CS4414 Recitation 5

multi-threading |l

09/26/2025

Alicia Yang, Shouxu Lin

Overview

* Multithreading
* Thread finishing

* Race condition

* Thread safety
* std::atomic
* Mutex locks
* RAIl locks

Recap

* What is concurrency
* Threads launching

* Thread finishing

* join()

Multi Threaded

Single Thread

| Concurrency

Stack

Heap

Heap

" ST T peaayy T
]
-l
&
('

W

o

=]

L
-
w
S
v

T T peaayy T

£
Q
k%
g
=L
w
3
v

@

=]

D lllllllllllllllllllllllllllll
" o peaJyL
T
b
L
&
('

N

awi |

Process

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

Launching thread (via std::thread)

* Create a new thread object.

* Pass the executing code to be called (i.e, a callable object)

into the constructor of the thread object.

* Once the object is created a new thread is launched, it will

execute the code specified in callable

#inCIUde <th r‘ead> // part of the C++ Standard Library

Launching thread

* Launching a thread using function pointers and function parameters

void func(params)

{
}

std::thread thread_obj(func, args);

// Do something

Thread lifecycle and program termination

. i Thread terminates "o
St?"th[]ea(:l ttl(:[")’ (if function finishes |~
auhc .an > a.r before the program
execution immediately ends)
Program starts:| | UPon construction Program ends:
S ./exec What if thread return _;
or exit(_);

function takes
longer than the
main function?

H
timeline

Main thread
starts execution
when the
program starts

7

Thread lifecycle and program termination

std::thread t1(...); Thread terminates
launch and start std::terminate() gets called

execution immediately

Program starts: upon construction Program ends:
S ./exec return _; ‘0 0
or exit(_);

undefined behavior,

may lead to resource leaks or

abrupt program termination

|
I 1

Z Thread t1
\ 4 ¥ . .

Main thread - - . .
NI Program termination timeline
when the ends all threads 8

https://en.cppreference.com/w/cpp/error/terminate

program starts

https://en.cppreference.com/w/cpp/error/terminate

Multithreading

* Launching a thread:
* Function pointer
* Function object

* Lambda function

* Managing threads

* Join()

Joining threads with std::thread

std: :thread thread obj (func, params);
Thread obj.join();

* Wait for a thread to complete
* Ensure that the thread was finished before the function was exited
* Clean up any storage associated with the thread

* join() can be called only once for a given thread

10

Thread lifecycle and program termination

std::thread t1(...);
launch and start
execution immediately
upon construction

Program starts:
S ./exec

Thread terminates

Program ends:
retufn _;
or exit(_);

Z Thread t1
\ 4

l—

Main thread
starts execution
when the
program starts

timeline

11

Thread lifecycle and program termination

std::thread t1(...); t1.join();
launch and start
execution immediately
Program starts:| | UPOn construction Program ends:
S ./exec return _;
or exit(_);
2 Thread t1
A ﬁ
Main thread . . .
! Main thread WalIts for thread timeline

starts execution
when the
program starts

t1 finishes, then return; to

ensure proper clean up 12

How would you fix it?
Let’s try this out

Exercise: would this code work?

std::thread foo(){
std::vector<int> a ={1,2,3,5};
std::thread threadObj([&](){
for (inti:a)
std::cout << i << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(1));

}

1
return threadObj;

}

int main(){
std::thread obj=foo();

std::cout << "Back to main function" << std::endl;

return O;

J 13

Thread safety

Shc:ring CICITCI among ’rhrec:ds ---race condition

* Race condition:

* The situation where the outcome depends on the relative

ordering of execution of operations on two or more threads;

the threads race to perform their respective operations.

Code source: 15
httos: //sithub.com/aliciavutine/CS4414Demo.git

https://github.com/aliciayuting/CS4414Demo.git

Sharing dCITCI among ’rhreads ---race condition @

* Example: Concurrent increments of a shared integer variable.

* Each thread shares an integer called count initialized to O,

increments it 1 million times concurrently without any

synchronization
umberof thread Fralave
1 1000000

2 1059696
3 1155035
4 1369165

Code source: 16
httos: //sithub.com/aliciavutine/CS4414Demo.git

https://github.com/aliciayuting/CS4414Demo.git

Example: Concurrent increments of a shared integer variable

1. Read the value void Increment(){

number ++;
}

number++;

Thread 0

3. Write back the
value

17

Example: Concurrent increments of a shared integer variable

Oh! | see

o O
— @/ Thread 1. Write back 1.
Write back the value

num =3 Thread 2. Write back 2.

Ideally what we want l \@\ Oh! | see
\@— e num=1.

Oh! | see
num=2.

o O

Thread 3. Write back 3.

18

Example: Concurrent increments of a shared integer variable

Oh| | see
Read the value num= 0
. Write backihe#al/

Ideally what we want l) Oh! | see
&3 Will it always be m=1,

in this 2ad 2. Write back 2.

sequence?

Oh! | see
num=2.

o O

Thread 1. Write back 1.

Thread 3. Write back 3.

19

Example: Concurrent increments of a shared integer variable

OhI | see
Read the value R 0
evalue

Wri

num = O

Thread 1. Write back 1.

Oh! | see
A num=0.

Thread 2. Write back 1.

®

Concurrent reads, before

Oh! | see
num=1.

the previous thread write
back, caused the out-of- 0O

order inconsistent results. Thread 3. Write back 2.

20

Thread Safety

* A function, a piece of code, or an object is thread-safe when it can
be invoked or accessed concurrently by multiple threads without

causing unexpected behavior, race conditions, or data corruption.

Thread safe

* Entities in C++ standard library and their thread-safety guarantees

22

Thread safe?

* |s integer type inherently thread-safe?

* No, as we showed just now

How to make it
thread-safe?

23

std::atomic

* A template that defines an atomic type.

' template< class T >
strict atomic; (1) (since C++11)
template< class U > ,
struct atomic<U*>; 2) (since C++11)
template< class U >
* b . (3) (since C++20)
(moreat | Struct atomic<std::shared ptr<U>>;
th d of .
rec?taezonoif template< class U > (4) (since C++20)
have time) | struct atomic<std::weak ptr<U>>;

https://en.cppreference.com/w/cpp/atomic/atomic %*

https://en.cppreference.com/w/cpp/atomic/atomic

Atomic

* An atomic operation is an indivisible operation.

* The operation is either done or not done. Such an operation would never be half-

done from any thread in the system.

25

Data race condition: non-atomic access pattern

void Increment(){

1. Read the value number ++:
}

2. Increment number+X\

Let me perform some S WdEERLY
instruction on number
during this operation
(between step1-3)
concurrently

3. Write back the valué

Thread 1

26

Data race condition: non-atomic access pattern

—¢ COMPILER . L . : -
= EXPLORER 7dd..~ More~ Support diversity in C++ with #include <C++> = P's |ntel PC-ZmI Share ~ Policies @@~ Other-
C++ source #1 X O x| xB6-64 goe 11.2 (C++, Editor #1, Compiler #1) X O :
A~ @ +~ v £ » (3, 14) C++ - x86-64 gce 11.2 - & Compiler options... E
! :nt main() A~ ®©Output..~ Y Filter..~ B Libraries <= Add new...~ * Addtool...~
2 — 5
3 volatile hnt val = 0: 1 —
4 val ++; 2 Husk CUH
5 return val: 3 mov rbp, rsp
6 } 4 mov DWORD PTR [rbp-4], O
5 mov eax, DWORD PTR [rbp-4]
] add eax, 1
7 mov DWORD PTR [rbp-4], eax
8 mowv eax, DWORD PTR [rbp-4]
9 pop rbp
10 ret

std::thread t1([&val]() {
val++; Another concurrent thread t1

D; 7

2% COMPILER
=s EXPLORER 799

Atomic access

~ More ~ Templates

C++ source #1 &

A~ BSavelload + Addnew..~ Wvim J©Cppinsights ® Quick-bench

1
2
3
4
5
6

#include <atomic>

int main() {

volatile @Fd::atomic<imy val = 0;

std::atomic guarantees one
thread to execute the
entire operation (val ++;),
during which no other
thread interfering or
interrupting

O | x86-64 gce 14.2 (Editor #1) & X

@ C++ ~ | x86-64 gcc 14.2

main:
push

o =] On N e W R

Sponsors .]ETBRAINS think-cell® Share ~ Policies)

* [@ Compileroptions...

A~ QR Output..~ WFilter..~ B Lbraries J/ Overrides + Addnew..~ ,* Addtool..~

rbp
rbp, rsp

rsp, 16
DWORD PTR [rbp

std::thread t1([&val]() {
val++;
b

Another concurrent thread t1

28

Atomic

* An atomic operation is an indivisible operation.

* std::atomic are implemented using hardware supports provided by modern CPU:

* Examples of atomic instructions:
* Compare-and-Swap (CAS)
* Load-Linked/Store-conditional (LL/SC)

* fetch_and_add (FAA)

* Different CPUs provide different sets of atomic instructions. The implementation of

std::atomic varies from architecture to architecture

Atomic member functions

* Atomic type: std::atomic<type>
* Constructor std::atomic<bool> x(true); std::atomic<uint32_t> y(0);
* store() x.store(false); y.store(1, std::memory_order_relaxed);

30
https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/atomic/atomic

More atomic member functions

* load() bool z = x.load();

* exchange() uint32_t m = y.exchange(100);

* operator= y = 2;

* operator+=, operator -= y +=1; y.fetch_add(1); (since C++20)
* operator++, operator-- y ++;

What about y =y + 1¢

32
https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/atomic/atomic

More atomic member functions

load()

exchange()

* operator=

operator+=, operator -=

operator++, operator--

bool z = x.load();

uint32_t m = y.exchange(100);
Y = 2;

y +=1; y.fetch_add(1);

y ++;

WhCI"' CIbOU"' y — y +]2 When multithreading, leads to race condition,

because it involves multiple operations (read x,
+1 and then assignment operation)

33
https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/atomic/atomic

Thread safe

* std::atomic

* stdushared_ptr

std::vector

* Does std::vector guarantee thread-safety?

36

Multithreads’ data sharing with std::vector

* When is std::vector thread-safe?

* Each thread has its own instance of std::vector (no concurrency)

* Read-only access

* When is std::vector not thread-safe?
* Simultaneous Read and Write
e Concurrent modification

* Reallocation access on reallocation or modification

37

Read-only-access of std::vector

void read_vector(const std::vector<double>& vec, int thread_id, double& sum) {
for (const auto& value : vec) {
sum += value;

1 // Each thread reads the vector and accumulates the sum

Thread safe, because only

int main() {
std::vector<double> vec(100, 1.00); concurrent reads

double t1_sum;

double t2_sum;

std::thread t1(read_vector,std::ref(vec), 1, std::ref(t1_sum));
std::thread t2(read_vector,std::ref(vec), 2, std::ref(t2_sum));
t1.join();

t2.join();

std::cout << "t1 _sum="<< t1l sum<<",t2 sum="<<t2 sum;

o}

Simultaneous read and write

1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 |/ 10.10 | 11.11 | 12.12 13.13 | 14.14 | 15.15

vect[6] = 100.0;

double x = vect|[6];

thread t0 thread t1

39

Simultaneous read and write

Concurrent Read+write
to the SAME element
is NOT thread-safe

0.0

1.1 2.2 3.3

4.4

5.5

vect[6] = 100.0;

6.6 7.7

8.8

9.9 |10.10 | 11.11| 12.12 | 13.13

14.14

15.15

ect[6];

x could be

6.6 or 100.0
after this.

thread t1

40

Locking

e
| Locking ---protecting data with mutex W

t“\

* How does mutex work?

* Before accessing a shared data structure, you lock the mutex associated with that

data

* When finished accessing the data structure, you unlock the mutex.

std::mutex o v/

exclusive, non-recursive ownership

* A thread owns the mutex from the time when it call lock() until it calls

unlock()

* The Thread Library then ensures that once one thread has locked a

specific mutex, all other threads that try to lock the same mutex have to

wait until the thread that successfully locked the mutex unlocks it.

53
https://en.cppreference.com/w/cpp/thread/mutex

https://en.cppreference.com/w/cpp/thread/mutex

Locking ---stdzzmutex::lock(), unlock() @

1 |int global_num = Q;

2 |std:mutex globalMutex;

3 |void incre(int num){

4 globalMutex.lock(); Only one

5 global_num = global_num + 1; thread could
6 globalMutex.unlock(); enter line 5 at
7 } a time

g |intmain(){

9 std::thread threadA(incre, 10);
10 std::thread threadB(incre, 10);
11 threadA.join();
12 threadB.join();

\ 4

Mutex and Lock in C++)

* A Mutex is a lock that we set before using a shared resource and release after using it.

* When the lock is set by one thread, then no other thread can access the locked region

of code.

* Mutex lock will only be released by the thread who locked it.

55

Mutex and Lock in C++

Thread B

q

-

W
"

(

2 Thread B attempts to lock
mutex and blocks

| Thread A globalMutex
1. Thread A locks mutex and _é_ Lock _i_
does work with shared resource | "
! =5
Thread A owns the J | ;
mutex object 5
i unlock —§—
: 4
3.Thread A unlocks mutex i !
: =
5 <«

Thread B owns
the mutex object

4 Thread B wakes, locks the
mutex and does work with the
shared resource

56

Mutex and Lock in C++

M globalMutex M
: Lock E :

1.Thread A locks mutex i : :

dnes work with s 1
o) - 2. Thread B attempts to lock o)

void incre(int num){ ' mutex and blocks void incre(int num){

globalMutex.lock(); globalMutex.lock();
global_num = global_num + 1; unlock global_num = global_num + 1;

Y

globalMutex.unIock(); Thread A unlocks mutex

globalMutex.unlock();

4 Thread B wakes, locks the

: : mutex and does work with the
i : shared resource

57

Locking ---stdz:mutexz:lock(), unlock()

int global num =0;
std::mutex globalMutex;

void incre(int num){
globalMutex.lock();
global num =global _ num +1;
globalMutex.unlock();

}

int main(){
std::thread threadA(incre, 10);
std::thread threadB(incre, 10);
threadA.join();
threadB.join();

Now, what will
happen, if | forget to
call mutex.unlock()?

58

Mutex and Lock in C++

1 Thread A locks mutex and
does work with shared resource

IThread Al

Lock

globalMutex

—+

%

Lock

IThread Bl

2 Thread B attempts to lock
Imutex and blocks

Thread B is unable
to acquire the lock

if Thread A doesn’t
unlock it.

59

Mutex and Lock in C++ 3

* A Mutex is a lock that we set before using a shared resource and release after

using it.

* When the lock is set by one thread, then no other thread can access the locked

region of code.

* Mutex lock could only be released by the thread who locked it.

60

Locking ---stdz:mutexz:lock(), unlock()

* std::mutex::lock(), unlock()

* It is not recommended practice to call lock(), unlock() directly,
because this means that you have to remember to call unlock() on
every code path out of a function that called lock(), including those

due to exceptions.

61

RAIl (Resource Acquisition is initialization) re-visit

* Resource acquisition must succeed for initialization to succeed:

* In RAIl, holding a resource is a class invariant is tied to object lifetime: resource
allocation is done during object creation, by the constructor; while resource

deallocation is done during object destruction, by the destructor.

* If there are no object leaks, there are no resource leaks.

* The resource is guaranteed to be held between when initialization finishes and

finalization starts, and to be held only when the object is alive.

62

RAIl (Resource Acquisition is initialization)

// problem #1
{

int *arr = new int[10];

} // arr goes out of scope but we didn’t delete it, we now have a memory leak @

// problem #2
{
std::thread t1([] () {

1

// thread t1 is created but not joined, if it goes out of scope, std::terminate is
} called, this implementation doesn’t properly handle the thread’s life cycle @

// problem #3

Std::mutex globalMutex;
Void func() {

globalMutex.lock();

/ // if we never unlocked the mutex(or exception occurred before unlock),
it will cause a deadlock when other thread tries to acauire thic lock G

63

RAIlI (Resource Acquisition is initialization)

// problem #1’s fix

{
int *arr = new int[10];
delete[] arr;

}

// problem #2’s fix
{
std::thread t1([] () {

Y
t1.join();
}

// problem #3’s fix
Std::mutex globalMutex;
Void func() {

/

globalMutex.lock();
globalMutex.unlock();

64

|RAII (Resource Acquisition is initialization)

* RAIl

* When acquire resources in a constructor, also need to release them in the corresponding

destructor
* Resources:
* Heap memory,
* files,
* sockets,

®* mutexes

<«————Object lifecycle

Hey, can | have some memory?

Constructor
of C++ object

\

L
~_

Operating
System

Mem

Mem

Sure, here you go

Hey, here’s your memory back

Destructor
of C++ object

Mem

Operating
System

Mem

Mem

Mem

Mem

\/

b
\

T Nice, thanks ~

65

Locking ---stdz:mutexz:lock(), unlock()

int global num =0;
std::mutex globalMutex;

void incre(int num){
globalMutex.lock();
global num =global _ num +1;
globalMutex.unlock();

}

int main(){
std::thread threadA(incre, 10);
std::thread threadB(incre, 10);
threadA.join();
threadB.join();

Is there a better ways to
manage the mutex that
can automatically unlock
it when not used?

66

Mutex and RAIl locks

* std::unique_lock
* std::scoped_lock

* std::shared lock

std::mutex my mutex;

std::unique lock<std::mutex> lck (my mutex);

std::shared mutex shared mutex;

{
std::shared lock<std::mutex> lck(shared mutex);

67

std::unique_lock

* A unique lock is an object that manages a mutex object with unique ownership in both

states: locked and unlocked.

* RAIl: When creating a local variable of type std::unique_lock passing the mutex as

parameter.

* On construction, the object acquires a mutex object, for whose locking and unlocking

operations becomes responsible.

* This class guarantees an unlocked status on destruction (even if not called explicitly).

* Features:

* Deferred locking, Timeout locks, adoption of mutexes, movable(transfer of ownership)

68

std::unique_lock

N B

N O 0 bW

10
11
12

int global_num = 0;
std::mutex globalMutex;

void incre(int num){
std::unique_lock<std::mutex> u_lock(globalMutex);
global_num = global_num + 1,

\

}

int main(){
std::ithread t1(incre, 1);
std::thread t2(incre, 3);
t1.join();
t2.join();

Only one
thread could

enter line 5-7
at atime

69

std::unique_lock

Unique_lock feature: Deferred locking

std::mutex mtx;

void conditional_locking(bool should_lock) {

// Create lock but do not acquire it

. int main() {
std::unique_lock<std::mutex> lock(mtx, std::defer_lock);

if (should_lock) {

lock.lock(); // Conditionally acquire the lock

std::thread t1(conditional_locking, true);

std::thread t2(conditional_locking, false);

,] tl.join();

std::cout << "Lock acquired." << std::end|; join()
}else { t2.join();
return O;

std::cout << "Lock not acquired." << std::endl;

std::scoped_lock

a mutex wrapper which obtains access to (locks) the provided mutex, and ensures

it is unlocked when the scoped lock goes out of scope

When does s_lock get released?

int global _num =0;
std::mutex globalMutex;

void incre(int num){

{
std::scoped_lock s lock(globalMutex),

global _num = global num +1;

} —

global _num =global_num + 1;

R =, O NOUT DS WN -

= O

std::shared lock

std::shared_lock allows for shared ownership of mutexes.

std::shared_mutex mtx;
int global val;
void print_val (int n, char c) {
std::shared_lock<std::shared_mutex > Ick (mtx);
std::cout << global_val << std::endl;
}
int main () {
std::thread thl (print_val);
std::thread th2 (print_val);
thl.join();

th2.join();

73

std::shared lock

Shared_lock allows for shared ownership of mutex. More than one thread could hold the
mutex at the same time.

std::shared_mutex mtx;

int global_val;

void print_val (int n, char c) {
std::shared_lock<std::shared_mutex > Ick (mtx);
std:.cout << global_val << std::end];

}

int main () {
std::thread th1 (print_val);
std::thread th2 (print_val);
th1.join();
th2.join();

) a

RAIl (Resource Acquisition is initialization)

// problem #1
{

int *arr = new int[10];

} // arr goes out of scope but we didn’t delete it, we now have a memory leak @

// problem #3

Std::mutex globalMutex;

Void func() {
globalMutex.lock();

} // if we never unlocked the mutex(or exception occurred before unlock),
it will cause a deadlock when other thread tries to acquire this lock

75

RAII

N\’
L)

| + 2"
Better fixes

// problem #1’s fix

{
std::unique_ptr<int[]> arr(new int[10]);

// problem #3’s fix
Std::mutex globalMutex;
Void func() {

std::unique_lock<std::mutex> lock(globalMutex);

76

Exercise

* How can | use the RAIl class locks to implement R/W lock?
* R/W locks allow multiple readers at the same time

* But if there is writer, then there should be no readers, and only one writers.

Where to find the resources?

* Concurrency programing:

* Book: C++Concurrency in Action Practice Multithreading

* https://learn.microsoft.com/en-us /archive /blogs/ericlippert/what-is-this-thing-you-call-

thread-safe

* Notes:

* Atomic built-in: https:/ /gcc.gnu.org /onlinedocs /gcc-4.4.3 /gec/Atomic-Builtins.html
* Memory order: https:/ [cplusglus.comzreference/a'rgmig/memgry order/#google vignette

78

https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html
https://cplusplus.com/reference/atomic/memory_order/#google_vignette

	Slide 1: CS4414 Recitation 5 multi-threading II
	Slide 2: Overview
	Slide 3: Recap
	Slide 4: Concurrency
	Slide 5: Launching thread (via std::thread)
	Slide 6: Launching thread
	Slide 7: Thread lifecycle and program termination
	Slide 8: Thread lifecycle and program termination
	Slide 9: Multithreading
	Slide 10: Joining threads with std::thread
	Slide 11: Thread lifecycle and program termination
	Slide 12: Thread lifecycle and program termination
	Slide 13: Exercise: would this code work?
	Slide 14: Thread safety
	Slide 15: Sharing data among threads ---race condition
	Slide 16: Sharing data among threads ---race condition
	Slide 17: Example: Concurrent increments of a shared integer variable
	Slide 18: Example: Concurrent increments of a shared integer variable
	Slide 19: Example: Concurrent increments of a shared integer variable
	Slide 20: Example: Concurrent increments of a shared integer variable
	Slide 21: Thread Safety
	Slide 22: Thread safe
	Slide 23: Thread safe?
	Slide 24: std::atomic
	Slide 25: Atomic
	Slide 26: Data race condition: non-atomic access pattern
	Slide 27: Data race condition: non-atomic access pattern
	Slide 28: Atomic access
	Slide 29: Atomic
	Slide 30: Atomic member functions
	Slide 32: More atomic member functions
	Slide 33: More atomic member functions
	Slide 35: Thread safe
	Slide 36: std::vector
	Slide 37: Multithreads’ data sharing with std::vector
	Slide 38: Read-only-access of std::vector
	Slide 39: Simultaneous read and write
	Slide 40: Simultaneous read and write
	Slide 51: Locking
	Slide 52: Locking ---protecting data with mutex
	Slide 53: std::mutex
	Slide 54: Locking ---std::mutex::lock(), unlock()
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Locking ---std::mutex::lock(), unlock()
	Slide 59
	Slide 60
	Slide 61: Locking ---std::mutex::lock(), unlock()
	Slide 62: RAII (Resource Acquisition is initialization) re-visit
	Slide 63: RAII (Resource Acquisition is initialization)
	Slide 64: RAII (Resource Acquisition is initialization)
	Slide 65: RAII (Resource Acquisition is initialization)
	Slide 66: Locking ---std::mutex::lock(), unlock()
	Slide 67: Mutex and RAII locks
	Slide 68: std::unique_lock
	Slide 69
	Slide 70
	Slide 71: std::scoped_lock
	Slide 73: std::shared_lock
	Slide 74: std::shared_lock
	Slide 75: RAII (Resource Acquisition is initialization)
	Slide 76: RAII
	Slide 77: Exercise
	Slide 78: Where to find the resources?

