
CS4414 Recitation 5
multi-threading II

09/26/2025

Alicia Yang, Shouxu Lin

1

Overview

2

•Multithreading

• Thread finishing

• Race condition

• Thread safety

• std::atomic

• Mutex locks

• RAII locks

Recap

3

• What is concurrency

• Threads launching

• Thread finishing

• join()

Concurrency

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

4

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

Launching thread (via std::thread)

• Create a new thread object.

• Pass the executing code to be called (i.e, a callable object)

into the constructor of the thread object.

•Once the object is created a new thread is launched, it will

execute the code specified in callable

5
#include <thread> // part of the C++ Standard Library

• Launching a thread using function pointers and function parameters

void func(params)
{
 // Do something
}

std::thread thread_obj(func, args);

Launching thread

6

Thread lifecycle and program termination

7

timeline

Program starts:
$./exec

Program ends:
return _;
or exit(_);

Main thread
starts execution
when the
program starts

std::thread t1(…);
launch and start

execution immediately
upon construction

Thread t1

Thread terminates
(if function finishes
before the program

ends)

What if thread
function takes

longer than the
main function?

demo

Thread lifecycle and program termination

8

timeline

Program starts:
$./exec

Program ends:
return _;
or exit(_);

std::thread t1(…);
launch and start

execution immediately
upon construction

Thread t1

Thread terminates
std::terminate() gets called

Main thread
starts execution
when the
program starts

undefined behavior,
may lead to resource leaks or
abrupt program termination

Program termination
ends all threads

https://en.cppreference.com/w/cpp/error/terminate

https://en.cppreference.com/w/cpp/error/terminate

Multithreading

• Launching a thread:

• Function pointer

• Function object

• Lambda function

• Managing threads

• Join()

9

Joining threads with std::thread

• Wait for a thread to complete

• Ensure that the thread was finished before the function was exited

• Clean up any storage associated with the thread

• join() can be called only once for a given thread

std::thread thread_obj(func, params);

Thread_obj.join();

10

demo

Thread lifecycle and program termination

11

timeline

Program starts:
$./exec

Program ends:
return _;
or exit(_);

std::thread t1(…);
launch and start

execution immediately
upon construction

Thread t1

Thread terminates

Main thread
starts execution
when the
program starts

Thread lifecycle and program termination

12

timeline

Program starts:
$./exec

Program ends:
return _;
or exit(_);

std::thread t1(…);
launch and start

execution immediately
upon construction

Thread t1

t1.join();

Main thread
starts execution
when the
program starts

Main thread waits for thread

t1 finishes, then return; to
ensure proper clean up

Exercise: would this code work?

13

std::thread foo(){
 std::vector<int> a = {1,2,3,5};
 std::thread threadObj([&](){
 for (int i : a){
 std::cout << i << std::endl;
 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 });
 return threadObj;
}

int main(){
 std::thread obj= foo();

 std::cout << "Back to main function" << std::endl;

 return 0;
}

How would you fix it?
Let’s try this out

Thread safety

14

Sharing data among threads ---race condition

• Race condition:

• The situation where the outcome depends on the relative

ordering of execution of operations on two or more threads;

the threads race to perform their respective operations.

Code source:
https://github.com/aliciayuting/CS4414Demo.git

15

https://github.com/aliciayuting/CS4414Demo.git

Sharing data among threads ---race condition

• Example: Concurrent increments of a shared integer variable.

• Each thread shares an integer called count initialized to 0,

increments it 1 million times concurrently without any

synchronization

Code source:
https://github.com/aliciayuting/CS4414Demo.git

16

demo

https://github.com/aliciayuting/CS4414Demo.git

Example: Concurrent increments of a shared integer variable

number = 1

1. Read the value

2. increment
number++;

void Increment(){
 number ++;
}

3. Write back the
value

17

Thread 0

num = 0

Oh! I see
num=0.

Thread 1. Write back 1.

Oh! I see
num=1.

Thread 2. Write back 2.

Oh! I see
num=2.

Thread 3. Write back 3.

Ideally what we want

num = 3

18

Example: Concurrent increments of a shared integer variable

Read the value
1

Write back the value
2

3

4

5

6

num = 0

Read the value
Oh! I see
num=0.

Thread 1. Write back 1.

Oh! I see
num=1.

Thread 2. Write back 2.

Oh! I see
num=2.

Thread 3. Write back 3.

Ideally what we want

num = 3

19

Example: Concurrent increments of a shared integer variable

Write back the value

Will it always be
in this

sequence?

num = 0

Read the value
Oh! I see
num=0.

Thread 1. Write back 1.

Oh! I see
num=0.

Thread 2. Write back 1.

Oh! I see
num=1.

Thread 3. Write back 2.

num = 2

20

Example: Concurrent increments of a shared integer variable

1

2

4

5

6

Write back the value
3

Concurrent reads, before

the previous thread write

back, caused the out-of-

order inconsistent results.

Thread Safety

• A function, a piece of code, or an object is thread-safe when it can

be invoked or accessed concurrently by multiple threads without

causing unexpected behavior, race conditions, or data corruption.

21

Thread safe

• Entities in C++ standard library and their thread-safety guarantees

22

Thread safe?

23

• Is integer type inherently thread-safe?

• No, as we showed just now

How to make it
thread-safe?

std::atomic

24

• A template that defines an atomic type.

template< class T >

struct atomic;
(1) (since C++11)

template< class U >

struct atomic<U*>;
(2) (since C++11)

template< class U >

struct atomic<std::shared_ptr<U>>;
(3) (since C++20)

template< class U >

struct atomic<std::weak_ptr<U>>;

(4) (since C++20)

https://en.cppreference.com/w/cpp/atomic/atomic

*
(more at

the end of
recitation if
have time)

https://en.cppreference.com/w/cpp/atomic/atomic

Atomic

• An atomic operation is an indivisible operation.

• The operation is either done or not done. Such an operation would never be half-

done from any thread in the system.

25

Data race condition: non-atomic access pattern

number = 1

1. Read the value

2. Increment number++;

void Increment(){
 number ++;
}

3. Write back the value

26

Thread 0

Thread 1

Let me perform some
instruction on number
during this operation

(between step1-3)
concurrently

demo

Data race condition: non-atomic access pattern

27

Another concurrent thread t1
std::thread t1([&val]() {
 val++;
});

Atomic access

28

Another concurrent thread t1
std::thread t1([&val]() {
 val++;
});

std::atomic guarantees one
thread to execute the
entire operation (val ++;) ,
during which no other
thread interfering or
interrupting

Atomic

• An atomic operation is an indivisible operation.

• std::atomic are implemented using hardware supports provided by modern CPU:

• Examples of atomic instructions:

• Compare-and-Swap (CAS)

• Load-Linked/Store-conditional (LL/SC)

• fetch_and_add (FAA)

• Different CPUs provide different sets of atomic instructions. The implementation of

std::atomic varies from architecture to architecture

29

Atomic member functions

• Atomic type: std::atomic<type>

• Constructor std::atomic<bool> x(true); std::atomic<uint32_t> y(0);

• store() x.store(false); y.store(1, std::memory_order_relaxed);

30
https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/atomic/atomic

More atomic member functions

• load() bool z = x.load();

• exchange() uint32_t m = y.exchange(100);

• operator= y = 2;

• operator+=, operator -= y += 1; y.fetch_add(1); (since C++20)

• operator++, operator-- y ++;

What about y = y + 1?

32
https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/atomic/atomic

More atomic member functions

• load() bool z = x.load();

• exchange() uint32_t m = y.exchange(100);

• operator= y = 2;

• operator+=, operator -= y += 1; y.fetch_add(1);

• operator++, operator-- y ++;

What about y = y + 1?

33
https://en.cppreference.com/w/cpp/atomic/atomic

When multithreading, leads to race condition,
because it involves multiple operations (read x,
+1 and then assignment operation)

https://en.cppreference.com/w/cpp/atomic/atomic

Thread safe

• std::atomic

• std::shared_ptr

35

std::vector

• Does std::vector guarantee thread-safety?

36

Multithreads’ data sharing with std::vector

• When is std::vector thread-safe?

• Each thread has its own instance of std::vector (no concurrency)

• Read-only access

• When is std::vector not thread-safe?

• Simultaneous Read and Write

• Concurrent modification

• Reallocation access on reallocation or modification

37

Read-only-access of std::vector

38

int main() {
 std::vector<double> vec(100, 1.00);
 double t1_sum;
 double t2_sum;
 std::thread t1(read_vector,std::ref(vec), 1, std::ref(t1_sum));
 std::thread t2(read_vector,std::ref(vec), 2, std::ref(t2_sum));
 t1.join();
 t2.join();
 std::cout << "t1_sum="<< t1_sum << ",t2_sum=" << t2_sum;
…}

void read_vector(const std::vector<double>& vec, int thread_id, double& sum) {
 for (const auto& value : vec) {
 sum += value;
}} // Each thread reads the vector and accumulates the sum

Thread safe, because only

concurrent reads

Simultaneous read and write

39

0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10 11.11 12.12 13.13 14.14 15.15

thread t0 thread t1

vect[6] = 100.0; double x = vect[6];

Simultaneous read and write

40

0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10 11.11 12.12 13.13 14.14 15.15

thread t0 thread t1

Concurrent Read+write
to the SAME element
is NOT thread-safe

vect[6] = 100.0; double x = vect[6];

x could be
6.6 or 100.0

after this.

What if the threads
are operating on

different elements?

Locking

51

Locking ---protecting data with mutex

• How does mutex work?

• Before accessing a shared data structure, you lock the mutex associated with that

data

• When finished accessing the data structure, you unlock the mutex.

52

std::mutex

exclusive, non-recursive ownership

• A thread owns the mutex from the time when it call lock() until it calls

unlock()

• The Thread Library then ensures that once one thread has locked a

specific mutex, all other threads that try to lock the same mutex have to

wait until the thread that successfully locked the mutex unlocks it.

53
https://en.cppreference.com/w/cpp/thread/mutex

https://en.cppreference.com/w/cpp/thread/mutex

Locking ---std::mutex::lock(), unlock()

demo

int global_num = 0;
std::mutex globalMutex;

void incre(int num){
 globalMutex.lock();
 global_num = global_num + 1;
 globalMutex.unlock();
}

int main(){
 std::thread threadA(incre, 10);
 std::thread threadB(incre, 10);
 threadA.join();
 threadB.join();
…}

54

Only one
thread could

enter line 5 at
a time

1
2

3
4
5
6
7

8
9
10
11
12

• A Mutex is a lock that we set before using a shared resource and release after using it.

• When the lock is set by one thread, then no other thread can access the locked region

of code.

• Mutex lock will only be released by the thread who locked it.

Mutex and Lock in C++

55

• A Mutex is a lock that we set before using a shared resource and release after using it.

• When the lock is set by one thread, then no other thread can access the locked region

of code.

• Mutex lock will only be released by the thread who locked it.

Mutex and Lock in C++

Thread A owns the
mutex object

Thread B owns
the mutex object

globalMutex

56

Mutex and Lock in C++

globalMutex

57

void incre(int num){

 globalMutex.lock();

 global_num = global_num + 1;

 globalMutex.unlock();

}

void incre(int num){

 globalMutex.lock();

 global_num = global_num + 1;

 globalMutex.unlock();

}

Locking ---std::mutex::lock(), unlock()

demo

int global_num = 0;
std::mutex globalMutex;

void incre(int num){
 globalMutex.lock();
 global_num = global_num + 1;
 globalMutex.unlock();
}

int main(){
 std::thread threadA(incre, 10);
 std::thread threadB(incre, 10);
 threadA.join();
 threadB.join();
}

58

Now, what will
happen, if I forget to
call mutex.unlock()?

• A Mutex is a lock that we set before using a shared resource and release after using it.

• When the lock is set by one thread, then no other thread can access the locked region

of code.

• Mutex lock will only be released by the thread who locked it.

Mutex and Lock in C++

Thread B is unable
to acquire the lock
if Thread A doesn’t
unlock it.

globalMutex

59

• A Mutex is a lock that we set before using a shared resource and release after

using it.

• When the lock is set by one thread, then no other thread can access the locked

region of code.

• Mutex lock could only be released by the thread who locked it.

Mutex and Lock in C++

60

Locking ---std::mutex::lock(), unlock()

• std::mutex::lock(), unlock()

• It is not recommended practice to call lock(), unlock() directly,

because this means that you have to remember to call unlock() on

every code path out of a function that called lock(), including those

due to exceptions.

61

RAII (Resource Acquisition is initialization) re-visit

• Resource acquisition must succeed for initialization to succeed:

• In RAII, holding a resource is a class invariant is tied to object lifetime: resource

allocation is done during object creation, by the constructor; while resource

deallocation is done during object destruction, by the destructor.

• If there are no object leaks, there are no resource leaks.

• The resource is guaranteed to be held between when initialization finishes and

finalization starts, and to be held only when the object is alive.

62

RAII (Resource Acquisition is initialization)

// problem #1
{
 int *arr = new int[10];
}

// problem #3
Std::mutex globalMutex;
Void func() {
 globalMutex.lock();
}

// problem #2
{
 std::thread t1([] () {
 // do some operations
 });
}

// arr goes out of scope but we didn’t delete it, we now have a memory leak

// if we never unlocked the mutex(or exception occurred before unlock),
it will cause a deadlock when other thread tries to acquire this lock

// thread t1 is created but not joined, if it goes out of scope, std::terminate is
called, this implementation doesn’t properly handle the thread’s life cycle

63

RAII (Resource Acquisition is initialization)

// problem #1’s fix
{
 int *arr = new int[10];
 delete[] arr;
}

// problem #3’s fix
Std::mutex globalMutex;
Void func() {
 globalMutex.lock(); ….
 globalMutex.unlock();
}

// problem #2’s fix
{
 std::thread t1([] () {
 // do some operations
 });
 t1.join();
}

64

RAII (Resource Acquisition is initialization)

• RAII

• When acquire resources in a constructor, also need to release them in the corresponding

destructor

• Resources:

• Heap memory,

• files,

• sockets,

• mutexes

65

Locking ---std::mutex::lock(), unlock()

demo

int global_num = 0;
std::mutex globalMutex;

void incre(int num){
 globalMutex.lock();
 global_num = global_num + 1;
 globalMutex.unlock();
}

int main(){
 std::thread threadA(incre, 10);
 std::thread threadB(incre, 10);
 threadA.join();
 threadB.join();
}

66

Is there a better ways to
manage the mutex that

can automatically unlock
it when not used?

Mutex and RAII locks

• std::unique_lock

• std::scoped_lock

• std::shared_lock

std::mutex my_mutex;

{

 std::unique_lock<std::mutex> lck(my_mutex);

 … …

}

{

 std::scoped_lock<std::mutex> lck(my_mutex);

 … …

}

std::shared_mutex shared_mutex;

{

 std::shared_lock<std::mutex> lck(shared_mutex);

 … …

}

67

• A unique lock is an object that manages a mutex object with unique ownership in both

states: locked and unlocked.

• RAII: When creating a local variable of type std::unique_lock passing the mutex as

parameter.

• On construction, the object acquires a mutex object, for whose locking and unlocking

operations becomes responsible.

• This class guarantees an unlocked status on destruction (even if not called explicitly).

• Features:

• Deferred locking, Timeout locks, adoption of mutexes, movable(transfer of ownership)

std::unique_lock

68

std::unique_lock

69

int global_num = 0;
std::mutex globalMutex;

void incre(int num){
 std::unique_lock<std::mutex> u_lock(globalMutex);
 global_num = global_num + 1;
 …
}

int main(){
 std::thread t1(incre, 1);
 std::thread t2(incre, 3);
 t1.join();
 t2.join();
…}

Only one
thread could
enter line 5-7

at a time

1
2

3
4
5
6
7

8
9
10
11
12

int main() {

 std::thread t1(conditional_locking, true);

 std::thread t2(conditional_locking, false);

 t1.join();

 t2.join();

 return 0;

}

std::mutex mtx;

void conditional_locking(bool should_lock) {

 std::unique_lock<std::mutex> lock(mtx, std::defer_lock);

if (should_lock) {

 lock.lock();

 std::cout << "Lock acquired." << std::endl;

 } else {

 std::cout << "Lock not acquired." << std::endl;

 }

}

std::unique_lock

Unique_lock feature: Deferred locking

70

// Create lock but do not acquire it

// Conditionally acquire the lock

std::scoped_lock

a mutex wrapper which obtains access to (locks) the provided mutex, and ensures

it is unlocked when the scoped lock goes out of scope

int global_num = 0;
std::mutex globalMutex;

void incre(int num){
 {
 std::scoped_lock s_lock(globalMutex);
 global_num = global_num + 1;
 }
 global_num = global_num + 1;
 …
}

1
2
3
4
5
6
7
8
9
10
11

When does s_lock get released?

71

std::shared_lock allows for shared ownership of mutexes.

class PhoneBook {
 public:
 string getPhoneNo(const std::string & name)
 {
 shared_lock<shared_timed_mutex> r(_protect);
 auto it = _phonebook.find(name);
 if (it == _phonebook.end())
 return (*it).second;
 return "";
 }
 void addPhoneNo (const std::string & name, const std::string & phone)
 {
 unique_lock<shared_timed_mutex> w(_protect);
 _phonebook[name] = phone;
 }

 shared_timed_mutex _protect;
 unordered_map<string,string> _phonebook;
 };

std::shared_lock

std::shared_mutex mtx;

int global_val;

void print_val (int n, char c) {

 std::shared_lock<std::shared_mutex > lck (mtx);

 std::cout << global_val << std::endl;

 }

int main () {

 std::thread th1 (print_val);

std::thread th2 (print_val);

th1.join();

th2.join(); 73

Shared_lock allows for shared ownership of mutex. More than one thread could hold the

mutex at the same time.

class PhoneBook {
 public:
 string getPhoneNo(const std::string & name)
 {
 shared_lock<shared_timed_mutex> r(_protect);
 auto it = _phonebook.find(name);
 if (it == _phonebook.end())
 return (*it).second;
 return "";
 }
 void addPhoneNo (const std::string & name, const std::string & phone)
 {
 unique_lock<shared_timed_mutex> w(_protect);
 _phonebook[name] = phone;
 }

 shared_timed_mutex _protect;
 unordered_map<string,string> _phonebook;
 };

std::shared_lock

std::shared_mutex mtx;

int global_val;

void print_val (int n, char c) {

 std::shared_lock<std::shared_mutex > lck (mtx);

 std::cout << global_val << std::endl;

 }

int main () {

 std::thread th1 (print_val);

std::thread th2 (print_val);

th1.join();

th2.join();

… }
74

RAII (Resource Acquisition is initialization)

// problem #1

{

 int *arr = new int[10];

}

// problem #3

Std::mutex globalMutex;

Void func() {

 globalMutex.lock();

}

// arr goes out of scope but we didn’t delete it, we now have a memory leak

// if we never unlocked the mutex(or exception occurred before unlock),
it will cause a deadlock when other thread tries to acquire this lock 75

RAII

// problem #1’s fix

{

 std::unique_ptr<int[]> arr(new int[10]);

…..

}

// problem #3’s fix

Std::mutex globalMutex;

Void func() {

 std::unique_lock<std::mutex> lock(globalMutex);

….

}

Better fixes

76

Exercise

• How can I use the RAII class locks to implement R/W lock?

• R/W locks allow multiple readers at the same time

• But if there is writer, then there should be no readers, and only one writers.

77

Where to find the resources?

• Concurrency programing:

• Book: C++Concurrency in Action Practice Multithreading

• https://learn.microsoft.com/en-us/archive/blogs/ericlippert/what-is-this-thing-you-call-

thread-safe

• Notes:

• Atomic built-in: https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html

• Memory order: https://cplusplus.com/reference/atomic/memory_order/#google_vignette

78

https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html
https://cplusplus.com/reference/atomic/memory_order/#google_vignette

	Slide 1: CS4414 Recitation 5 multi-threading II
	Slide 2: Overview
	Slide 3: Recap
	Slide 4: Concurrency
	Slide 5: Launching thread (via std::thread)
	Slide 6: Launching thread
	Slide 7: Thread lifecycle and program termination
	Slide 8: Thread lifecycle and program termination
	Slide 9: Multithreading
	Slide 10: Joining threads with std::thread
	Slide 11: Thread lifecycle and program termination
	Slide 12: Thread lifecycle and program termination
	Slide 13: Exercise: would this code work?
	Slide 14: Thread safety
	Slide 15: Sharing data among threads ---race condition
	Slide 16: Sharing data among threads ---race condition
	Slide 17: Example: Concurrent increments of a shared integer variable
	Slide 18: Example: Concurrent increments of a shared integer variable
	Slide 19: Example: Concurrent increments of a shared integer variable
	Slide 20: Example: Concurrent increments of a shared integer variable
	Slide 21: Thread Safety
	Slide 22: Thread safe
	Slide 23: Thread safe?
	Slide 24: std::atomic
	Slide 25: Atomic
	Slide 26: Data race condition: non-atomic access pattern
	Slide 27: Data race condition: non-atomic access pattern
	Slide 28: Atomic access
	Slide 29: Atomic
	Slide 30: Atomic member functions
	Slide 32: More atomic member functions
	Slide 33: More atomic member functions
	Slide 35: Thread safe
	Slide 36: std::vector
	Slide 37: Multithreads’ data sharing with std::vector
	Slide 38: Read-only-access of std::vector
	Slide 39: Simultaneous read and write
	Slide 40: Simultaneous read and write
	Slide 51: Locking
	Slide 52: Locking ---protecting data with mutex
	Slide 53: std::mutex
	Slide 54: Locking ---std::mutex::lock(), unlock()
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Locking ---std::mutex::lock(), unlock()
	Slide 59
	Slide 60
	Slide 61: Locking ---std::mutex::lock(), unlock()
	Slide 62: RAII (Resource Acquisition is initialization) re-visit
	Slide 63: RAII (Resource Acquisition is initialization)
	Slide 64: RAII (Resource Acquisition is initialization)
	Slide 65: RAII (Resource Acquisition is initialization)
	Slide 66: Locking ---std::mutex::lock(), unlock()
	Slide 67: Mutex and RAII locks
	Slide 68: std::unique_lock
	Slide 69
	Slide 70
	Slide 71: std::scoped_lock
	Slide 73: std::shared_lock
	Slide 74: std::shared_lock
	Slide 75: RAII (Resource Acquisition is initialization)
	Slide 76: RAII
	Slide 77: Exercise
	Slide 78: Where to find the resources?

