perform poorly.

Vibe coding (ML assisted) reinforces the issue because the MLs
are trained on coding styles and examples that were the
ultimate in elegance on a prior generation of hardware!

CORNELL CS4414/5416 - FALL 2025 25

MEMORY LAYOUT AND ACCESS TIME MATTERS TOO.
CONSIDER 2D MATRICES

• Row-major layout stores rows contiguously in memory
• Column-major layout stores columns contiguously
• Cache locality is better when accessing data with small "strides"
• Stride access patterns affect cache performance:

- Row-wise access in row-major layout is fast if the index is
 fast to compute, like an integer.

- Column-wise access in row-major layout causes cache misses

MEMORY ACCESS TIME BY LOCATION TYPE

Core message?

Exactly the same
code might run
far faster/slower
depending on
choices being made

NVIDIA H100 GPU MEMORY ACCESS TIME BY
LOCATION TYPE

WOULDN’T CACHING CONCEAL THIS? OR
PREFETCHING?
Both techniques help a lot! But the hardware and runtime environments
aren’t always able to guess at what should be prefetched and what
should be cached.

Also, the cache for a server core or for a GPU is far smaller than the
nearby memory, which this in turn is smaller than the aggregated
memory of a cluster of GPUs living under one host. Big objects might
not fit in the local memory, or in the local cache.

So caching might not be able to hide costs for big LLM/LRM models!
CORNELL CS4414/5416 - FALL 2025 29

TO MAXIMIZE PERFORMANCE WE NEED TO
CONTROL THESE FACTORS

Yet they only sometimes involve explicit coding decisions.
 An explicit choice occurs when you pick a std::vector and not a simple
 array. If you pick std::list you are “forcing” a slow option
 You can annotate an inline variable with register to explicitly request
 fast memory (but with -O3 the compiler usually makes good choices)
 An implicit choice occurs when an active thread allocates an object
 (memory will be in a nearby heap), or if an object is in global memory
 (it will probably not be in nearby memory). A C++ const is fastest of all.

CORNELL CS4414/5416 - FALL 2025 30

LINUX AND THE HARDWARE: TWO
SIDES OF THE SYSTEM ARCHITECTURE

We will be learning about the modern computer hardware, not so
much from an internals perspective, but as users.

Linux lets you design applications that correspond closely to the
hardware. But then we need a programming language that lets us
talk directly to the operating system and the hardware.

CORNELL CS4414/5416 - FALL 2025 31

WHAT ABOUT THE CHOICE OF
PROGRAMMING LANGUAGE?
The idea behind programming is very universal:

 We code in a higher level way

 The programming language maps our code to instructions,
 or perhaps even performs the operations itself, in a runtime

This makes us more productive and hopefully, the code is even
 better than we could have created by hand.

CORNELL CS4414/5416 - FALL 2025 32

CHOICE OF PROGRAMMING LANGUAGE…

Most people are familiar with Java and Python.

Java has lots of data types (and lots of fancy syntax!), generics,
threads, other elaborate language features. It compiles to a mix of
machine code and programming language runtime logic.

Python automates much more: No need to fuss with data types, easy
to create arrays and transform all the objects with just one step. And
because Python threads hold a global interpreter lock while active, it
doesn’t have true parallelism.

CORNELL CS4414/5416 - FALL 2025 33

CHOICE OF PROGRAMMING LANGUAGE…

Most people are familiar with Java and Python

Java has lots of data types (and lots of fancy syntax!), generics,
other elaborate language features and compiles to a mix of
machine code and programming language runtime logic.

Python is easier: No need to fuss with data types, easy to create
arrays and transform all the objects with just one step.

Which is better?
1) Java
2) Python

What about C++? Rust? Objective C?
O’Caml? Julia?

CORNELL CS4414/5416 - FALL 2025 34

CONSIDERATIONS PEOPLE OFTEN CITE

Expressivity and Efficiency: Can I code my solution elegantly
and easily? Will my solution perform well?

Correctness: If I end up with buggy code, I’ll waste time (and my
boss won’t be happy). A language should facilitate correctness.

Productivity: A language is just a tool. The easier it is to do the
job (which is to solve some concrete problem), the better!

CORNELL CS4414/5416 - FALL 2025 35

DRILL-DOWN CONSIDERATIONS

We want our solutions to perform well and “scale well”.

For many tasks this involves working on the “cloud” (big remote
data centers, like AWS or Microsoft Azure or Google).

In the cloud you rent the machines you need, as needed, but pay
for what you use. So performance ≅ $$$.

Which performs better?
1) Java
2) Python
3) … something else?

… why?

CORNELL CS4414/5416 - FALL 2025 36

WHAT CAN MAKE PYTHON AND JAVA EXPENSIVE?

Python: Interpreted
Compiles to a high-level representation that
enables an “interpretive” execution model.

In fact, Python is like a “general machine”
controlled by your code: Python itself runs on
the hardware. Then your code runs on Python!

Gradual typing: Python is very laissez-faire
and can’t optimize for specific data types.

Java: Runtime overheads
Compiles (twice: to byte code, then via JIT) but
rarely exploits full power of hardware. Limited
optimizations, parallelism

Dynamic types and polymorphism are costly.

Everything is an object, causing huge need for
copying and garbage collection.

It feels as if your programs run inside layers
and layers of “black boxes”

CORNELL CS4414/5416 - FALL 2025 37

DOES C++ AVOID THESE PITFALLS?

C++ objects are a compile-time feature. At runtime, all the type-
related work is finished: no runtime dynamics.

The compiler “inline expands” and infers types, which makes coding
easier. Then it optimizes heavily. You help it.

Computers execute billions of instructions per second, yet we can
write code that will minimize the instructions and shape the choices.

Parallelism is easy, and the compiler automatically leverages modern
hardware features to ensure that you will have highly efficient code.

CORNELL CS4414/5416 - FALL 2025 38

LET’S DRILL DOWN ON SPEED

For some situations, C++ can be thousands of times faster than
Python or Java, on a single machine!
 Typically, these are cases where the application has a lot of
 parallelism that the program needs to exploit.
 For example, identifying animals in a photo entails a lot of
 steps that involve pixel-by-pixel analysis of the image
 But in fact, we can get substantial speedups just scanning
 large numbers of big files… hence our word-count demo

CORNELL CS4414/5416 - FALL 2025 39

PARALLELISM

… in fact, it is very hard to exploit parallelism in a single Python
program.

This is because the Python model is “single threaded”. Even so,
PyTorch is highly parallel, because it leverages GPUs.

Java does allow parallelism, via “parallel threads”. But high
performance coding in Java requires a lot of skill.

CORNELL CS4414/5416 - FALL 2025 40

LET’S DRILL DOWN ON SPEED

We said that Python is slowest, Java is pretty good, but C++ can
beat both. C++ knocks the socks off Java for parallel tasks.

What would be a good way to “see that in action”?

A small example: “word count” in Python, Java and C++

CORNELL CS4414/5416 - FALL 2025 41

WORD COUNT TASK

Basically, we take our input files and “parse” them into words. All
three languages have prebuilt library methods for this. Discard non-
words (things like punctuation marks).

Keep a sorted list of words. As we see a word, we look it up and
increment a count for that word (adding it if needed).

At the end, print out a nicely formatted table of the words/counts in
descending order by count, alphabetic order for ties

CORNELL CS4414/5416 - FALL 2025 42

THE PARTICIPANTS

Ken, back when he was kind of new to C++ in 2020

Sagar, our head PhD TA in the early days, who was a hard-code C++
coder, spent two summers as a Microsoft employee.

Lucy, undergraduate coding superstar

[Added in 2025]: Andrew Myers, world champion Java programmer (using
a version with “virtual threads” that wasn’t available to Lucy back in 2020)

CORNELL CS4414/5416 - FALL 2025 43

THE SCOREBOARD

#1-A: Ken’s C++ Faster, but more complex…
real 4.645s
user 14.779s
sys 1.983s

#1-B (Sagar’s code, shorter & better use of C++…)
real 8.200s
user 49.295s
sys 2.145s

#3-A Lucy’s Java version (no threads)
real 1m49.373s
user 3m16.950s
sys 8.742s

#3-B Andrew’s Java version (virtual threads)
 real 5.5s [but on a slower computer]
 (user and sys time not reported)
What if Andrew had used the same server? His Java is
probably as fast as Ken’s C++… a likely tie!

#2 Lucy’s Python version
real 1m30.857s
user 1m30.276s
sys 0.572s

This was only 19 lines of code!

#4: Pure Linux (buggy sort order)
real 2m38.965s
user 2m43.999s
sys 27.084s

CORNELL CS4414/5416 - FALL 2025 44

THE SCOREBOARD

#1-A: Ken’s C++ Faster, but more complex…
real 4.645s
user 14.779s
sys 1.983s

#1-B (Sagar’s code, shorter & better use of C++…)
real 8.200s
user 49.295s
sys 2.145s

#3 Lucy’s Java version (no “true” threads)
real 1m49.373s
user 3m16.950s
sys 8.742s

#3-B Andrew’s Java version (virtual threads)
 real 5.5s [but on a slower computer]
 (user and sys time not reported)
What if Andrew had used the same server? His Java is
probably as fast as Ken’s C++… a likely tie!

#2 Lucy’s Python version
real 1m30.857s
user 1m30.276s
sys 0.572s

This was only 19 lines of code!

#4: Pure Linux (buggy sort order)
real 2m38.965s
user 2m43.999s
sys 27.084s

CORNELL CS4414/5416 - FALL 2025 45

C++ version was 34x faster than
Linux, 20x faster than unthreaded

Java or Python

THE SCOREBOARD

#1-A: Ken’s C++ Faster, but more complex…
real 4.645s
user 14.779s
sys 1.983s

#1-B (Sagar’s code, shorter & better use of C++…)
real 8.200s
user 49.295s
sys 2.145s

#3 Lucy’s Java version (no “true” threads)
real 1m49.373s
user 3m16.950s
sys 8.742s

#3-B Andrew’s Java version (virtual threads)
 real 5.5s [but on a slower computer]
 (user and sys time not reported)
What if Andrew had used the same server? His Java is
probably as fast as Ken’s C++… a likely tie!

#2 Lucy’s Python version
real 1m30.857s
user 1m30.276s
sys 0.572s

This was only 19 lines of code!

#4: Pure Linux (buggy sort order)
real 2m38.965s
user 2m43.999s
sys 27.084s

CORNELL CS4414/5416 - FALL 2025 46

Notice that the user time is 3x
larger than the real time.

Puzzle: how can this be true?

HOW TO DO 14.7779S OF
COMPUTING IN 4.645S?
Concurrency!

… if a process is using more than one thread it can harness
more than one CPU at the same time.

With 3 CPUs running continuously at full speed, it can do 3x
more work than the elapsed wall-clock time!

CORNELL CS4414/5416 - FALL 2025 47

A 3-horsepower system

QUICK DIVE INTO WORD COUNT IN C++

We’ll learn all of this over a few weeks

But today, we already might have a glimpse.

Code and data set is linked to the syllabus page for lecture 2

CORNELL CS4414/5416 - FALL 2025 48

EXAMPLE: HELLO WORLD IN C++

CORNELL CS4414/5416 - FALL 2025 49

// My first C++ program

#include<iostream>

int main() {
 std::cout << "Hello World“ << std::endl;
 return 0;
}

First you’ll create a file, hello.cpp

Next, it must be compiled, for example:

g++ -std=c++20 hello.cpp –o hello

… and finally, launched:
./hello
Hello World

We will be doing these steps from within Visual Studio Code

This “IDE” includes support for editing, compiling, debugging and executing your programs.

EXAMPLE: WORD COUNT IN C++
This is the “core” of the counting logic:

CORNELL CS4414/5416 - FALL 2025 50

using WC = std::map<std::string, int>;
WC sub_count[MAXTHREADS];

inline void found(int& tn, char*& word)
{
 sub_count[tn][std::string(word)]++;
}

EXAMPLE: WORD COUNT IN C++
… and here is the core of the sorting logic:

CORNELL CS4414/5416 - FALL 2025 51

struct SortOrder: public std::binary_function<std::pair<int, std::string>, std::pair<int, std::string>, bool>
{
 bool operator()(const std::pair<int, std::string>& lhs, const std::pair<int, std::string>& rhs) const
 {
 return lhs.first > rhs.first || (lhs.first == rhs.first && lhs.second < rhs.second);
 }
};

using SO = std::map<std::pair<int, std::string>, int, SortOrder>;
SO sorted_totals;
for(auto wc: totals)
{
 std::pair<int,std::string> new_pair(wc.second, wc.first);
 sorted_totals[new_pair] = wc.second;
}

EXAMPLE: WORD COUNT IN C++
Same logic but expressed using the c++23 decltype feature

CORNELL CS4414/5416 - FALL 2025 52

using SO = std::map<std::pair<int, std::string>, int,
 decltype([](const std::pair<int, std::string>& lhs, const std::pair<int, std::string>& rhs)
 {return lhs.first > rhs.first || (lhs.first == rhs.first && lhs.second < rhs.second); })>;

SO sorted_totals;

for(auto wc: totals)
{
 std::pair<int,std::string> new_pair(wc.second, wc.first);
 sorted_totals[new_pair] = wc.second;
}

MY CODE VERSUS SAGAR’S

My code understood that in files, data is just a long “vector” of
characters – bytes – with some ‘\n’ characters (end of line).

My word-count kept the data in that form and only created
std::string objects at the last moment, to increment the count:
“wptr” is a pointer
directly to the bytes
in the input buffer

CORNELL CS4414/5416 - FALL 2025 53

inline void found(int& tn, char*& wptr)
{
 sub_count[tn][std::string(wptr)]++;
}

Used in the hacking competition for lecture 1. All source code is on our web site!

A CHUNK OF LINUX SOURCE CODE

Notice: this has text (words)
but also lots of other stuff, like
spaces and tabs, special chars
like (){};/_&* etc.

End of line is a special ascii
char, ‘\n’ (code == 0x12).

CORNELL CS4414/5416 - FALL 2025 54

VISUALIZATION OF MY WORD COUNT RUNNING

CORNELL CS4414/5416 - FALL 2025 55

Some file with Linux source
code, like

…/kernel/dma/contiguous.c

Memory buffer

Ken’s word-count process, when running

Read data into memory from disk file

WHAT DO WE MEAN BY “READ DATA INTO MEMORY?”

In my program, some space gets allocated – set aside – in the
address space as a place for file data to be held.

The program opened a source file and told Linux to copy 4096
bytes (one block) into that buffer area.

The text that you saw in that screenshot was stored there as a series
of ascii bytes, a code that uses values 0..128

CORNELL CS4414/5416 - FALL 2025 56

HOW MY CODE ACTUALLY WORKED

Change all “white space” to \0 (byte containing 0). Now each
word is a null-terminated char* vector (a “c-string”)

Converted from a c-string to std::string in found:

CORNELL CS4414/5416 - FALL 2025 57

int ret;\nchar name[CMA_MAX_NAME];\nstruct cma **cma =

int\0ret\0\0\0char\0name\0CMA_MAX_NAME\0\0\0struct\0 cma\0\0cma\0

wptr found(current_thread_id, wptr);

sub_count[tn][std::string(word)]++;

WHEN I FIRST CODED MY SOLUTION, MY
PROGRAM WAS VERY SHORT, BUT RATHER SLOW.

I added parallel threads – which complicated the solution but
helped a lot. Then because file opening was slow, I added a
thread to “preopen” files before they were needed.

The C++ library for file opening and reading files was a
bottleneck, so I switched to calling Linux file open and Linux file
read, directly. This gave an additional speedup

CORNELL CS4414/5416 - FALL 2025 58

WHAT MADE SAGAR’S VERSION SLOWER?

If you look at his code, you’ll find that it converts the whole file
into std::string objects, line by line

Then it splits lines into substrings using a “splitter” method. Each
chunk will be a std::string. But many won’t be “words”

If the substring matching the rule for a word, Sagar’s code uses
a map like Ken’s code and increments the count.

CORNELL CS4414/5416 - FALL 2025 59

HOW CAN WE “ANTICIPATE” THE COSTS OF
TOO MANY USES OF STD::STRING?
We know that a file is basically a long vector of bytes.

A text file holds ascii chars with ‘\n’ for newline. A c-string is a
region holding chars, ending with ‘\0’. Ken worked from this.

In contrast, a std::string is an object. At a minimum it has a string
length and its own copy of the c-string holding the string data. It must
be constructed and freed. That has to be costly.

CORNELL CS4414/5416 - FALL 2025 60

WHAT MADE SAGAR’S CODE SLOWER?

This means Sagar was creating perhaps 5-10x more std::string
objects. At scale, with 50,000 files and millions of lines to scan,
he does a lot of object creation, splitting and deletion, copying,
garbage collection. Ken’s code “skipped” 95% of that work!

… So Ken’s code was way faster!
Yet Sagar’s was closer to being pure
C++. Ken’s mixed C++ with C

CORNELL CS4414/5416 - FALL 2025 61

THE SCOREBOARD

#1-A: Ken’s C++ Faster, but more complex…
real 4.645s
user 14.779s
sys 1.983s

#1-B (Sagar’s code, shorter & better use of C++…)
real 8.200s
user 49.295s
sys 2.145s

#3 Lucy’s Java version (no “true” threads)
real 1m49.373s
user 3m16.950s
sys 8.742s

#3-B Andrew’s Java version (virtual threads)
 real 5.5s [but on a slower computer]
 (user and sys time not reported)
What if Andrew had used the same server? His Java is
probably as fast as Ken’s C++… a likely tie!

#2 Lucy’s Python version
real 1m30.857s
user 1m30.276s
sys 0.572s

This was only 19 lines of code!

#4: Pure Linux (buggy sort order)
real 2m38.965s
user 2m43.999s
sys 27.084s

CORNELL CS4414/5416 - FALL 2025 62

Total compute “load” was actually
a lot lower for Ken’s C++ program.

Hence… less energy consumed

BUT MUCH MORE IS REALLY GOING ON!

The Linux file system is involved when we scan folders to find the
files we plan to run WC on, and it reads the data for us.

 How good a job is it doing? Is it prefetching? Caching?

 Should we be directly mapping files into memory?

 Could our threads be somehow contending for the Linux
 file system layer, and slowing things down?

CORNELL CS4414/5416 - FALL 2025 63

A TENNIS ANALOGY

When you hit a tennis ball, you swing the racket…
 But gravity and the dynamics of spin shape the trajectory
 Your opponent is in motion. Anticipating their position/angle
 decides if your shot will be easy for them to return or hard
 The layout of the tennis court itself sets the real constraints

We talked about implicit versus explicit decisions. Does tennis have
this too?

CORNELL CS4414/5416 - FALL 2025 64

A MODERN COMPUTER IS EVEN
MORE LIKE A SWISS WATCH!
Tennis is a good analogy for pairs of elements that work
concurrently yet influence one another.

But a single NUMA computer (even with just a single LLM or LRM
task on it) is doing dozens of things at once, and has many of
these relationships

Getting the best performance? It is like “designing clockwork”!
CORNELL CS4414/5416 - FALL 2025 65

EXAMPLES OF IMPLICIT PROGRAMMING

Using a separate thread to open files well before they are
needed for scanning.

Interacting with the file system efficiently, by reading 4KB chunks
at a time or mapping the file, and accessing it sequentially from
a single thread.

Allocating separate std::map objects, each created by a thread
that will exclusively use it (ensures memory will be local)

CORNELL CS4414/5416 - FALL 2025 66

TO BE A GREAT PROGRAMMER…

You need to have all these concepts in mind as you work. And you
need to understand performance both of the hardware and the O/S

You explicitly code lots of things, but the way you write your code
implicitly avoids lock contention, allocates memory in ways that
should maximize locality, accesses files in ways that promote file
prefetch and caching, etc.

A great programmer is always conscious of both kinds of choices

CORNELL CS4414/5416 - FALL 2025 67

DID YOU FOLLOW TODAY’S LECTURE?

There was a big idea about computer architectures, the architecture
of the OS and the way that programs running on the computer
interact with both. Summarize that big idea in your own words.

Java and Python and C++ are all reasonable languages. Why do
many companies favor C++ for “systems programming”?

List all the things happening concurrently when word count is running.

CORNELL CS4414/5416 - FALL 2025 68

Most lectures have extra “self-study” slides. We don’t cover them in class or recitation, but
you are welcome to discuss with a TA in OH, or with friends, or on Ed Discussions

DID YOU FOLLOW TODAY’S LECTURE?

We saw some big ideas, like using threads, but to maximize the
speed of those threads we also saw some “small” ideas.

Why did it matter whether or not threads share a single counter
data structure? Shouldn’t it be faster to share just one and not
have to merge lots of them?

CORNELL CS4414/5416 - FALL 2025 69

DID YOU FOLLOW TODAY’S LECTURE?

Why did the way that text is represented in files on disk matter
in the WC application?

How does understanding how the file system component of Linux
influence the way a word count program is implemented?

CORNELL CS4414/5416 - FALL 2025 70

DID YOU FOLLOW TODAY’S LECTURE?

Why might it matter which part of memory a particular variable
was placed in by the compiler?

Is this something we can control in Python? Java? C++? (Hint:
this question might require a bit of dialog with your AI copilot!)

CORNELL CS4414/5416 - FALL 2025 71

MORE SELF-TEST

You are given code that you can use, but not modify, like
libraries of ML kernels (computations). To create a new ML you
call one, then feed the output from to another as its input, etc.

Using a profiler, you discover that the code uses many threads
and many GPUs, and has a memory bottleneck. While this
program runs, 96% of the compute capacity is idle. The NUMA
memory busses of the host and GPUs are100% saturated.

What options would you have that could possibly help?
CORNELL CS4414/5416 - FALL 2025 72

MORE SELF-TEST

You are given code that you can use, but not modify, like
libraries of ML kernels (computations). To create a new ML you
call one, then feed the output from to another as its input, etc.

Using a profiler, you discover that the code uses many threads
and many GPUs, and has a memory bottleneck. While this
program runs, 96% of the compute capacity is idle. The NUMA
memory busses of the host and GPUs are100% saturated.

What options would you have that could possibly help?
CORNELL CS4414/5416 - FALL 2025 73

All of this is happening on one server
with lots of memory and many GPUs

MOST IMPORTANT ML KERNEL?

… it turns out to be matrix multiply. Best algorithms are
surprisingly fast. For example, with square matrices, rather than
O(n3) the best known algorithm runs in O(n2.371339)…

But today we’ve seen other considerations: where data actually
is located in memory, GPU versus host compute, delay to launch
a GPU computation, integer versus float (and size in bits)…

CORNELL CS4414/5416 - FALL 2025 74

SELF-TEST

Suppose you need to convince a teammate or manager that
these things actually matter.

Could you find an off-the-shelf ML library method and call it in
C++ in two ways, such that it performs 100x or even 1000x
better depending only on where the input object is located?

Extra self-test: Try doing it!
CORNELL CS4414/5416 - FALL 2025 75

SAME SELF-TEST

At a group meeting, someone is skeptical that professional LLM
or LRM solutions really could be running slowly on the company
hardware

Separate from writing your own code and “setting it up” to
perform badly, how would you convince that teammate that
there really could be a large opportunity, worth pursuing?

CORNELL CS4414/5416 - FALL 2025 76

NOTICE THAT OUR SLIDES DIDN’T TALK
ABOUT THESE EXACT CASES!!
In CS4414 and CS5416 we try to show you how to think about
problems, but you can’t learn the material by memorizing slides

In fact most people find that the only way to really deeply learn it is
to try some of these things out.

Be sure to compile with the –O3 flag when playing with C++. This
tells the compiler to do its very best. Often –O3 by itself can give
a 2x performance difference… and sometimes, far more.

CORNELL CS4414/5416 - FALL 2025 77

ARE THERE “RIGHT ANSWERS”?
Some people are incredible at speeding things up… Our TAs
are those kinds of people. It involves talent.

The ideas they consider are the same you probably came up
with! But they also know how easy or hard it would be to
actually try those ideas out. Start with easier ones!

When you have a flash of insight, always ask: can I validate
this? Can I use my insight to do something that would pay off?
How much work will be required?

CORNELL CS4414/5416 - FALL 2025 78

OPTIONAL EXTRA READINGS
Code for the word count programs is available here.

If you find this topic exciting, you might enjoy reading about
 Research done by Chris da Sa on these topics
 How DeepSeek actually achieved such good speedups for
 training (or some people suspect, “fine tuning”) LLMs
 How LPU accelerators from Grok speed up LLMs
 Or this cool paper Shouxu Lin and Alicia Yang found, about
 running LLMs on commodity laptops and desktops.

CORNELL CS4414/5416 - FALL 2025 79

https://cornellprod-my.sharepoint.com/personal/kpb3_cornell_edu/Documents/Desktop/Clone%20of%20CS4414%20-%202025fa/Examples.htm
https://arxiv.org/pdf/2312.12456

	The Evolution and Architecture of Modern Computers
	Idea Map for today
	What’s Inside? Architecture = components of a computer + operating System
	Intel Xenon NVIDIA TESLA
	How did we get here?
	But by 2006 Moore’s Law �seemed to be ending
	What ended Moore’s Law?
	But parallelism saved us!
	Moore’s Law with NUMA
	Amdahl’s Law
	A Day Trip to Niagara Falls
	A Day Trip to Niagara Falls
	How Amdahl thought about parallelism
	How AmDahl Expressed his law
	… making modern performance-focused programming complicated!
	… making modern performance-focused programming complicated!
	… making modern performance-focused programming complicated!
	The Hardware shapes the�Application Design process
	How a single thread computes
	Assembly/Machine �Code View
	NUMA offers the illusion that nothing has changed!
	Assembly/Machine �Code View
	C++ Addressing Modes and NUMA Access Costs
	How does this change your coding?
	…. In effect
	Memory Layout and Access Time Matters too. COnsider 2D Matrices
	Memory Access Time by Location Type
	NVIDIA H100 GPU memory Access Time By Location type
	Wouldn’t caching conceal this? Or prefetching?
	To maximize performance we need to control these factors
	Linux and the Hardware: two�Sides of the system architecture
	What about the choice of programming language?
	choice of programming language…
	choice of programming language…
	Considerations people often cite
	Drill-down considerations
	What can make Python and Java expensive?
	does C++ avoid these pitfalls?
	Let’s Drill down on speed
	Parallelism
	Let’s Drill down on speed
	Word count task
	The participants
	The Scoreboard
	The Scoreboard
	The Scoreboard
	How to do 14.7779s of �computing in 4.645s?
	Quick dive into word count in C++
	Example: Hello World in C++
	Example: Word Count in C++�
	Example: Word Count in C++�
	Example: Word Count in C++�
	My code versus Sagar’s
	A chunk of Linux source code
	Visualization of my word count running
	What do we mean by “read data into memory?”
	How my code actually worked
	When I first coded my solution, my program was very short, but rather slow.
	What made Sagar’s version slower?
	How can we “anticipate” the costs of too many uses of Std::string?
	What made Sagar’s Code Slower?
	The Scoreboard
	But much more is really going on!
	A tennis analogy
	A modern computer is even �more like a Swiss Watch!
	Examples of implicit programming
	To be a great programmer…
	Did you follow today’s lecture?
	Did you follow today’s lecture?
	Did you follow today’s lecture?
	Did you follow today’s lecture?
	More self-test
	More self-test
	Most Important ML kernel?
	Self-Test
	Same Self-Test
	Notice that our slides didn’t talk about these exact cases!!
	Are there “right answers”?
	Optional Extra Readings

