N\YFZANYIANYIANTVI ANV I ANTY I ANY S AN

Z Qﬂ%ﬂ%ﬂ%ﬂ%ﬂ\ﬂ% /
NYZANYZANYZANYZANYZANYZANTZAN
ZAN\YZANYZANVZANYZANYZANYZA\Y/
NYZANYZANYZANYZANYZANYZANTZAN

FJANVIANVIANVIANVIANVIANVIANYS

THE EVOLUTION AND ARCHITECTURE | professor Ken B e
OF MODERN COMPUTERS | c54414/5416 Lecture 2

IDEA MAP FOR TODAY

Goal: Learn just a little about NUMA architectures.

We are not trying to be an architecture course. But we do need
to be able to visualize what we are “asking the hardware to do”

Computers are multicore

i Individual CPUs don’t make this NUMA Compiled languages are
NUMA machines capable) :) i :)
. dimension obvious. The whole idea is translated to machine language.
of many forms of parallelism. . ,
that if you don’t want to know, you can Understanding this mapping will allow us to
They are extremely complex
ignore the presence of parallelism make far more effective use of the machine.

and sophisticated.

CORNELL CS4414/5416 - FALL 2025 2

WHAT’S INSIDE? ARCHITECTURE = COMPONENTS
OF A COMPUTER + OPERATING SYSTEM

m Registers Registers
(L1 cache) (L1 cache)

R
00 010

SSD
storage

100G
Ethernet

PCle Bus

CORNELL CS4414/5416 - FALL 2025 3

INTEL XENON

CMS@ICMS CMS @I CMS CMS@ICMS
4 CMSEICMS CMS @ CMS CMSRICMS
=
'I:J
i 3
E]]
".4',", CMSEICMS & CMS @I CMS = CMS@BICMS
—dcmsflicms cmsllcms S cmsflcms
2
- 1
S -
~ Jcms@cmsE T cMS@icMS — ScMsBcMsE
-
Bew b3
~JcmsflicmsE cms@icMs cMslicMs

Each core is like a little computer, talking to the others
over an on-chip network (the CMY)

NVIDIA TESLA

TURING TENSOR CORES
INT8

~
S~

The GPU has so many cores that a photo of the chip is
pointless. Instead they draw graphics like these to help
you visualize ways of using hundreds of cores to process
a tensor (the “block” in the middle) in parallel!

CORNELL CS4414/5416 - FALL 2025 4

i

r=1

HOW DID WE GET HERE?

In the early years of computing, we went from machmes built from
distinct electronic components (earliest generations) to ones built
from integrated circuits with everything on one chip.

Quickly, people noticed that each new generation of computer
had roughly double the capacity of the previous one and could run
roughly twice as fastl Gordon Moore proposed this as a “law”.

CORNELL CS4414/5416 - FALL 2025 5

BUT BY 2006 MOORE’S LAW
SEEMED TO BE ENDING

Moore's Law Ending (Red Linek
Delayed products, Delayed 45nm /32 nm, Reduced Capex

&
0 BILLION — 0 BILLION L -
TRANSISTORS + Futuwre to 208 .
PER CHIP 4
FRLLION = - 4 aif 2015 2008
EVERY 18 MONTHS &
T300 x 305667 oo - B0 s WITHY. cpe
\ . 2006; MONTE-
o,
JC B ILLIRO W — s . : - |7 BILLION
TRANSSTORS/ CHIP DOUBLIMC EVERY 2 YEARS - “a PERTIUM 4
WO RKED € UT WELL BUT NOT ITANILM FUTLRE PATHIN
i MILLION —] HLICH [OrMGER COLOR

- o ' PENTIUME

- PEMT LM)1
& PENTIUM

meHIH'W"- B

| MILLEDN — |
00.000 = Basedon logisticregression, symptote at 6.25 billlon.
LR
COlayton Hallrmark
300 &dlca::ed n
- Professor Frederick E, Terman

| | | | 1 1 | 1
Bl Iad Year 580 2000 20d 200 2015 il

CORNELL CS4414/5416 - FALL 2025

6

o
L5
=
1
=13
R !
.
I— "
S -
e
i
N

s

WHAT ENDED MOORE’S LAW?

To run a chip at higher and higher speeds, we

If you overclock your

use a faster clock rate and keep more of the desktop this can happen...
circuitry busy.

Computing is a form of “work” and work generates heat... as
roughly the square of the clock rate.

Chips began to fail. Some would (literally) melt or catch firel

CORNELL CS4414/5416 - FALL 2025 7

BUT PARALLELISM SAVED US!

A new generation of computers emerged in which we ran the
clocks at a somewhat lower speed (usually around 2 GHz, which
corresponds to about 1 billion instructions per second), but had
many CPUs in each computer.

A computer needs to have nearby memory, but applications
needed access to “all” the memory. This leads to what we call a
“non-uniform memory access behavior”: NUMA.

CORNELL CS4414/5416 - FALL 2025 8

MOORE’S LAW WITH NUMA

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
linked to Moore's law.

50,000,000,000
72-core Xeon Phi Centrig 2\4.00 ©GC2 IPU
SPARC M %_sare AMD E
IBM 213 Storage Controller, \ 05 pple)\l2§ygionic
10,000,000,000 et § T ¢ L —
Xbox One main SoC., & o i
3 i » B 4~ HiSilicon Kirin 980 + Apple A12 Bionic
s R0 9 of DA
8-core Xeon Nehalem-EXw 2 . p gl
ik : Qualcomm Snapdragon 835
e R PR gl TR ety
Pentium D Presler, peywen P ¥ uad-core + GPU Core i7 Haswell
1'000’000’000 “S%‘l:géﬁig‘o\ow 06 L+ '_ 7 (Quad) °Avpha AT (dual-core ARMB4 "mobile SoC%)
500,000,000 Itanium 2 Madison Gy . e 2“5‘1.8'6&8[,5%1‘3 ML
Pentium D Smithfield s, Qore 2 Duo Conroe
Itanium 2 McKinley«p D ell Core 2 Duo Wolfdale 3M
Pentium 4 Prescott-Zgy .\OPCcnc 2 Dug;«glcnﬂalc
g entium 4 Gedar Mill
1 00,000,000 AMD K§ Pentium 4 Prescott
Pentium 4 Northwoasie
' 50,000,000 Pentium 4 Wilamette g, li;ila::;atin QAtom
3 Pentium Il Mobite Dixo
8 . ?Pen!iumIHCoppermine PARM Cortex-19
= D K&-1il
S 10,000,000 2 8 o-fimimlliene
‘@ 5,000,000 Pentivo g Peliiuh I
% .“«M% K5
= s
Intel BO4EE, °n4
1,000,000 o
TI Explorer's 32-hit
500,000 Lisp'machine ¢ P, .
Intel BO3E5 Intel o €ARM 3
Motorola 6802968 L) ¢
- e
g ulliTi
100,000 N o o
BBO0DEY aToMI
50‘000 € Intel 50166
§ ©inte1 8088 ’nrﬁf?mz Arms
Mgmrnla B5 Ecis ©
> oV
10,000 g io00 s whc N
SR SR
5.000 nte
’ Intel 808 ’“" | BOBO
MOS Technology
Motorola 55%‘;
B, o600
1,000
UG S L. Gl - L L, G S L g S R S L S
S FFFFFLEFTETETLTFTLSETS S S S
CORNELL CS4414/5416 - FALL 2025 9
Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count) /

The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic. Licensed under CC-BY-SA by the author Max Roser.

AMDAHL’S LAW

Gene on the family farm in Norway

Gene Amdahl was a leading research on parallelism and
supercomputing in IBM’s HPC division.

He became interested in a basic question. How fast can
computations be performed, with infinite parallelism?

CORNELL CS4414 - SPRING 2023 10

There are six of you. One option
is to rent a plus-sized car (but
those big vehicles are slow)

CORNELL CS4414 - SPRING 2023 11

A DAY TRIP TO NIAGARA FALLS

Better plan: You rent three convertible sports cars.

Each holds two people, and these are “insanely fast”.

But as you head north, the narrow road has a
bottleneck! Until you all pass this slow tractor, the

group will have to wait.

Gene Amdahl’s Tractor in Norway
CORNELL (54414 - SPRING 2023 12

HOW AMDAHL THOUGHT ABOUT PARALLELISM

In any computation, we have some parts that are highly parallel, such
as scanning our 74,000 different files. Parallelism can speed those up.

But the computation will also have sequential tasks, which could include
sequential logic buried in the operating system or the hardware.

The sequential work will limit the speedup due to parallelism!

CORNELL CS4414 - SPRING 2023 13

HOW AMDAHL EXPRESSED HIS LAW

Suppose that p represents the percentage of the task that can be
parallelized and we have N parallel CPUs.

Then 5 is the maximum speedup . / =
1-p+- .)
N : (NN
E fa"
/4

simultaneously, yet we would still e e ssaszzggEig
have to do the sequential parts step by step. 77

CORNELL CS4414 - SPRING 2023 14

... MAKING MODERN PERFORMANCE-FOCUSED
PROGRAMMING COMPLICATED!

Prior to 2006, a good program
» Used the best algorithm: computational complexity, elegance
» Implemented it in a language like C++ that offers efficiency

> Ran on one machine

CORNELL CS4414/5416 - FALL 2025 15

... MAKING MODERN PERFORMANCE-FOCUSED
PROGRAMMING COMPLICATED!

Today, a good program

» Used the best algorithm: computational complexity, elegance
» Implemented it in a language like C++ that offers efficiency
» Uses many threads and perhaps runs on many machines

» Shows smart awareness of hardware properties that can
shape performance, forcing us to take implicit measures to
ensure that the compiler and optimizer will produce great code

CORNELL CS4414/5416 - FALL 2025 16

... MAKING MODERN PERFORMANCE-FOCUSED
PROGRAMMING COMPLICATED!

Today, a good program

» Used the bs ithm. camnutational complexity, elegance

» Shows smart awareness of hardware propée that can
shape performance, forcing us to take implicit metSwes to
ensure that the compiler and optimizer will produce great code

CORNELL CS4414/5416 - FALL 2025 17

THE HARDWARE SHAPES THE
APPLICATION DESIGN PROCESS

We need to ask how a NUMA architecture impacts our designs.

If not all variables are equally fast to access, how can we
“code” to achieve the fastest solution?

And how do we keep all of this hardware “optimally busy’”?

CORNELL CS4414/5416 - FALL 2025 18

HOW A SINGLE THREAD COMPUTES

Common way to
depict a single thread

In CS4414 we think of each computation in terms of a “thread”

A thread owns a pointer into the program instructions. The CPU
loads the instruction that the “PC” points to, fetches any operands
from memory, does the action, saves the results back to memory.

Then the PC is incremented to point to the next instruction

CORNELL CS4414/5416 - FALL 2025 19

ASSEMBLY/MACHINE
CODE VIEW

Programmer-Visible State
» PC: Program counter

» Address of next instruction
» Called “RIP” (x86-64)
» Register file

» Heavily used program data
» Condition codes

» Store status information about most recent
arithmetic or logical operation

» Used for conditional branching

CPU

PC

Registers

Addresses

Data

>

Condition
Codes

p Instructions

>

Memory

»Byte addressable array
» Code and user data

» Stack to support procedures

Puzzle:

Memory

Code
Data
Stack

» On a NUMA machine, a CPU is near a fast

memory but can access all memory.

» How does this impact software design?

CORNELL CS4414/5416 - FALL 2025

NUMA OFFERS THE ILLUSION THAT NOTHING
HAS CHANGED!

You can write code exactly the way you did before.

The only issue is... it might run very slowly in ways caused by the
hardware trying to pretend to be an old single core system.

Understanding the causes enables us to write the same code in
slightly smarter ways to avoid these overheads.

CORNELL CS4414/5416 - FALL 2025 21

CPU

Example: With 6 on-board DRAM modules and 12 NUMA CPUs, each pair of
CPUs has one nearby DRAM module. Memory in that range of addresses will be
very fast. The other 5 DRAM modules are further away. Data in those address
ranges is visible and everything looks identical, but access is slower!

Memory
Addresses

This memory is
slower to access!

Same with this one...

I'm the local
DRAM modulel

CORNELL CS4414/5416 - FALL 2025 22

C+-+ ADDRESSING MODES AND NUMA ACCESS COSTS

Register or D-cache 0.3 - 1 ns (1-3 cycles)

Local NUMA memory 30 - 60 ns (100-200 cycles)
Remote NUMA memory Q@0 - 150 ns (300-500 cycles)
Pointer dereference Varies with memory location

Data structures often cost more (“pointer chasing’)

Data Structure Estimated Access Cost (ns)

Array of ints 0.3 - 1 ns (in cache), 30-150 ns (memory)

Array of 64-bit floats 0.3 - 1 ns (in cache), 30-150 ns (memory)
std::vector Similar to array, with bounds checking overhead
std::list 100 - 300 ns (pointer chasing)

2D matrix Depends on layout and access pattern

HOW DOES THIS CHANGE YOUR CODING?

Knowing these implicit costs, you need to design your code with the
cost model in mind.

Decisions about data structures, how to perform computations on
larger objects such as matrices, and where objects live in memory
start to reshape the design process!

Some people love “vibe coding”... but MLs mess this type of design
up. They always pick code styles they were trained to favor, without
attention to the properties of today’s common NUMA servers.

CORNELL CS4414/5416 - FALL 2025 24

.... IN EFFECT

NUMA servers pretend to be old fashioned single core servers
This means old coding styles work, even if they perform poorly.

Vibe coding (ML assisted) reinforces the issue because the MLs
are trained on coding styles and examples that were the
ultimate in elegance on a prior generation of hardware!

CORNELL CS4414/5416 - FALL 2025 25

MEMORY LAYOUT AND ACCESS TIME MATTERS TOO.
CONSIDER 2D MATRICES

* Row-major
e Column-ma

* Cache loca

ayout stores rows contiguously in memory

jor layout stores columns contiguously

ity is better when accessing data with small "strides"

* Stride access patterns affect cache performance:

- Row-wise access in row-major layout is fast if the index is
fast to compute, like an integer.

- Column-wise access in row-major layout causes cache misses

MEMORY ACCESS TIME BY LOCATION TYPE

Core message?

Exactly the same
code might run

far faster/slower
depending on
choices being made

Memory Access Time by Location Type (Sorted Slowest to Fastest)

Register or D-cache

NVIDIA H100 GPU MEMORY ACCESS TIME BY
LOCATION TYPE

Memory Access Latency (Nanoseconds)
. Key Performance Insights

2,000
1,800
€ 1500 On-chip SRAM Cache
c
8 1,400 ~1.5 ns - Fastest access for L1/shared memory
2 1200 operations
=]
E 1,000
— 800
5 600 Near Memory (HBM3)
S
[N _ ,
£ 400 200 ns - High bandwidth memory stack on GPU
-
200
0 .
o Far Memory (NVLink)
(jbé\ ~500 ns - Remote GPU memory via interconnect
.(\\Q
o

Host-mapped Memory

~2000 ns - System RAM accessed via PCle

Performance Impact

Host memory is 1,333x slower than on-chip cache,
emphasizing the critical importance of memory
locality optimization

WOULDN’T CACHING CONCEAL THIS? OR
PREFETCHING?

Both techniques help a lotl But the hardware and runtime environments

aren’t always able to guess at what should be prefetched and what
should be cached.

Also, the cache for a server core or for a GPU is far smaller than the
nearby memory, which this in turn is smaller than the aggregated

memory of a cluster of GPUs living under one host. Big objects might
not fit in the local memory, or in the local cache.

So caching might not be able to hide costs for big LLM/LRM models!

CORNELL CS4414/5416 - FALL 2025 29

TO MAXIMIZE PERFORMANCE WE NEED TO
CONTROL THESE FACTORS

Yet they only sometimes involve explicit coding decisions.

> An explicit choice occurs when you pick a std::vector and not a simple
array. If you pick std:list you are “forcing” a slow option

> You can annotate an inline variable with register to explicitly request
fast memory (but with -O3 the compiler usually makes good choices)

> An implicit choice occurs when an active thread allocates an object

(memory will be in a nearby heap), or if an object is in global memory
(it will probably not be in nearby memory). A C++ const is fastest of all.

CORNELL CS4414/5416 - FALL 2025 30

LINUX AND THE HARDWARE: TWO T
SIDES OF THE SYSTEM ARCHITECTURE

We will be learning about the modern computer hardware, not so
much from an internals perspective, but as users.

Linux lets you design applications that correspond closely to the
hardware. But then we need a programming language that lets us
talk directly to the operating system and the hardware.

CORNELL CS4414/5416 - FALL 2025 31

WHAT ABOUT THE CHOICE OF
PROGRAMMING LANGUAGE?

The idea behind programming is very universail:
> We code in a higher level way

» The programming language maps our code to instructions,
or perhaps even performs the operations itself, in a runtime

This makes us more productive and hopefully, the code is even
better than we could have created by hand.

CORNELL CS4414/5416 - FALL 2025 32

CHOICE OF PROGRAMMING LANGUAGE...

Most people are familiar with Java and Python.

Java has lots of data types (and lots of fancy syntax!), generics,
threads, other elaborate language features. It compiles to a mix of
machine code and programming language runtime logic.

Python automates much more: No need to fuss with data types, easy
to create arrays and transform all the objects with just one step. And
because Python threads hold a global interpreter lock while active, it
doesn’t have true parallelism.

CORNELL CS4414/5416 - FALL 2025 33

CHOICE OF PROGRAMMING LANGUAGE...

Which is better?
1) Java
2) Python

What about C++2 Rust? Objective C?
HO’Camle Julia?

arrays and rranstrorm d € OD|EeCTS WITh |JUST one step.

CONSIDERATIONS PEOPLE OFTEN CITE

Expressivity and Efficiency: Can | code my solution elegantly
and easily? Will my solution perform well?

Correctness: If | end up with buggy code, I'll waste time (and my
boss won’t be happy). A language should facilitate correctness.

Productivity: A language is just a tool. The easier it is to do the
job (which is to solve some concrete problem), the better!

CORNELL CS4414/5416 - FALL 2025 35

DRILL-DOWN CONSIDERATIONS

Which performs better?
11) Java
2) Python

3) ... something else?

WHAT CAN MAKE PYTHON AND JAVA EXPENSIVE?

Python: Interpreted

Compiles to a high-level representation that
enables an “interpretive” execution model.

In fact, Python is like a “general machine”
controlled by your code: Python itself runs on
the hardware. Then your code runs on Python!

Gradual typing: Python is very laissez-faire
and can’t optimize for specific data types.

Java: Runtime overheads

Compiles (twice: to byte code, then via JIT) but
rarely exploits full power of hardware. Limited
optimizations, parallelism

Dynamic types and polymorphism are costly.

Everything is an object, causing huge need for
copying and garbage collection.

It feels as if your programs run inside layers
and layers of “black boxes”

CORNELL CS4414/5416 - FALL 2025 37

DOES C++ AVOID THESE PITFALLS?

C++ objects are a compile-time feature. At runtime, all the type-
related work is finished: no runtime dynamics.

The compiler “inline expands” and infers types, which makes coding
easier. Then it optimizes heavily. You help it.

Computers execute billions of instructions per second, yet we can
write code that will minimize the instructions and shape the choices.

Parallelism is easy, and the compiler automatically leverages modern
hardware features to ensure that you will have highly efficient code.

CORNELL CS4414/5416 - FALL 2025 38

LET’S DRILL DOWN ON SPEED

A /‘ § ‘:\ A
| a=py

> 2

<samaty ”'&%\7.
For some situations, C++ can be thousands of times faster than
Python or Java, on a single machine!

» Typically, these are cases where the application has a lot of
parallelism that the program needs to exploit.

» For example, identifying animals in a photo entails a lot of
steps that involve pixel-by-pixel analysis of the image

> But in fact, we can get substantial speedups just scanning
large numbers of big files... hence our word-count demo

CORNELL CS4414/5416 - FALL 2025 39

PARALLELISM

. in fact, it is very hard to exploit parallelism in a single Python
program.

This is because the Python model is “single threaded”. Even so,
PyTorch is highly parallel, because it leverages GPU:s.

Java does allow parallelism, via “parallel threads”. But high
performance coding in Java requires a lot of skill.

CORNELL CS4414/5416 - FALL 2025 40

LET’S DRILL DOWN ON SPEED

Ay B2 m A
. ==,
S B

We said that Python is slowest, Java is pretty good, but C++ can
beat both. C++ knocks the socks off Java for parallel tasks.

What would be a good way to “see that in action”?

A small example: “word count” in Python, Java and C++

CORNELL CS4414/5416 - FALL 2025 41

WORD COUNT TASK

Basically, we take our input files and “parse” them into words. All
three languages have prebuilt library methods for this. Discard non-
words (things like punctuation marks).

Keep a sorted list of words. As we see a word, we look it up and
increment a count for that word (adding it if needed).

At the end, print out a nicely formatted table of the words/counts in
descending order by count, alphabetic order for ties

CORNELL CS4414/5416 - FALL 2025 42

THE PARTICIPANTS

Ken, back when he was kind of new to C++ in 2020

Sagar, our head PhD TA in the early days, who was a hardcode C++
coder, spent two summers as a Microsoft employee.

Lucy, undergraduate coding superstar

[Added in 2025]: Andrew Myers, world champion Java programmer (using
a version with “virtual threads” that wasn’t available to Lucy back in 2020)

CORNELL CS4414/5416 - FALL 2025 43

THE SCOREBOARD

#1-A: Ken’s C++ Faster, but more complex...
real 4.645s
user 14.779s
sys 1.983s
#1-B (Sagar’s code, shorter & better use of C++...)
real 8.200s
user 49.295s
sys 2.145s

#2 Lucy’s Python version
real 1m30.857s
user 1m30.276s
sys 0.572s

This was only 19 lines of code!

POSS

sonus PERIOD |l povus
FOULS PLAYER FOULS FOULS

= = =

b,

#3-A Lucy’s Java version (no threads)
real 1m49.373s
user 3m16.950s
sys 8.742s
#3-B Andrew’s Java version (virtual threads)
real 5.5s [but on a slower computer]
(user and sys time not reported)
What if Andrew had used the same server? His Javais
probably as fast as Ken’s C++... a likely tie!

#4: Pure Linux (buggy sort order)
real 2m38.965s
user 2m43.999s
sys 27.084s

CORNELL CS4414/5416 - FALL 2025 44

real
user

sys 1.983s

#1-B (Sagar’s code, shorter & better use of C++...)

8.200s
49.295s
2.145s

real
user
sys

#2 Lucy’s Python version
real 1m30.857s

1m30.276s

0.572s

user
sys

This was only 19 lines of code!

POSS
PERIOD E
FAIR-PLAY

PLAYER FOULS FOULS

C++ version was 34x faster than
Linux, 20x faster than unthreaded
Java or Python

ucy'’s Java version (no ‘‘true’” threads)
real 1m49.373s
user 3m16.950s
sys 8.742s

#3-B Andrew’s Java version (virtual threads)
real 5.5s [but on a slower computer]
(user and sys time not reported)

What if Andrew had used the same server? His Java is

probably as fast as Ken'’s C++... a likely tie!

#4: Pure Linux (buggy sort order)
real 2m38.965s

2m43.999s

27.084s

user
sys

CORNELL CS4414/5416 - FALL 2025 45

HOME

BONUS Loniow |-

Notice that the user time is 3x Fou__L_?
larger than the real time. :;

ucy’s Java version (no ‘‘true’ threads)

real 4.645s real 1m49.373s

user 14.779s user 3m16.950s

sys 8.742s

BN(SC ; #3-B Andrew’s Java version (virtual threads)

real 8.200s real 5.5s [but on a slower computer]

user 49.295s (user and sys time not reported)

sys 2.145s What if Andrew had used the same server? His Javais

probably as fast as Ken'’s C++... a likely tie!

#2 Lucy’s Python version #4: Pure Linux (buggy sort order)
real 1m30.857s real 2m38.965s
user 1m30.276s user 2m43.999s
sys 0.572s sys 27.084s

CORNELL CS4414/5416 - FALL 2025 46

This was only 19 lines of code!

HOW TO DO 14.7779s OF
COMPUTING IN 4.645s?

A 3-horsepower system

Concurrency!

.. if a process is using more than one thread it can harness
more than one CPU at the same time.

With 3 CPUs running continuously at full speed, it can do 3x
more work than the elapsed wall-clock timel

CORNELL CS4414/5416 - FALL 2025 47

QUICK DIVE INTO WORD COUNT IN C++

We’'ll learn all of this over a few weeks
But today, we already might have a glimpse.

Code and data set is linked to the syllabus page for lecture 2

CORNELL CS4414/5416 - FALL 2025 43

EXAMPLE: HELLO WORLD IN C++

0 T T @ |y i First you'll create a file, hello.cpp

Hinclude<iostream> Next, it must be compiled, for example:
inclu i

++ -std=c++ .Cpp —
b et g std=c++20 hello.cpp —o hello
std::cout << "Hello World* << std::endl;

return O; ... and finally, launched:

} ./hello
Hello World

We will be doing these steps from within Visual Studio Code

This “IDE” includes support for editing, compiling, debugging and executing your programs.

CORNELL CS4414/5416 - FALL 2025 49

EXAMPLE: WORD COUNT IN C++

This is the “core” of the counting logic:

using WC = std::map<std::string, int>;
WC sub_count{[MAXTHREADS];

inline void found(int& tn, char*& word)

{

sub_count[tn][std::string(word)]++;

}

CORNELL CS4414/5416 - FALL 2025 50

EXAMPLE: WORD COUNT IN C++

... and here is the core of the sorting logic:

struct SortOrder: public std::binary_function<std::pair<int, std::string>, std::pair<int, std::string>, bool>

{

bool operator()(const std::pair<int, std::string>& lhs, const std::pair<int, std::string>& rhs) const

{

return lhs.first > rhs.first | | (lhs.first == rhs.first && lhs.second < rhs.second);

}
}i

using SO = std::map<std::pair<int, std::string>, int, SortOrder>;
SO sorted totals;
for(auto wc: totals)

{

std::pair<int,std::string> new_pair(wc.second, wc.first);
sorted_totals[new_pair] = wc.second;

CORNELL CS4414/5416 - FALL 2025 51

EXAMPLE: WORD COUNT IN C++

Same logic but expressed using the c++23 decltype feature

using SO = std::map<std::pair<int, std::string>, int,
decltype([](const std::pair<int, std::string>& lhs, const std::pair<int, std::string>& rhs)
{return lhs.first > rhs.first | | (lhs.first == rhs.first && lhs.second < rhs.second); })>;

SO sorted totals;

for(auto wec: totals)

{

std::pair<int,std::string> new_pair(wc.second, we.first);
sorted_totals[new_pair] = wc.second;

CORNELL CS4414/5416 - FALL 2025 52

MY CODE VERSUS SAGAR’S

My code understood that in files, data is just a long “vector” of
characters — bytes — with some ‘\n’ characters (end of line).

My word-count kept the data in that form and only created
std::string objects at the last moment, to increment the count:

“wptr” is a pointer

direCﬂy to _I_he by_l_es ::nline void found(int& tn, char*& wptr)
in fhe inpu’r bUffer sub_count[tn][std::string(wptr)]++;
}

Used in the hacking competition for lecture 1. All source code is on our web site! CORNELL GAd14j5416 - FALL 2025 53

A CHUNK OF LINUX SOURCE CODE

Notice: this has text (words)
but also lots of other stuff, like
spaces and tabs, special chars

like (){};/_&* etc.

End of line is a special ascii
char, ‘\n’ (code == 0x12).

#ifdef CONFIG_DMA_PERNUMA_CMA
void __init dma_pernuma_cma_reserve(void)

{
int nid;
if (!pernuma_size_bytes)
return;
for_each_online_node(nid) {
int ret;
char name[CMA_MAX_NAME] ;
struct cma **cma = &dma_contiguous_pernuma_area[nid];
snprintf{name, sizeof(name), "pernumaZd”, nid);
ret = cma_declare_contiguous_nid(8, pernuma_size_bytes, 8, 8,
8, false, name, cma, nid);
if (ret) {
pr_warn{"%s: reservation failed: err %d, node %d", _ fumc__,
ret, nid);
continue;
pr_debug("%s: reserved ¥1lu MiE o ode ¢ , __func__,
(unsigned long long)pernuma_size bytes / SZI_1M, nid);
) 3
5
#endif

CORNELL CS4414/5416 - FALL 2025 54

VISUALIZATION OF MY WORD COUNT RUNNING

Read data into memory from disk file

int ret;\nchar name[CMA_MAX_NAME];\nstruct cma **cma =
&dma_contiguous_pernuma_arealnid];\nsnprintf(name, sizeof(n
ame), "pernuma%d", nid);\nret =\n cma_declare_contiguous_

SOme flle Wlth LanX Source nid(O, pernuma_size_bytes, 0, 0,\“ 0,

code, like false, name, cma, nid);\n if (ret) {\n pr_warn
. ("%s: reservation failed: err %d, node %d", __func__,\n
.../kernel /dma/contiguous.c e, mid)\n continue;\n Mo
pr_debug("%s: reserved %llu MiB on node %d\n",\n
__func__\n (unsigned long long)pernuma_size_

Ken’s word-count process, when running

CORNELL CS4414/5416 - FALL 2025 55

WHAT DO WE MEAN BY “READ DATA INTO MEMORY?”

In my program, some space gets allocated — set aside — in the
address space as a place for file data to be held.

The program opened a source file and told Linux to copy 4096
bytes (one block) into that buffer area.

The text that you saw in that screenshot was stored there as a series
of ascii bytes, a code that uses values 0..128

CORNELL CS4414/5416 - FALL 2025 56

HOW MY CODE ACTUALLY WORKED

Change all “white space” to \0 (byte containing 0). Now each
word is a null-terminated char® vector (a “c-string”)

I int ret;\nchar name[CMA_MAX_NAME]; \nstruct cma **cma = I

b

I int\Oret\0\0\Ochar\Oname\OCMA_MAX_NAME\0\0\Ostruct\O cma\0\0cma\0 I

wptr found(current_thread_id, wptr);

Converted from a c-string to std::string in found:

sub_count[tn][std::string(word)]++;

CORNELL CS4414/5416 - FALL 2025 57

WHEN | FIRST CODED MY SOLUTION, MY
PROGRAM WAS VERY SHORT, BUT RATHER SLOW.

| added parallel threads — which complicated the solution but
helped a lot. Then because file opening was slow, | added o
thread to “preopen” files before they were needed.

The C++ library for file opening and reading files was a
bottleneck, so | switched to calling Linux file open and Linux file
read, directly. This gave an additional speedup

CORNELL CS4414/5416 - FALL 2025 58

WHAT MADE SAGAR’S VERSION SLOWER?

If you look at his code, you'll find that it converts the whole file
into std::string objects, line by line

Then it splits lines into substrings using a “splitter” method. Each
chunk will be a std::string. But many won’t be “words”

If the substring matching the rule for a word, Sagar’s code uses
a map like Ken’s code and increments the count.

CORNELL CS4414/5416 - FALL 2025 59

HOW CAN WE “ANTICIPATE” THE COSTS OF
TOO MANY USES OF STD::STRING?

We know that a file is basically a long vector of bytes.

A text file holds ascii chars with ‘\n’ for newline. A c-string is a
region holding chars, ending with ‘\0’. Ken worked from this.

In contrast, a std::string is an object. At a minimum it has a string
length and its own copy of the c-string holding the string data. It must
be constructed and freed. That has to be costly.

CORNELL CS4414/5416 - FALL 2025 60

WHAT MADE SAGAR’S CODE SLOWER?

This means Sagar was creating perhaps 5-10x more std::string

objects. At scale, with 50,000 files and millions of lines to scan,
he does a lot of object creation, splitting and deletion, copying,
garbage collection. Ken’s code “skipped” 25% of that work!

... 90 Ken’s code was way faster!
Yet Sagar’s was closer to being pure
C++. Ken’s mixed C++ with C

int ret;\nchar name[CMA_MAX_NAME];\nstruct cma **cma =
&dma_contiguous_pernuma_arealnid];\nsnprintf(name, sizeof(n
ame), "pernuma%d", nid);\nret =\n cma_declare_contiguous_
nid(0, pernuma_size_bytes, 0, 0,\n 0,
false, name, cma, nid);\n if (ret) {\n pr_warn
("%s: reservation failed: err %d, node %d", __func__,\n
ret, nid);\n continue;\n N\n

pr_debug("%s: reserved %llu MiB on node %d\n",\n

__func__\n (unsigned long long)pernuma_size_

CORNELL CS4414/5416 - FALL 2025 61

POSS
PERIOD E
FAIR-PLAY

THE SCOREB A PLAYER FOULS FOULS

Total compute “load” was actually
a lot lower for Ken’s C++ program.
#1-A: Ken’s C++ Fasfe Hence... less energy consumed

real 4.645s 49343 s
user . \ 3m16.950s
sys 8.742s
#1-B (Sagar’s code, shorter & better use of C++...) #3-B Andre rva version (virtual threads)
real real 5.5s [but on a slower computer]
(user and sys time not reported)
What if Andrew had used the same server? His Java is
probably as fast as Ken'’s C++... a likely tie!

#4: Pure Lin auggy sort order)

2m38.965s
2m43.999

CORNELL CS4414/5416 - FALL 2025 62
This was only 19 lines of code!

BUT MUCH MORE IS REALLY GOING ON!

The Linux file system is involved when we scan folders to find the
files we plan to run WC on, and it reads the data for us.

> How good a job is it doing? Is it prefetching? Caching?
> Should we be directly mapping files into memory?

» Could our threads be somehow contending for the Linux
file system layer, and slowing things down?

CORNELL CS4414/5416 - FALL 2025 63

AT BFet

éﬁ; ,‘m,}',..‘ 2

A TENNIS ANALOGY

When you hit a tennis ball, you swing the racket...
» But gravity and the dynamics of spin shape the trajectory

> Your opponent is in motion. Anticipating their position/angle
decides if your shot will be easy for them to return or hard

» The layout of the tennis court itself sets the real constraints

We talked about implicit versus explicit decisions. Does tennis have
this too?

CORNELL CS4414/5416 - FALL 2025 64

A MODERN COMPUTER IS EVEN
MORE LIKE A SWISS WATCH!

Tennis is a good analogy for pairs of elements that work
concurrently yet influence one another.

But a single NUMA computer (even with just a single LLM or LRM
task on it) is doing dozens of things at once, and has many of

these relationships

Getting the best performance? It is like “designing clockwork”!

CORNELL CS4414/5416 - FALL 2025 65

EXAMPLES OF IMPLICIT PROGRAMMING

Using a separate thread to open files well before they are
needed for scanning.

Interacting with the file system efficiently, by reading 4KB chunks
at a time or mapping the file, and accessing it sequentially from

a single thread.

Allocating separate std::map objects, each created by a thread
that will exclusively use it (ensures memory will be local)

CORNELL CS4414/5416 - FALL 2025 66

TO BE A GREAT PROGRAMMER...

You need to have all these concepts in mind as you work. And you
need to understand performance both of the hardware and the O/S

You explicitly code lots of things, but the way you write your code
implicitly avoids lock contention, allocates memory in ways that
should maximize locality, accesses files in ways that promote file
prefetch and caching, etc.

A great programmer is always conscious of both kinds of choices

CORNELL CS4414/5416 - FALL 2025 67

DID YOU FOLLOW TODAY’S LECTURE?

There was a big idea about computer architectures, the architecture
of the OS and the way that programs running on the computer
interact with both. Summarize that big idea in your own words.

Java and Python and C++ are all reasonable languages. Why do
many companies favor C++ for “systems programming’?

List all the things happening concurrently when word count is running.

Most lectures have extra ‘“‘self-study” slides. We don’t cover them in class or recitation, but
you are welcome to discuss with a TA in OH, or with friends, or on Ed Discussions

CORNELL CS4414/5416 - FALL 2025 68

DID YOU FOLLOW TODAY’S LECTURE?

We saw some big ideas, like using threads, but to maximize the
speed of those threads we also saw some “small” ideas.

Why did it matter whether or not threads share a single counter
data structure? Shouldn’t it be faster to share just one and not
have to merge lots of them?

CORNELL CS4414/5416 - FALL 2025 69

DID YOU FOLLOW TODAY’S LECTURE?

Why did the way that text is represented in files on disk matter
in the WC application?

How does understanding how the file system component of Linux
influence the way a word count program is implemented?

CORNELL CS4414/5416 - FALL 2025 70

DID YOU FOLLOW TODAY’S LECTURE?

Why might it matter which part of memory a particular variable
was placed in by the compiler?

Is this something we can control in Python? Java?2 C++2 (Hint:
this question might require a bit of dialog with your Al copilot!)

CORNELL CS4414/5416 - FALL 2025 Al

MORE SELF-TEST

You are given code that you can use, but not modity, like
libraries of ML kernels (computations). To create a new ML you
call one, then feed the output from to another as its input, etc.

Using a profiler, you discover that the code uses many threads
and many GPUs, and has a memory bottleneck. While this
program runs, 26% of the compute capacity is idle. The NUMA
memory busses of the host and GPUs are100% saturated.

What options would you have that could possibly help?

CORNELL CS4414/5416 - FALL 2025 2

MORE SELF-TEST

You are given code that you can use, but nokmodify, like
libraries of ML kernels (computations). To creafe.a new ML you
call one, then feed the output from to another as its\input, etc.

Using a profiler, you discover that the code uses many threads
and many GPUs, and has a memory bottleneck. While this
program runs, 26% of the compute capacity is idle. The NUMA
memory busses of the host and GPUs are100% saturated.

What options would you have that could possibly help?

CORNELL CS4414/5416 - FALL 2025 73

MOST IMPORTANT ML KERNEL?

. it turns out to be matrix multiply. Best algorithms are
surprisingly fast. For example, with square matrices, rather than
O(n3) the best known algorithm runs in O(n?37133%)...

But today we’ve seen other considerations: where data actually
is located in memory, GPU versus host compute, delay to launch
a GPU computation, integer versus float (and size in bits)...

CORNELL CS4414/5416 - FALL 2025 74

SELF-TEST

Suppose you need to convince a teammate or manager that
these things actually matter.

Could you find an off-the-shelf ML library method and call it in
C++ in two ways, such that it performs 100x or even 1000x
better depending only on where the input object is located?

Extra self-test: Try doing it!

CORNELL CS4414/5416 - FALL 2025 75

SAME SELF-TEST

At a group meeting, someone is skeptical that professional LLM
or LRM solutions really could be running slowly on the company
hardware

Separate from writing your own code and “setting it up” to
perform badly, how would you convince that teammate that
there really could be a large opportunity, worth pursuing?

CORNELL CS4414/5416 - FALL 2025 76

NOTICE THAT OUR SLIDES DIDN’T TALK
ABOUT THESE EXACT CASES!!

In CS4414 and CS5416 we try to show you how to think about
problems, but you can’t learn the material by memorizing slides

In fact most people find that the only way to really deeply learn it is
to try some of these things out.

Be sure to compile with the —O3 flag when playing with C++. This
tells the compiler to do its very best. Often —O3 by itself can give
a 2x performance difference... and sometimes, far more.

CORNELL CS4414/5416 - FALL 2025 77

ARE THERE “RIGHT ANSWERS™?

Some people are incredible at speeding things up... Our TAs
are those kinds of people. It involves talent.

The ideas they consider are the same you probably came up
with! But they also know how easy or hard it would be to
actually try those ideas out. Start with easier ones!

When you have a flash of insight, always ask: can | validate
this2 Can | use my insight to do something that would pay off?¢

How much work will be required?

CORNELL CS4414/5416 - FALL 2025 8

OPTIONAL EXTRA READINGS

Code for the word count programs is available here.

If you find this topic exciting, you might enjoy reading about

>
>

>

A\ 4

Research done by Chris da Sa on these topics

How DeepSeek actually achieved such good speedups for
training (or some people suspect, “fine tuning”) LLMs

How LPU accelerators from Grok speed up LLMs

Or this cool paper Shouxu Lin and Alicia Yang found, about
running LLMs on commodity laptops and desktops.

CORNELL CS4414/5416 - FALL 2025

79

https://cornellprod-my.sharepoint.com/personal/kpb3_cornell_edu/Documents/Desktop/Clone%20of%20CS4414%20-%202025fa/Examples.htm
https://arxiv.org/pdf/2312.12456

	The Evolution and Architecture of Modern Computers
	Idea Map for today
	What’s Inside? Architecture = components of a computer + operating System
	Intel Xenon NVIDIA TESLA
	How did we get here?
	But by 2006 Moore’s Law �seemed to be ending
	What ended Moore’s Law?
	But parallelism saved us!
	Moore’s Law with NUMA
	Amdahl’s Law
	A Day Trip to Niagara Falls
	A Day Trip to Niagara Falls
	How Amdahl thought about parallelism
	How AmDahl Expressed his law
	… making modern performance-focused programming complicated!
	… making modern performance-focused programming complicated!
	… making modern performance-focused programming complicated!
	The Hardware shapes the�Application Design process
	How a single thread computes
	Assembly/Machine �Code View
	NUMA offers the illusion that nothing has changed!
	Assembly/Machine �Code View
	C++ Addressing Modes and NUMA Access Costs
	How does this change your coding?
	…. In effect
	Memory Layout and Access Time Matters too. COnsider 2D Matrices
	Memory Access Time by Location Type
	NVIDIA H100 GPU memory Access Time By Location type
	Wouldn’t caching conceal this? Or prefetching?
	To maximize performance we need to control these factors
	Linux and the Hardware: two�Sides of the system architecture
	What about the choice of programming language?
	choice of programming language…
	choice of programming language…
	Considerations people often cite
	Drill-down considerations
	What can make Python and Java expensive?
	does C++ avoid these pitfalls?
	Let’s Drill down on speed
	Parallelism
	Let’s Drill down on speed
	Word count task
	The participants
	The Scoreboard
	The Scoreboard
	The Scoreboard
	How to do 14.7779s of �computing in 4.645s?
	Quick dive into word count in C++
	Example: Hello World in C++
	Example: Word Count in C++�
	Example: Word Count in C++�
	Example: Word Count in C++�
	My code versus Sagar’s
	A chunk of Linux source code
	Visualization of my word count running
	What do we mean by “read data into memory?”
	How my code actually worked
	When I first coded my solution, my program was very short, but rather slow.
	What made Sagar’s version slower?
	How can we “anticipate” the costs of too many uses of Std::string?
	What made Sagar’s Code Slower?
	The Scoreboard
	But much more is really going on!
	A tennis analogy
	A modern computer is even �more like a Swiss Watch!
	Examples of implicit programming
	To be a great programmer…
	Did you follow today’s lecture?
	Did you follow today’s lecture?
	Did you follow today’s lecture?
	Did you follow today’s lecture?
	More self-test
	More self-test
	Most Important ML kernel?
	Self-Test
	Same Self-Test
	Notice that our slides didn’t talk about these exact cases!!
	Are there “right answers”?
	Optional Extra Readings

