CS441 4 Recitation 4

C++ class and multithreading

09/2025

Alicia Yang, Shouxu Lin

Logistics

* Session 4: prelim review
e Time: 7:15 PM - 8:15 PM, Monday (09/22)
 Led by TAs: Nam Anh Dang, Jephthah Kwame Mensah
* Location: TBA

* Session 2: HW1 part 2 help session
« Time:2PM -5 PM, Sunday (9/21)
* Led by TAs: Briaana Liu, Ruichen Bao
* Location: Gates 122

Overview

* C++ template continue

* Variadic templates

* Multithreading

* What is concurrency
* Threads launching

* Thread finishing

More fun facts left from last recitation

C++ Class revisit

Copy constructor

* Create a new object by initializing it with an object of the same

class
e Called when

* Initialization Rectangle obj2 (obj1);

* Function argument passing by value func(Rectangle obj);

// Note: returning a local created variable by value, will be optimized by c++ 17+, via RVO(copy elision) that could avoid copy.

It constructs the return object directly in return’s storage. (https://en.cppreference.com/w/cpp/language/copy_elision.html) **

https://en.cppreference.com/w/cpp/language/copy_elision.html

Implicitly-defined default copy-constructor

* |f no user-defined copy constructor, the compiler declare and

define a copy constructor

* |t performs member-wise copy of the object’s bases and

members to the new object it initializes

* Default constructor does only shallow copy

12

mylIntVector example

class mylIntVector{ mylntVector::myIntVector(size ts) {
public: size = S;
int* data; capacity = s;
size 1 size; data = new int[capacity];
size 1 capacity; for (size ti=0; i< size; ++i) {
datali] = 0;
myIntVector(); }
mylIntVector(size t s); }
~myIntVector(); myIntVector::~mylIntVector(){
delete[] data;
1: 1 N

shallow copy
Default copy-constructor

Vectl
ata, size, capacity

Vect?2
ata, size, capacity

mylIntVector vect2 = vect1; i

Stack

myIntVector vect1 = mylntVector(3);

vect1.data = 5;

Ox7cd10ad%e
Int 0 Heap

int 0

Not ideal, because changing only
one changes both of them. int 0 data
Want two identical independent

objects Code(Text)

14

Fix: User-defined copy constructor

mylntVector(const mylntVector& other) :

size(other.size), data(new int[other.size]) {

for (size_ti=0;i < size; ++i) { Deep copy the object’s
members

data[i] = other.datali];

15

Move constructor

class mylIntVector{

myIntVector(mylntVector && other);

// Transfer the ownership of the resources from the
object, other, to the new object

16

Move constructor

* Transfer the ownership of resources from one object to another,

instead of making a copy

e Called when

Initialization Rectangle obj2(std::move(obj1));

Move smart pointers std::unique_ptr<int> p2 = std::move(p1);
Function return with Return Value Optimization(RVO), or return a named local

and want to force a move without(RVO) return std::move(obj);

17

Why use move constructor?

* Improve the performance of the program by avoiding the

overhead caused by unnecessary copying.

myIntVector(mylntVector&& other) : size(0), data(nullptr) {

data = other.data; /I copy the pointer of the memory

address of other.data

size = other.size;

ot

ot

ner.data = nullptr; /I Transfer the ownership of other’s
resource to this new object

her.size = 0;

18

lvalue and rvalue

L value refers to a memory
location with a name (e.g., a
variable).

It typically has a lifetime longer
than a single expression or
statement.

E.g. variable var continue to
exist after this line of code.

Int

var

25;

L Value

R Value

R value refers to a temporary
value that does not have a
persistent memory location.
Only exist within the scope of
the expression in which they
are used.

19

https://www.learncpp.com/cpp-tutorial/value-categories-lvalues-and-rvalues/

https://www.learncpp.com/cpp-tutorial/value-categories-lvalues-and-rvalues/
https://www.learncpp.com/cpp-tutorial/value-categories-lvalues-and-rvalues/
https://www.learncpp.com/cpp-tutorial/value-categories-lvalues-and-rvalues/
https://www.learncpp.com/cpp-tutorial/value-categories-lvalues-and-rvalues/
https://www.learncpp.com/cpp-tutorial/value-categories-lvalues-and-rvalues/
https://www.learncpp.com/cpp-tutorial/value-categories-lvalues-and-rvalues/
https://www.learncpp.com/cpp-tutorial/value-categories-lvalues-and-rvalues/
https://www.learncpp.com/cpp-tutorial/value-categories-lvalues-and-rvalues/
https://www.learncpp.com/cpp-tutorial/value-categories-lvalues-and-rvalues/
https://www.learncpp.com/cpp-tutorial/value-categories-lvalues-and-rvalues/
https://www.learncpp.com/cpp-tutorial/value-categories-lvalues-and-rvalues/

Copy assignment

* Defines what happens when an already existing object is

assigned the value of another object of the same class, using a

copy of the source’s data
* Called when

* Assign to an already existing object

Rectangle obj2;
obj2 = obj1;

20

Move assignment @

* the move assignment operator is used when you assign an object

that is an rvalue (a temporary object or one you explicitly cast

with std::move) to another existing object.
* Called when

* Assign to an already existing object

std::unique_ptr<int> p1 = std::make_unique<int>(42); // owns 42
std::unique_ptr<int> p2 = std::make_unique<int>(99); // owns 99
p2 = p1; // move assignment

21

C++ Template continue

Tem p I d ‘I'ed funcﬁon template < parameter-list > function-declaration

typename is the type-parameter-key,

template <typename T> < which could be either typename or class.
T subtract(T a, T b) {

return a - b: T is the name of type template parameter.

} Tells the complier “I will use a placeholder type
T in this function.”

int main(){

int x =10;

inty =7;

std::cout << subtract(x, y) << std::endl;

double p = 5.5;

double g = 2.2;

std::cout << subtract(p, q) << std::endl;
.}

23
https://en.cppreference.com/w/cpp/language/function_template.html

https://en.cppreference.com/w/cpp/language/function_template.html

Tem P lated class template < parameter-list > class-declaration

template <typename T>
class Subtracter {
public:

T subtract(T a, T b){

return a - b;

}
%

int main() {
Subtracter<double> double sub;
std::cout << double_sub.subtract(5.5, 2.2) << std::endl;

)

24

Parameter list Non-type template parameter
- A variable for a constant

/ (e.g., anint ...)
— - Known at compile time

template <typename T, int N>
class Array {
T data[N]; // size

public:
int size() const { return N; }

nown at compile time

Type template parameter
s - Avariable for a type
- Known at compile time

int main() {
Array<int, 5> arr1; // array of 5 ints
std::cout << arr1.size() << std::endl; // 5

)

25
https://en.cppreference.com/w/cpp/language/template_parameters.html

https://en.cppreference.com/w/cpp/language/template_parameters.html

Template instantiation

* A function template or a class template by itself is not a type, or a function, or any
other entity.
* No code is generated from a source file that contains only template definitions.

* For any code to appear, a template must be instantiated: the template arguments

must be determined so that the compiler can generate an actual function

Template instantiation - explicit instantiation

template <typename T>
T subtract(T a, T b) {
return a - b;

}

template int subtract<int>(int, int); /[Explicit instantiation declarations
template double subtract<double>(double, double); /[Explicit instantiation declarations

int main(){
ntx=10,y=7;
std::cout << subtract(x, y) << std::endl; // Use subtract<int>
double p=5.5,q= 2.2
std:.cout << subtract(p, q) << std::endl; // Use subtract<double>

)

27
https://en.cppreference.com/w/cpp/language/function_template.html

https://en.cppreference.com/w/cpp/language/function_template.html

Template instantiation - implicit instantiation (default)
template <typename T> . Th.e compiler generates code, in
T subtract(T a, T b) { this case subtract<int>

return a - b; |f subtract was called on a double
} another function subtract
(overload) will be generated with
T =double
iInt main(){
intx =10;
inty =7;

std::cout << subtract(x, y) << std::endl; // Compiler generate subtract<int>
double p=5.5, q = 2.2;

std::cout << subtract(p, q) << std::endl; // Compiler generate subtract<double>

)

28
https://en.cppreference.com/w/cpp/language/function_template.html

https://en.cppreference.com/w/cpp/language/function_template.html

Quick aside: template hpp files don’t come with
associated cpp files

 Atemplate is a “pattern” that the compiler uses to generate a family of
classes or functions
* For the compiler to generate the code, it must see both the template
definition and the specific types used to “fill in” the template.
* For example, if you're trying to use a subtract<int>, the compiler must

see both the subtract template and the fact that you’re trying to make a

specific subtract<int>

29
https://isocpp.org/wiki/fag/templates#itemplates-defn-vs-decl

https://isocpp.org/wiki/faq/templates#templates-defn-vs-decl
https://isocpp.org/wiki/faq/templates#templates-defn-vs-decl
https://isocpp.org/wiki/faq/templates#templates-defn-vs-decl
https://isocpp.org/wiki/faq/templates#templates-defn-vs-decl
https://isocpp.org/wiki/faq/templates#templates-defn-vs-decl
https://isocpp.org/wiki/faq/templates#templates-defn-vs-decl
https://isocpp.org/wiki/faq/templates#templates-defn-vs-decl

How do we use templates when our function has an arbitrary
number of parameters?

* Common issue...
e Solution: Variadic templates

e Let’s code

30

Variadic templates

class car {
public:

int price;

car(int price) :price(price) {} class pen {
X public:

int price;

class pc { pen(int price) : price(price) {}
public: };

int price;

pc(int price) : price(price) {}

31

Variadic templates

int sum() {
return O;
}
template <typename T, typename... Args>
int sum (T item, Args... rest) {
return item.price + sum(rest...);

}

int main() {
car c(100);
pc pc(10);
pen p(1);

std::cout << "The sum is " << sum(c, pc, p);

32

Templates in the perspective of programming

* Avoid code duplication
* Functions are blocks of organized
 Reusable code that model a particular action
e (Classes model similar set of objects
e Libraries provide a consistent set of features
* Performance (compile-time resolution)

 Templates are expanded by the compiler for the types you use

33

Multithreading

What is concurrency
Threads launching
Thread finishing
Threads safety

35

| Concurrency

* What is concurrency?
* a single system performs multiple independent activities in parallel

Sequential
(No concurrency)

* Why use concurrency?

Dual core

* Separation of concerns

* Performance

Types of concurrency

Concurrent Processes Concurrent Threads
Process 1
Process
Thread
1 Thread 1
¥
Interprocess

communication

Operating i Shared memory

system I

¥

Thread

Thread 2

Process 2

Multi Threaded

Single Thread

| Concurrency

Stack

Heap

Heap

" ST T peaayy T
]
-l
&
('

W

o

=]

L
-
w
S
v

T T peaayy T

£
Q
k%
g
=L
w
3
v

@

=]

D lllllllllllllllllllllllllllll
" o peaJyL
T
b
L
&
('

N

awi |

Process

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

Multithreading

* Threads:

* Threads are lightweight executions: each thread runs independently of the

others and may run a different sequence of instructions.

* All threads in a process share the same address space, and most of the
data can be accessed directly from all threads—global variables remain
global, and pointers or references to objects or data can be passed around

among threads.

39

Multithreading

What is concurrency

Threads launching
* std:thread
* (Thread pool)

* (openmp)
Thread finishing

Threads safety

40

Launching thread (via std::thread)

* Create a new thread object.

* Pass the executing code to be called (i.e, a callable object)

into the constructor of the thread object.

* Once the object is created a new thread is launched, it will

execute the code specified in callable

#inCIUde <th r‘ead> // part of the C++ Standard Library

41

Launching thread (via std::thread)

* A callable types:

* A function pointer
* Free function (non-member function)

e Member function

* A function object (functor)

* A lambda expression

https://en.cppreference.com/w/cpp/thread/thread/thread 42

https://en.cppreference.com/w/cpp/thread/thread/thread

Launching thread --- function pointer

* Launching a thread using function pointers and function parameters

void func(params)

{
}

std::thread thread_obj(func, args);

// Do something

43

Launching thread --- function pointer

Example 1: function takes one argument

#include <thread>
void hello(std::string to)

{
std::cout << "Hello Concurrent World to " << to << "\n";

}

int main()

{ &(address-of) is optional
std::ithread t1(&hello, "alicia"); fthe function name decays to

unction pointer automatically,

std::thread t2(hello, "jonathan"); due to function-to-function-
1 .join(); pointer decay
t2.join();

Launching thread --- function pointer

Example2: function takes multiple arguments (passing by values, references)

* std::ref for reference arguments

#include <thread>
void hello_count(std::string to, int &x){
X++;
std::cout << "Hello to " << to << x << std::endl;
}
int main(){
Int x = 0;
std::thread threadObj(hello_count, "alicia", std::ref(x));
.. //join

}

45

Launching thread (via std::thread)

* A callable types:

* A function pointer
* Free function (non-member function)

* Member function

* A function object (functor)

* A lambda expression

https://en.cppreference.com/w/cpp/thread/thread/thread 46

https://en.cppreference.com/w/cpp/thread/thread/thread

How does calling a function on a class object work in C++2

* Suppose | have a class with an attribute x, a function print() that prints x.

* All objects of the class have their own copy of the non-static data members, but

they share the class functions.

* When | call print() on different objects, why are their behavior different?

class myClass{
public:
int X;
void print(){
std::cout << x << std::end|;
}

%

int main(){

}

myClass obj;
obj.print();

47

Solution to the puzzle:

* All class functions automatically receive a pointer to the class object as their first
argument

* For example, myClass::print() behaves as if it’s written as myClass:print(myClass™
obj_ptr)

* All references to x in the function resolve as obj_ptr->x

class myClass{
public: int main(){
int x; myClass obj;
void print(){ obj.print();
std::cout << x << std::end|; }
} 48
3

Launching thread --- member function pointer

* Launching a thread using (non-static) member function

class FunClass {
void func(params) {
// Do Something

}
5;
FunClass x;
std::thread thread object(&FunClass::func, &x, params);

49

Launching thread --- member function pointer

* Example3: launching thread with (non-static) member function

class Hello
{
public:
void greeting(std::string const &message) const{
std::cout << message << std:.end|;
}

%

int main(){

Hello x;

std::string msg("hello");

std::thread t(&Hello::greeting, &x, msg);
.. // join} %0

Multithreading

* A callable types:
* A function pointer
* A function object (functor)

* A lambda expression

--- managing thread

51

MUIﬁ'l'h redding --- Launching thread with function object

* Launching a thread using function object and taking function parameters

class fn_object_class {
// Overload () operator
void operator()(params) {
// Do Something
}
}

std::thread thread _object(fn_object_class(), params)

* Example: launching thread with function object

#include <thread>
* Create a callable object using the #include <iostream>

class Hello{
constructor public:

voilid operator () (std::string name)

° 1 {
The thread calls the function calll std::cout << "Hello to " << name << std::endl;

operator on the object I

int main () {
std::thread t (Hello (), "alicia"); 52
t.join () ;

Multithreading

* A callable types:
* A function pointer
* A function object

* A lambda expression

--- managing thread

53

Multithreading

* Launching a thread using lambda function

// Do Something
}, params);

std::thread thread_object([l(params) {

--- Launching thread with lambda function

* Example:

#include <iostream>
#include <string>
#include <thread>

int main ()
{
std::thread t([] (std::string name) {
std::cout << "Hello World ! " << name <<" \n";
}, “Alicia”);

t.join () ;

54
}

Lambda function

* Lambda expression

[capture clause] (parameters) -> return-type

{
}

definition of method

55

[capture clause] (parameters) -> return-type

Lambda function {
}

definition of method

* Capture variables:

* [&] : capture all external variables by reference

* [=] : capture all external variables by value

* [a, &b] : capture a by value and b by reference

std::vector<int>v1 = {3, 1, 7, 9};
std::vector<int> v2 = {10, 2,7, 16, 9};
// access v1 and v2 by reference

auto pushinto = [&] (int m){ & can access all

—
<

v1.push_back(m); the variables that
v2.push_back(m); are in scope.

;
pushinto(100);

56

Multithreading

What is concurrency
Threads launching

Thread finishing
* join()
* detach()

Threads safety

57

Thread lifecycle and program termination

. i Thread terminates "o
St?"th[]ea(:l ttl(:[")’ (if function finishes |~
auhc .an > a.r before the program
execution immediately ends)
Program starts:| | UPon construction Program ends:
S ./exec What if thread return _;
or exit(_);

function takes
longer than the
main function?

H
timeline

Main thread
starts execution
when the
program starts

58

Thread lifecycle and program termination

Program starts:

std::thread t1(..

launch and start

);

execution immediately
upon construction

Thread terminates
std::terminate() gets called

S ./exec

Prograin ends:

return _; 00
or exit(_);

undefined behavior,

S

may lead to resource leaks or

abrupt program termination

=

. 2

Thread t1

!

-

Main thread
starts executio
when the
program starts

n

Program termination
ends all threads

timeline

59
https://en.cppreference.com/w/cpp/error/terminate

https://en.cppreference.com/w/cpp/error/terminate

Multithreading

* Launching a thread:

* Function pointer
* Function object

* Lambda function

* Managing threads

* Join()

60

Joining threads with std::thread

std: :thread thread obj (func, params);
Thread obj.join();

* Wait for a thread to complete
* Ensure that the thread was finished before the function was exited
* Clean up any storage associated with the thread

* join() can be called only once for a given thread

61

Thread lifecycle and program termination

std::thread t1(...);
launch and start
execution immediately
upon construction

Program starts:
S ./exec

Thread terminates

Program ends:
retufn _;
or exit(_);

Z Thread t1
\ 4

l—

Main thread
starts execution
when the
program starts

timeline

62

Thread lifecycle and program termination

std::thread t1(...); t1.join();
launch and start
execution immediately
Program starts:| | UPOn construction Program ends:
S ./exec return _;
or exit(_);
2 Thread t1
A ﬁ
Main thread . . .
! Main thread WalIts for thread timeline

starts execution
when the
program starts

t1 finishes, then return; to

ensure proper clean up o3

|Where to find the resources?

* Copy constructor: https: / /www.geeksforgeeks.org/copy-constructor-in-cpp/

* Move semantics: https://www.cprogramming.com/c++11 /rvalue -references-and-move-semantics-in-
ct++11.html

* Operator overload: https: / /www.geeksforgeeks.org /operator-overloading-cpp/
* Effective C++: 55 specific ways to improve your programs and designs, Scott Meyers, 3rd edition

* A Tour of C++, Bjarne Stroustrup

* Concurrency programing:

* Book: C++Concurrency in Action Practice Multithreading

* https://learn.microsoft.com/en-us/archive /blogs/ericlippert /what-is-this-thing-you-call-thread-safe

* cppcon thread-safe: https://youtu.be/s5PCh FaMfM2si=-3h7nszcy jesQAH

* Notes:

* https://thispointer.com/c1 1-multithreading-part-3-carefully-pass-arguments-to-threads/

https://www.geeksforgeeks.org/copy-constructor-in-cpp/
https://www.geeksforgeeks.org/copy-constructor-in-cpp/
https://www.geeksforgeeks.org/copy-constructor-in-cpp/
https://www.geeksforgeeks.org/copy-constructor-in-cpp/
https://www.geeksforgeeks.org/copy-constructor-in-cpp/
https://www.geeksforgeeks.org/copy-constructor-in-cpp/
https://www.geeksforgeeks.org/copy-constructor-in-cpp/
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.geeksforgeeks.org/operator-overloading-cpp/
https://www.geeksforgeeks.org/operator-overloading-cpp/
https://www.geeksforgeeks.org/operator-overloading-cpp/
https://www.geeksforgeeks.org/operator-overloading-cpp/
https://www.geeksforgeeks.org/operator-overloading-cpp/
https://youtu.be/s5PCh_FaMfM?si=-3h7nszcy_jesQAH
https://youtu.be/s5PCh_FaMfM?si=-3h7nszcy_jesQAH
https://youtu.be/s5PCh_FaMfM?si=-3h7nszcy_jesQAH
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/

	Slide 1: CS4414 Recitation 4 C++ class and multithreading
	Slide 2
	Slide 3: Overview
	Slide 4
	Slide 5
	Slide 11: Copy constructor
	Slide 12: Implicitly-defined default copy-constructor
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Move constructor
	Slide 17: Move constructor
	Slide 18: Why use move constructor?
	Slide 19: lvalue and rvalue
	Slide 20: Copy assignment
	Slide 21: Move assignment
	Slide 22
	Slide 23: Templated function
	Slide 24: Templated class
	Slide 25: Parameter list
	Slide 26: Template instantiation
	Slide 27: Template instantiation - explicit instantiation
	Slide 28: Template instantiation - implicit instantiation (default)
	Slide 29: Quick aside: template hpp files don’t come with associated cpp files
	Slide 30: How do we use templates when our function has an arbitrary number of parameters?
	Slide 31: Variadic templates
	Slide 32: Variadic templates
	Slide 33: Templates in the perspective of programming
	Slide 35: Multithreading
	Slide 36: Concurrency
	Slide 37: Types of concurrency
	Slide 38: Concurrency
	Slide 39: Multithreading
	Slide 40: Multithreading
	Slide 41: Launching thread (via std::thread)
	Slide 42: Launching thread (via std::thread)
	Slide 43: Launching thread --- function pointer
	Slide 44: Launching thread --- function pointer
	Slide 45: Launching thread --- function pointer
	Slide 46: Launching thread (via std::thread)
	Slide 47
	Slide 48
	Slide 49: Launching thread --- member function pointer
	Slide 50: Launching thread --- member function pointer
	Slide 51: Multithreading --- managing thread
	Slide 52
	Slide 53: Multithreading --- managing thread
	Slide 54
	Slide 55
	Slide 56
	Slide 57: Multithreading
	Slide 58: Thread lifecycle and program termination
	Slide 59: Thread lifecycle and program termination
	Slide 60: Multithreading
	Slide 61: Joining threads with std::thread
	Slide 62: Thread lifecycle and program termination
	Slide 63: Thread lifecycle and program termination
	Slide 65: Where to find the resources?

