CS441 4 Recitation 8

C++ Compilation & Performance(Gprof)

10/17 /2025
Alicia Yang

‘ How to write good system program in C++

[1. clean and correct code J

[2. Develop efficient system J

Write clean and correct code

* The basics: C++ types, variable ...
* Classes and functions
* Memory management in C++, RAIl principle

* Smart pointers in C++

* C++ templates

* Standard containers — std::vector<T>, std::map<K,V>

‘Develop efficient system

‘ * Cmake for large system compilation management, gprof for
program profiling
* Make efficient use of hardware
* Hardware parallelism

* Multithreading and synchronization

>| Overview

* C++ compilation and linking

* Linking review)

* Makefile and Cmake

* Performance optimization

* Performance measurement t

* gprof

C++ Compilation

* Linking
* Statically linked library vs dynamically linked library
* Makefile & CMake

Code source:
httos: //sithub.com/aliciavutine/CS4414Demo.git

https://github.com/aliciayuting/CS4414Demo.git

Linking

Linking is a technique that allows programs to be constructed from
multiple object files.

* Compile time (when a program is compiled)
* Load time (when a program is loaded into memory)

* Run time (while a program is executing)

Linking Your code

Std:xxx libraries

Statically linked + = Executable
object files Libraries your

company created
Compile time... ... Runtime

* A linker takes a collection of object files and combines them into an
object file. But this object file will still depend on libraries.

* Next it cross-references this single object file against libraries, resolving
any references to methods or constants in those libraries.

* If everything needed has been found, it outputs an executable image.

Linking

* Gceceisreally a “compiler driver”: 1t launches a series of sub-programs
* linux> gcc -Og -o prog main.c sum.cC

* linux> ./prog

main.c

l

Sum.c Source files

l

Translators
(cpp, ccl, as)

Translators
(cpp, ccl, as)

malin o su!rn o Separately compiled
l l relocatable object files
Linker (Id)
l Fully linked executable object file
prog

Cornell CS4414 - Spring 2023

(contains code and data for all functions
defined in main.c and sum.c)

C++ libraries

* Why use library?

 The C++ libraries are modular components of reusable code. Using class
libraries, you can integrate blocks of code that have been previously built and
tested.

* What are in C++ library?
e A C++ library consists of header files and an object library.

* The header files provide class and other definitions that the library exposes
(offers) to the programs using its.

* The object library(precompiled binary) contains compiled implementation of
functions and data that are linked with your program to produce an executable
program.

Static-linked libraries

* contains code that is linked to users’ programs at compile time.

(.a(archive) in linux, or .lib in windows)
* Compiled and linked directly into the program

e a copy of the library becomes part of every executable that uses it,
this can cause a lot of wasted space. (Suppose building 100
executables, each one of them will contain the whole library code,

which increases the code size overall)

Dynamic(shared) library

 contains code designed to be shared by multiple programs. (.soin
linux, or .dll in wondows, .dylib in OS X files)

* Loaded into your application at run time

* many programs can share one copy, which saves space. (All the
functions are in a certain place in memory space, and every

program can access them, without having multiple copies of them)

Library Types in C++

Static Library:
function foo() {

User Application

Code }
function bar() {

}

Compiler

Executable

Library Code:
function foo() {

}

function bar() {

}

Using Static Library

--- compile time

Dynamic Library:
function foo() {

User Application

Code }
function bar() {

}

{_1 Compiler
. =

Executable

Symbol Table:

function foo()
function bar()

Using Dynamic Library

|Librc|ry Types in C++

Executable B’s
memory

Executable A’s
memory

Library Code:
function foo() {

Library Code:
function foo() {

} }

function bar() { function bar() {

} }

Using Static Library at runtime

Executable A’s
memory

Symbol Table:
function foo()
function bar()

--- run time

Executable B’s
memory

Symbol Table:
function foo()
function bar()

Dynamic Library:

function foo() {

}
function bar() {

}

Shared memory
address space

Using Dynamic Library at runtime

When to use static linking vs. dynamic linking

e Static linking disadvantages
* Duplication in the stored executables
* Duplication in the running executables

* Minor bug fixes in system libraries? Must rebuild everything!

Cornell CS4414 - Spring 2023

When to use static linking vs. dynamic linking . o

—/

e Static linking advantages
* Executable is complete and self-contained. No runtime dependencies
* Predictable behavior

* Requires minimal operating system

* When to use

 Commonly used by embedded systems, like microcontroller, loT devices, ...

Cornell CS4414 - Spring 2023

When to use static linking vs. dynamic linking

o o

* Dynamic linking advantages a8
* Runtime dependency: at execution, the dynamic linker does need to be

able to find the library file (a “.so” file) If a dynamically linked executable is
launched on a machine that lacks the DLL, you will get an error message
(usually, on startup, but there are some obscure cases where it happens

later, when the DLL is needed)

* Compatibility issues: version conflict

Cornell CS4414 - Spring 2023

When to use static linking vs. dynamic linking . o

—/

* Dynamic linking advantages
* Reduced memory usage, smaller executable size: a single copy is shared
 Easier for update and maintenance

 Version flexibility. If the library updates, simply only need update the

library itself (if the APIs remain the same)

e When to use it

 Commonly used for open-sourced libraries (boost, opency, grpc..)

Linking

* Linking is the process of combining various object files (and

libraries) into a single executable or library.

* Linking happens either at compile time (static linking) or at

runtime (dynamic linking).

S ldd my_exec

Loading

* Loading is the process of bringing an executable (and its

dependencies) into memory to run it.

* Loading happens at runtime

* For statically linked programs: the operating system directly loads the

entire binary into memory. No loading or dynamic linking involved.

e For dynamically linked programs: dynamic linker(part of OS) finds, loads,

and links shared libraries into memory.

Dynamic Linking at Load-time

main2.c vector.h unix> gcc -shared -o libvector.so \

Relocatable
object file

Partially linked

executable object file
(8488 bytes)

Fully linked
executable
in memory

addvec.c multvec.c -fpic

Translators /
(cpp, ccl, as) libc.so

l libvector.so
main2.o Relocation and symbol

l table info

Linker (1d)
l unix> gcc -o prog2l \
main2.o0 ./libvector.so
prog2l
Loader libc.so

(execve) libvector.so

Code and data

v

Dynamic linker (1d-1inux. so)

Cornell CS4414 - Spring 2023

21

Makefile & Cmake

What is Makefile and CMake
Simple CMake

CMake with linked libraries
CMake with flags

Code source:
httos: //sithub.com/aliciavutine/CS4414Demo.git

https://github.com/aliciayuting/CS4414Demo.git

Build Files & Generate Executables

--- MakeFile

* Makefile is just a text file that is used or referenced by the ‘make’ command to build
the targets.

Hello.h ppD

Hello.cpp

main.cpp

main.o A
_ hello.o
— output
, ‘Run “make” in the shell (executable)
MakeFile
CC=g++

CFLAGS = -g -Wall
TARGET = output
all: S(TARGET)
S(TARGET): main.o hello.o
S(CC) S(CFLAGS) -o S(TARGET) main.o hello.o
main.o: main.cpp hello.hpp
S(CC) S(CFLAGS) -c main.cpp
hello.o: hello.hpp hello.cpp

S(CC) S(CFLAGS) -c hello.cpp

CMake

* Why CMake?
* Makefiles are low-level, clunky creatures
* CMake is a higher-level language to automatically generate Makefiles

* CMake contains more features, such as finding library, files, header files; it

makes the linking process easier, and gives readable errors

e What is CMake?

 CMake is an extensible, open-source system that manages the build process

in an operating system and in a compiler-independent manner.

CMake

CMakelists.txt files in each source directory are used to generate
Makefiles

Run cmake in shell Makefile

CMakelLists.txt

<L opencv Public

F 4x ~ ¥ 6 Branches (> 126 Tags

) Sponsor | = Watech 2653 ~ Y Fork 55.8k -

0 asmorkalov Merge pull request #26281 from kallaballa:clgl_device_discovery &8 ed26a5a- 2 hours ago

rRE-RE BN SN SN SN SN AN BN BN BN |

o

.github

3rdparty

apps

cmake

data

doc

include

modules

platforms

samples

.editorconfig

.gitattributes

.gitignore

[CMakeLists.txt

[CONTRIBUTING.md

Force contributors to define Apache 2.0 license for the n...
Merge pull request #26216 from hanliutong:rvw-hal-mer...
Merge pull request #25582 from fengyuentau:dnnfdump,..

Merge pull request #26234 from zachlowry:apply-gcct-...

Merge pull request #22727 from su? 7unar:patch-1

Merge pull request #26260 from sturkmen?2:upd_doc_...

exclude opencyv_contrib modules

Merge pull request #26281 from kallaballa:clgl_device_d...
Merge pull request #25901 from mshabunin:fix-riscv-aa...

Merge pull request #26212 from jamacias:feature/Tickh...

add .editorconfig

cmake: generate and install fimpeg-download.psi
Merge pull request #17165 from komakai:objc-binding
build: set cmake policy for if(IN_LIST) support

migration: github.comfopencyfopency

¥0) 34,601 Commits

4 months ago

last week

5 months ago

last week

2 years ago

last week

4 years ago

2 hours ago

last month

4 days ago

6 years ago

6 years ago

4 years ago

2 days ago

8 years ago

Starred 78.6k -

About
Open Source Computer Vision Library

¢ opencv.org

opancy c-plus-plus computer-vision

deep-learning image-processing

Readme
Apache-2.0 license
Security policy
Activity

Custom properties
78.6k stars

2.7k watching
55.8k forks

< 0 20 & 33 B

Report repository

Releases &3
© OpenCV 4.10.0
on Jun 3

+ 62 releases

Sponsor this project

3]
L opencv OpenCy
Dy

) Sponsor

Why CMake?

* Compilation tool that helps to generate build file in a standard way
* specify build order and dependencies
* prevent creating cyclic dependencies and common bugs

* Good at scaling to large projects

Cmake with one simple file @

* Helloworld demo example cmakelists.txt

cmake_minimum_required(VERSION 3.12) # set the
project name project(MyProject) # add the
executable add_executable(output main.cpp)

e Build and Run

* Navigate to the source directory, and create a build directory

S cd ./myproject & S mkdir build

* Navigate to the build directory, and run Cmake to configure the project and generate a
build system
S cd build &. S cmake ..

 Call build system to compile/link the project

either run. S make
or run. Scmake —build .

Cmake with libraries

* Demo: main.cpp with hello library

* add_executable:

e create an executable target from
source files

e generate the final program that
can be run on the system

cmakelists.txt

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

add_library{
say-hello [library typel(optional)
hello.hpp
hello.cpp

}

target_include_directories(say-hello
PUBLIC S{CMAKE_SOURCE_DIR})

add_executable(output main.cpp)

target_link_libraries(output PRIVATE say-
hello)

Cmake with libraries

* Demo: main.cpp with hello library

e Declare a new library
 Library name : say-hello
 Source files: hello.hpp, hello.cpp

e Can add library type: STATIC
(default), SHARED

cmakelists.txt

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

add_library{
say-hello [library type](optional)
hello.hpp
hello.cpp

}

target_include_directories(say-hello
PUBLIC S{CMAKE_SOURCE_DIR})

add_executable(output main.cpp)

target_link_libraries(output PRIVATE say-
hello)

C++ libraries

* What are in C++ library?

* A C++ library consists of header files and an object library.

* The header files provide class and other definitions that the library exposes
(offers) to the programs using its.

* The object library(precompiled binary) contains compiled implementation of
functions and data that are linked with your program to produce an executable
program.

Cmake with libraries

* Demo: main.cpp with hello library

* Tell cmake to link the library to the
executable(output)

e Private link
e Public link
e interface

cmakelists.txt

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

add_library{
say-hello [library typel(optional)
hello.hpp
hello.cpp

}

target_include_directories(say-hello
PUBLIC S{CMAKE_SOURCE_DIR})

add_executable(output main.cpp)

target_link_libraries(output PRIVATE say-
hello)

Cmc: ke Target_link_libraries

 target_link_libraries(<target>
<PRIVATE |PUBLIC|INTERFACE> <lib> ...])

* The PUBLIC, PRIVATE and INTERFACE keywords can be used to specify
both the link dependencies and the link interface in one command.

* PUBLIC: Libraries and targets following PUBLIC are linked to, and are made
part of the link interface.

* PRIVATE: Libraries and targets following PRIVATE are linked to, but are not
made part of the link interface.

* INTERFACE: Libraries following INTERFACE are appended to the link interface
and are not used for linking <target>

Cmake

Target_include_libraries

target_include_directories(<target> [SYSTEM] [AFTER|BEFORE]

<INTERFACE|PUBL
[<INTERFACE|PUBL

C|PRIVATE> [items1...]
C|PRIVATE> [items2...] ...])

» Specifies include directories to use when compiling a given target.

* Tells the compiler where to look for header files (e.g., .h, .hpp files)
that define functions, classes, or other declarations.

Example of PRIVATE PUBLIC INTERFACE link libraries

add_library(my_lib STATIC my_lib.cpp) # Setting include directories for my_lib

target_include_directories(my_lib # Link libraries for my_lib
PRIVATE S{CMAKE_SOURCE_DIR}/include/private # 0Only my_lib will use this
PUBLIC S{CMAKE_SOURCE_DIR}/include/public
INTERFACE S{CMAKE_SOURCE_DIR}/include/interface)

target_link_libraries(my_lib PRIVATE private_lib PUBLIC public_lib INTERFACE
interface_lib)

Add the executable
add_executable(my_app main.cpp)

target_link_libraries(my_app my_lib) #Link my_app to my_lib

Cmake with Flags

e C++ standard (equivalent to -std=c++20)

CMAKE_CXX_STANDARD

cmakelists.txt

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

set(CMAKE_CXX_STANDARD 20)

set(CMAKE_BUILD_TYPE Release)

if(CMAKE_BUILD _TYPE STREQUAL "Release")
set(CMAKE_CXX_FLAGS_RELEASE

"S{CMAKE_CXX_FLAGS_RELEASE}-03")
set(CMAKE_C_FLAGS RELEASE

"S{CMAKE_C_FLAGS_RELEASE} -03")

endif()

add_executable(output main.cpp)

Cmake with Flags cmakelists.txt @

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

* Build Type
set(CMAKE_CXX_STANDARD 20)

set(CMAKE_BUILD TYPE Release)
set(CMAKE_BUILD_TYPE Debug) // gdb set(CMAKE_BUILD_TYPE Release)
if(CMAKE_BUILD_TYPE STREQUAL "Release")
set(CMAKE_CXX_FLAGS_RELEASE
"S{CMAKE_CXX_FLAGS_RELEASE}-03")
set(CMAKE_CXX_FLAGS_RELEASE set(CMAKE_C_F LAGS RELEASE

"S{CMAKE_CXX_FLAGS_RELEASE}-0O1") "S{CI\/IAKE C FLAGS RELEASE} _03")
set(CMAKE_CXX_FLAGS_RELEASE end|f() - = —

"S{CMAKE_CXX_FLAGS_RELEASE} -03")

e Optimization level

add_executable(output main.cpp)

Cmake commands

* Scope of execution

Additional files can be run
(added to the scope) using the
add_subdirectory() command

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

cmakelists.txt

set(CMAKE_CXX_STANDARD 20)

set(CMAKE_BUILD_TYPE Release)

add_subdirectory(src/rectangle)
add_subdirectory(src/test)

add_executable(output main.cpp)

Performance Optimization

* 5 steps to improve runtime efficiency
* Time study
* How to use gprof

* Demo

Improve Execution Time Efficiency

1. Performance measurement (timing breakdown analysis)
2. ldentify hot spots

3. Use a better algorithm or data structure

4. Enable compiler speed optimization

5. Tune the code

Time the program --- Unix ‘time’ command

* Run $ time ./output
real Om12.977s
user Om12.860s
sys OmO0.010s

* Real: Wall-clock time between program invocation and termination
* User: CPU time spent executing the program

* System: CPU time spent within the OS on the program’s behalf

ldentify hot spots

* Gather statistics about your program’s execution
* Runtime profiler: gprof (GNU Performance Profiler)

* How does gprof work?

* By randomly sampling the code as it runs, gprof check what line

is running, and what function it’s in

Gprof

* Compile the code with flag —pg
* gt++ =pg helloworld.cpp -o output

* Run the program

* $./output
* Running the application produce a profiling result called gmon.out

* Create the report file

* gprof output > myreport

* Read the report

° vim myreport

Gprof by CMake

* Compile the code with flag —pg set in CMakelists

* Run the program
* $./output
* Create the report file

* gprof output > myreport

* Read the report

* vim myreport

cmakelists.txt

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

Enable gprof profiling
set(CMAKE_CXX_FLAGS
"S{CMAKE_CXX_FLAGS} -pg")
set(CMAKE_EXE_LINKER_FLAGS
"S{CMAKE_EXE_LINKER_FLAGS} -pg")

add_executable(output main.cpp)

Flat Profile

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

13.22 0.28 0.28 50045000 0.01 0.01 void std::__cxx11::basic_string<char, std::char_traits<char>, ...

10.39 0.50 0.22 100000000 0.00 0.00 std::vector<Entity, std::allocator<Entity> >::operator[](unsigned long)
6.85 0.65 0.15 50005000 0.00 0.00 __gnu_cxx::__normal_iterator<Entity const*,std::vector<Entity,...

5.67 0.77 0.12 100030000 0.00 0.00 __gnu_cxx::__normal_iterator<Entity const*, std::vector<Entity;, ...

5.67 0.89 0.12 50045000 0.00 0.01 std:iterator_traits<char*>::difference_type std::distance<char*>(char*,...
5.43 1.00 0.12 50005000 0.00 0.00 __gnu_cxx::__normal_iterator<Entity const*,std::vector<Entity, ...

* name: name of the function
* %time: percentage of time spent executing this function

* cumulative seconds: This is the cumulative total number of seconds the computer spent executing this
functions, plus the time spent in all the functions above this one in this table.

* self seconds: time spent executing this function
* calls: number of times function was called (excluding recursive)
* self s/call: average time per execution (excluding descendents)

* total s/call: average time per execution (including descendents)

Improve Execution Time Efficiency

1. Performance measurement (timing breakdown analysis)

2. ldentify hot spots

3. Use a better algorithm or data structure

4. Enable compiler speed optimization. (Compile with -O3)

5. Tune the code

Reasoning about system performance

* Which algorithm? A system can be very complex with many features

. Sequential program with 2 steps E

Fairly optimized code Highly inefficient code

* A = processing files, B = printing 1 million lines of output

47

Reasoning about system performance

* Which algorithm? A system can be very complex with many features

. Sequential program with 2 steps E

Fairly optimized code Highly inefficient code

* What if step A takes about 29% of the total time? We need to profile and
understand performance characteristics of code we write

Where to find the resources?

* Linking and Compilation

* hitps://www.cs.cornell.edu/courses/cs4414/2024fa/Schedule.htm Lecture 13

* CPPCON linker and loaders: https:/ /www.youtube.com /watch?v=_enXulxuNV4

* Makefile & Cmake

* https:/ /cmake.org/cmake /help/book /mastering-

cmake /chapter/Converting%20Existing%20Systems%20T0%20CMake.html

* Gprof

* GNU gprof manual: https:/ /ftp.gnu.org /old-gnu/Manuals /gprof-2.9.1 /html_mono/gprof.himl

https://www.cs.cornell.edu/courses/cs4414/2024fa/Schedule.htm
https://www.cs.cornell.edu/courses/cs4414/2024fa/Schedule.htm
https://www.youtube.com/watch?v=_enXuIxuNV4
https://cmake.org/cmake/help/book/mastering-cmake/chapter/Converting%20Existing%20Systems%20To%20CMake.html
https://cmake.org/cmake/help/book/mastering-cmake/chapter/Converting%20Existing%20Systems%20To%20CMake.html
https://cmake.org/cmake/help/book/mastering-cmake/chapter/Converting%20Existing%20Systems%20To%20CMake.html
https://cmake.org/cmake/help/book/mastering-cmake/chapter/Converting%20Existing%20Systems%20To%20CMake.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html

	Slide 1: CS4414 Recitation 8 C++ Compilation & Performance(Gprof)
	Slide 2
	Slide 3: Write clean and correct code
	Slide 4: Develop efficient system
	Slide 5: Overview
	Slide 6: C++ Compilation
	Slide 7: Linking
	Slide 8: Linking
	Slide 9: Linking
	Slide 10: C++ libraries
	Slide 11: Static-linked libraries
	Slide 12: Dynamic(shared) library
	Slide 13: Library Types in C++ --- compile time
	Slide 14: Library Types in C++ --- run time
	Slide 15: When to use static linking vs. dynamic linking
	Slide 16: When to use static linking vs. dynamic linking
	Slide 17: When to use static linking vs. dynamic linking
	Slide 18: When to use static linking vs. dynamic linking
	Slide 19: Linking
	Slide 20: Loading
	Slide 21: Dynamic Linking at Load-time
	Slide 22: Makefile & Cmake
	Slide 23: Build Files & Generate Executables --- MakeFile
	Slide 24: CMake
	Slide 25: CMake
	Slide 26: CMake
	Slide 27: Why CMake?
	Slide 28: Cmake with one simple file
	Slide 29: Cmake with libraries
	Slide 30: Cmake with libraries
	Slide 31: C++ libraries
	Slide 32: Cmake with libraries
	Slide 33: Cmake Target_link_libraries
	Slide 34: Cmake Target_include_libraries
	Slide 35: Example of PRIVATE PUBLIC INTERFACE link libraries
	Slide 36: Cmake with Flags
	Slide 37: Cmake with Flags
	Slide 38: Cmake commands
	Slide 39: Performance Optimization
	Slide 40: Improve Execution Time Efficiency
	Slide 41: Time the program --- Unix ‘time’ command
	Slide 42: Identify hot spots
	Slide 43: Gprof
	Slide 44: Gprof by CMake
	Slide 45: Flat Profile
	Slide 46: Improve Execution Time Efficiency
	Slide 47: Reasoning about system performance
	Slide 48: Reasoning about system performance
	Slide 49: Where to find the resources?

