CS4414 Recitation 6

Multithreading and Synchronization Il

10/03/2025
Alicia Yang

Overview

* Multithreading

* Locking recap

 Condition variable

* HW 2 introduction

Multithreading

* Threads management

* Launching threads
* Threads completion Semantics
* Synchronization

* Race condition
* Atomic @

e Mutex

e Locks Code
e Condition variable

example

Recap

e
| Locking ---protecting data with mutex W

t“\

* How does mutex work?

* Before accessing a shared data structure, you lock the mutex associated with that

data

* When finished accessing the data structure, you unlock the mutex.

2 LOCK THE DOOR

std::mutex o v/

exclusive, non-recursive ownership

* A thread owns the mutex from the time when it call lock() until it calls

unlock()

* The Thread Library then ensures that once one thread has locked a

specific mutex, all other threads that try to lock the same mutex have to

wait until the thread that successfully locked the mutex unlocks it.

https://en.cppreference.com/w/cpp/thread/mutex

https://en.cppreference.com/w/cpp/thread/mutex

Locking ---stdzzmutex::lock(), unlock() @

1 |int global_num = Q;

2 |std:mutex globalMutex;

3 |void incre(int num){

4 globalMutex.lock(); Only one

5 global_num = global_num + 1; thread could
6 globalMutex.unlock(); enter line 5 at
7 } a time

g |intmain(){

9 std::thread threadA(incre, 10);
10 std::thread threadB(incre, 10);
11 threadA.join();
12 threadB.join();

Mutex and Lock in C++

Thread B

q

-

W
"

(

2 Thread B attempts to lock
mutex and blocks

| Thread A globalMutex
1. Thread A locks mutex and _é_ Lock _i_
does work with shared resource | "
! =5
Thread A owns the J | ;
mutex object 5
i unlock —§—
: 4
3.Thread A unlocks mutex i !
: =
5 <«

Thread B owns
the mutex object

4 Thread B wakes, locks the
mutex and does work with the
shared resource

Locking ---stdz:mutexz:lock(), unlock()

int global num =0;
std::mutex globalMutex;

void incre(int num){
globalMutex.lock();
global num =global _ num +1;
globalMutex.unlock();

}

int main(){
std::thread threadA(incre, 10);
std::thread threadB(incre, 10);
threadA.join();
threadB.join();

Now, what will
happen, if | forget to
call mutex.unlock()?

Mutex and Lock in C++

1 Thread A locks mutex and
does work with shared resource

IThread Al

Lock

globalMutex

—+

%

Lock

IThread Bl

2 Thread B attempts to lock
Imutex and blocks

Thread B is unable
to acquire the lock

if Thread A doesn’t
unlock it.

10

Mutex and Lock in C++ 3

* A Mutex is a lock that we set before using a shared resource and release after

using it.

* When the lock is set by one thread, then no other thread can access the locked

region of code.

* Mutex lock could only be released by the thread who locked it.

11

Locking ---stdz:mutexz:lock(), unlock()

* std::mutex::lock(), unlock()

* It is not recommended practice to call lock(), unlock() directly,
because this means that you have to remember to call unlock() on
every code path out of a function that called lock(), including those

due to exceptions.

12

RAIl (Resource Acquisition is initialization) re-visit

* Resource acquisition must succeed for initialization to succeed:

* In RAIl, holding a resource is a class invariant is tied to object lifetime: resource
allocation is done during object creation, by the constructor; while resource

deallocation is done during object destruction, by the destructor.

* If there are no object leaks, there are no resource leaks.

* The resource is guaranteed to be held between when initialization finishes and

finalization starts, and to be held only when the object is alive.

13

RAIl (Resource Acquisition is initialization)

// problem #1
{

int *arr = new int[10];

} // arr goes out of scope but we didn’t delete it, we now have a memory leak @

// problem #2
{
std::thread t1([] () {

1

// thread t1 is created but not joined, if it goes out of scope, std::terminate is
} called, this implementation doesn’t properly handle the thread’s life cycle @

// problem #3

Std::mutex globalMutex;
Void func() {

globalMutex.lock();

/ // if we never unlocked the mutex(or exception occurred before unlock),
it will cause a deadlock when other thread tries to acauire thic lock G

14

RAIlI (Resource Acquisition is initialization)

// problem #1’s fix

{
int *arr = new int[10];
delete[] arr;

}

// problem #2’s fix
{
std::thread t1([] () {

Y
t1.join();
}

// problem #3’s fix
Std::mutex globalMutex;
Void func() {

/

globalMutex.lock();
globalMutex.unlock();

15

|RAII (Resource Acquisition is initialization)

* RAIl

* When acquire resources in a constructor, also need to release them in the corresponding

destructor
* Resources:
* Heap memory,
* files,
* sockets,

®* mutexes

<«————Object lifecycle

Hey, can | have some memory?

Constructor
of C++ object

\

L
~_

Operating
System

Mem

Mem

Sure, here you go

Hey, here’s your memory back

Destructor
of C++ object

Mem

Operating
System

Mem

Mem

Mem

Mem

\/

b
\

T Nice, thanks ~

16

Locking ---stdz:mutexz:lock(), unlock()

int global num =0;
std::mutex globalMutex;

void incre(int num){
globalMutex.lock();
global num =global _ num +1;
globalMutex.unlock();

}

int main(){
std::thread threadA(incre, 10);
std::thread threadB(incre, 10);
threadA.join();
threadB.join();

Is there a better ways to
manage the mutex that
can automatically unlock
it when not used?

17

Mutex and RAIl locks

* std::unique_lock
* std::scoped_lock

* std::shared lock

std::mutex my mutex;

std::unique lock<std::mutex> lck (my mutex);

std::shared mutex shared mutex;

{
std::shared lock<std::mutex> lck(shared mutex);

18

Locking ---unique_lock

* A unique lock is an object that manages a mutex object with unique ownership in both

states: locked and unlocked.

* RAIl: When creating a local variable of type std::unique_lock passing the mutex as

parameter.

* On construction, the object acquires a mutex object, for whose locking and unlocking

operations becomes responsible.

* This class guarantees an unlocked status on destruction (even if not called explicitly).

* Features:

* Deferred locking, Timeout locks, adoption of mutexes, movable(transfer of ownership)

19

Locking

N

N O 0 bW

10
11
12

int global_num = 0;
std::mutex globalMutex;

void incre(int num){
std::unique_lock<std::mutex> u_lock(globalMutex);
global_num = global_num + 1,

\

}

int main(){
std::ithread t1(incre, 1);
std::thread t2(incre, 3);
t1.join();
t2.join();

---unique_lock

Only one
thread could

enter line 5-7
at atime

20

Locking ---unique_lock

Unique_lock feature: Deferred locking

std::mutex mtx;

void conditional_locking(bool should_lock) {

// Create lock but do not acquire it

. int main() {
std::unique_lock<std::mutex> lock(mtx, std::defer_lock);

if (should_lock) {

lock.lock(); // Conditionally acquire the lock

std::thread t1(conditional_locking, true);

std::thread t2(conditional_locking, false);

,] tl.join();

std::cout << "Lock acquired." << std::end|; join()
}else { t2.join();
return O;

std::cout << "Lock not acquired." << std::endl;

Locking ---scoped_lock

* Scoped_lock: a mutex wrapper which obtains access to (locks) the provided mutex, and ensures

it is unlocked when the scoped lock goes out of scope

1 |int global num =0;

2 | std::mutex globalMutex;

3

4 | void incre(int num){

5 {

6 std::scoped_lock s lock(globalMutex);
7 global_num = global num +1;

8 }

9 global _num =global_num + 1; _
10

11 1} 22
1)

Locking

* std:shared_lock allows for shared ownership of mutexes.

---shared lock

std::shared_mutex mtx;
int global val;
void print_val (int n, char c) {
std::shared_lock<std::shared_mutex > Ick (mtx);
std::cout << global_val << std::endl;
}
int main () {
std::thread thl (print_val);
std::thread th2 (print_val);
thl.join();

th2.join();

23

RAIl (Resource Acquisition is initialization)

// problem #1
{

int *arr = new int[10];

} // arr goes out of scope but we didn’t delete it, we now have a memory leak @

// problem #3

Std::mutex globalMutex;

Void func() {
globalMutex.lock();

} // if we never unlocked the mutex(or exception occurred before unlock),
it will cause a deadlock when other thread tries to acquire this lock

24

RAII

N\’
L)

| + 2"
Better fixes

// problem #1’s fix

{
std::unique_ptr<int[]> arr(new int[10]);

// problem #3’s fix
Std::mutex globalMutex;
Void func() {

std::unique_lock<std::mutex> lock(globalMutex);

25

Exercise

* Reader-writer lock

* Single writer or multiple reader ownership

--- RW lock

26

|Why RW lock?

Write |

Response

Mutex
Threadl Thread2 Thread3 Thread4 Resource

| | | | |
I | | | I
L | Read | |
I | I t ijtl'
I | | |

I | Response |

l— i | I
I | | I
I L Read |

I | t

I | |

I | Response |

I le— I I
I | | I
I | Read I
I |

I | |

[|

[|

[|

[|

[|

[|

[|

[|

[|

[|

I |

|
|
|
|
|
|
}
|
I
|
|
: Response
|
|
|
|
|
|
|
|
|

Shared Mutex

Threadl Thread?2

Thread3 Thread4 Resource

I I
I I |
|
|

Response
Response

| Write

| Response

27

Exercise --- RW lock @

* Reader-writer lock
* Single writer or multiple reader ownership
* Expect higher concurrency when primarily reading

* std::shared mutex

28

What should | do if | want to prioritize the write?

Threadl

Thread?2

Thread3

Read

®

Resource

- [—h —

Response

L
I
i
|

rResponse

29

Multithreading

* Threads management

Launching threads

Threads completion

* Synchronization

Race condition
Atomic

Mutex

Locks

Condition variables

30

Condition Variable

Suppose a thread needs to wait for some other threads to do
something for it, how would you encode this into the program?

31

Condition Variable

* Two main purpose of condition variable
* Notify other threads

* Waiting for some conditions that other thread can change

Thrgad 1. Mutex lock I
Thread 2. I
Thread 3)
(J »]
.K' \,ﬁ T1
[) u
Thiead 4 ‘ T3
z = |

Please wait here
until the
condition(...) is
true

32

Condition Variable

1. Need mutex to use condition variable
Two roles
* Wiaiting threads: first acquire the lock, then wait() if condition not satisfied

* Notifying threads: thread make the changes that can allow other thread’s wait

condition to true and move on.

33

Condi’rion VCI I"iCIble --- std::condition_variable

class condition variable; (since C++11)

Declare a

/ condition_variable
object

std::condition_variable cv;

34
https://en.cppreference.com/w/cpp/thread/condition_variable

https://en.cppreference.com/w/cpp/thread/condition_variable

COndiﬁOn VCl riCIble --- std::condition_variable::wait

1. Need mutex to use condition variable

2. Condition Variable allows running threads to wait on some conditions and once the
threads wake up
* Atomically acquire the lock and check the condition

* |f the condition is satisfied, then it will continue the program

* If not satisfied, it waits by releasing the lock, and goes back to waiting

35

|Two types of wait functions for condition variable

void wait (std::unique lock<std::mutex>& lock); (1) (since C++11)

template< class Predicate >

. . 2 i C++11
void wait (std::unique lock<std::mutex>& lock, Predicate pred); (2) (since)

Automatically

Equivalent to

calls Ick.unlock() H H 1 1 -
o block *the Unconditional wait(lock) predicate wait(lock, pred)

while (!pred())

wait(lock);
std::mutex mtx;

std::mutex mtx; std::condition_variable cv;
std::condition_variable cv; int current_balance = 0;
int main(){ int main() {

std::unique_lock<std::mutex> Ick(mtx); std::unique_lock<std::mutex> Ick(mtx);

cv.wait(lck); cv.wait(lck, [] { return current_balance !=0; });

36

} } | oreacl/condition varianle

http://en.cppreference.com/w/cpp/thread/unique_lock
http://en.cppreference.com/w/cpp/thread/mutex
http://en.cppreference.com/w/cpp/thread/unique_lock
http://en.cppreference.com/w/cpp/thread/mutex
https://en.cppreference.com/w/cpp/thread/condition_variable/wait

Two types of wait functions for condition variable

To avoid the affect of spurious wake ups, always use predicate wait() !

Unconditional wait(lock)

std::mutex mtx;

std::condition_variable cv;

{

std::unique_lock<std::mutex> Ick(mtx);

The thread will be unblocked
when

notify_all() or notify_one() is
executed.

predicate wait(lock, pred)

std::mutex mtx;
std::condition_variable cv;
int current_balance = 0;
int main() {
std::unique_lock<std::mutex> Ick(mtx);

cv.wait(lck, [] { return current_balance !=0; });

37

Condition Variable - wait

* When a thread calls the member function wait() on a condition variable

* The execution of the current thread (which currently has the locked’s mutex) is
blocked until notified.

* When the thread is blocked, the function automatically calls unlock(), allowing other
threads to acquire the lock and continue.

* The wait function performs three atomic operations:
* The initial unlocking of mutex and simultaneous entry into the waiting state.
* The unblocking of the waiting state.
* The locking of mutex before returning.

38

Condition Variable --- notify

1. Need mutex to use condition variable
2. Condition Variable allows running threads to wait on some conditions

3. The waiting thread(s) is notified by working thread using:
* notify_one();

* notify_all();

39

Condition Variable --- notify

* The waiting thread is notified by working thread using:
* notify_one():
* Unblocks one of the threads currently waiting for this condition.
* If no threads are waiting, the function does nothing.

* If more than one, it is unspecified which of the threads is selected.

working
Tl .
. T2
waiting
T3
waiting

Condition variable
C

T4

L CC

Condition Variable --- notify

* The waiting thread is notified by working thread using:
* notify_all():

* Unblocks all threads currently waiting for this condition.

working
T1 .
. T2
waiting <)
T3
waiting <)
T4 Condition variable
u C

Condition Variable

1. Each thread first acquire the mutex lock
2. Then check the condition in wait()
3. Wiaiting thread(s) is notified by working thread

4. When thread(s) waiting at the condition variable gets notified,
* it first try to acquire the lock of mutex

* Check the condition, the thread will not go further until the condition is true:

* if it is true, then go further;

* if it is not, it will again wait for the condition variable

42
Demo

What should | do if | want to prioritize the write?

Threadl

Thread?2

Thread3

Read

®

Resource

- [—h —

Response

L
I
i
|

rResponse

43

Exercise --- RW lock @

* Reader-writer lock
* Single writer or multiple reader ownership
* Expect higher concurrency when primarily reading
* std::shared mutex

* Read/write preference

44

Where to find the resources?

* RW Lock: https://www.youtube.com/watch2v=KJS3ikoilso

* Condition Variable:

* https:/ /www.cplusplus.com/reference /condition variable/condition variable /wait/

* Future and promise:

* https://www.cplusplus.com /reference /future /async/

* https://en.cppreference.com/w /cpp /thread/future /wait for

45

https://www.youtube.com/watch?v=KJS3ikoiLso
https://en.cppreference.com/w/cpp/thread/future/wait_for
https://en.cppreference.com/w/cpp/thread/future/wait_for
https://en.cppreference.com/w/cpp/thread/future/wait_for
https://en.cppreference.com/w/cpp/thread/future/wait_for

	Slide 1: CS4414 Recitation 6 Multithreading and Synchronization III
	Slide 2: Overview
	Slide 3: Multithreading
	Slide 4: Recap
	Slide 5: Locking ---protecting data with mutex
	Slide 6: std::mutex
	Slide 7: Locking ---std::mutex::lock(), unlock()
	Slide 8
	Slide 9: Locking ---std::mutex::lock(), unlock()
	Slide 10
	Slide 11
	Slide 12: Locking ---std::mutex::lock(), unlock()
	Slide 13: RAII (Resource Acquisition is initialization) re-visit
	Slide 14: RAII (Resource Acquisition is initialization)
	Slide 15: RAII (Resource Acquisition is initialization)
	Slide 16: RAII (Resource Acquisition is initialization)
	Slide 17: Locking ---std::mutex::lock(), unlock()
	Slide 18: Mutex and RAII locks
	Slide 19: Locking ---unique_lock
	Slide 20
	Slide 21
	Slide 22: Locking ---scoped_lock
	Slide 23: Locking ---shared_lock
	Slide 24: RAII (Resource Acquisition is initialization)
	Slide 25: RAII
	Slide 26: Exercise --- RW lock
	Slide 27: Why RW lock?
	Slide 28: Exercise --- RW lock
	Slide 29: What should I do if I want to prioritize the write?
	Slide 30: Multithreading
	Slide 31: Condition Variable
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: What should I do if I want to prioritize the write?
	Slide 44: Exercise --- RW lock
	Slide 45: Where to find the resources?

