
CS4414 Recitation 1
Introduction and C++ basics

08/29/2025

Alicia Yang , Shouxu Lin

1

About TA -- Alicia

2

• Senior PhD student in CS

• Advised by Prof. Birman on distributed systems

• Research focus: cluster scheduling, ML serving systems

• Office hours:

• After recitation from Friday 4:10PM

• By appointment, email: yy354@cornell.edu

3

About TA -- Shouxu

• Senior PhD student in CS

• Advised by Prof. Birman on ML systems

• Research focus: cluster scheduling, ML serving systems

• Office hours:

• After recitation from Friday 4:10PM

• By appointment, email: sl3343@cornell.edu

mailto:yy354@cornell.edu

• TA Help Session: C++ Coding Environment Setup

•Session 1: 7:00 PM – 8:00 PM, Thursday,08/28 (led by Nam Anh Dang)

 Location: Uris G01

•Session 2: 7:15 PM - 8:15 PM, Tuesday, 09/03 (led by Haadi Khan and Ryan Wu)

 Location: Phillips 101

HW1 will be released on Monday

Ed discussion announcement

The writeup and starter code are on Canvas

Submission to Gradescope

4

Logistics

• We will be using

• Log in with your Cornell email at http://pollev.com/

5

Logistics

Overview

• Recitation introduction and logistics

• C++ primitive types

• C++ standard library, e.g. I/O, container

• A note about AI

6

Recitation objectives

https://github.com/aliciayuting/CS4414Demo.git

http://pollev.com/

Learn how to write good systems programs in C++

(demo https://github.com/aliciayuting/CS4414Demo.git)

Poll Everywhere during recitations (login via http://pollev.com/)

Assignment introductions and explanations

Exam preparation and reviews

8

https://github.com/aliciayuting/CS4414Demo.git
http://pollev.com/

10

CPP Reference https://en.cppreference.com/w/

https://en.cppreference.com/w/

What is C++?

11

A federation of related languages, with four primary sublanguages

• C: C++ is based on C, while offering approaches superior to C. Blocks,

statements, processor, built-in data types, arrays, pointers, etc., all come

from C

• Object-Oriented C++: “C with Classes”, classes including constructor,

destructors, inheritance, virtual functions, etc.

• Template C++: generic programming language. Gives a template, define

rules and pattern of computation, to be used across different classed.

• STL(standard template library): a special template library with conventions

regarding containers, iterators, algorithms, and function objects

12

C++ Built-in Types

Brief refresher, we will have more detailed C introduction to revisit CS3410
in TA-led session

Address

13

&

13

int32_t x = 0;

memory

…

…

int32_t x = 0; 0x00 0x00 0x00 0x00

0x00 is a pair of hex number
(0x is the prefix, 00 is hex digits)

1 byte

4 bytes

int32_t x =
0;

Address

14

&

14

memory

…

…

0x00 0x00 0x00 0x00

1 byte

4 bytes

Where does x live
in memory

exactly?

Address

15

• Can obtain the address (represented in hex) with the & operator

int32_t x = 0;

std::cout << &x << std::endl;

// prints to the address of x
 for example, 0x7ffd55bdaa4

&

Pointers

16

• A pointer is a variable that stores a memory address.

*

int32_t x = 0;

memory

…

…

0x00 0x00 0x00 0x00

1 byte

4 bytes

&x

int32_t* px;

px = &x;

Pointers

17

• A pointer is a variable that stores a memory address.

• A pointer is declared just like a variable but with * after the type

*

int32_t* px;

A pointer that could point to an integer

Pointers

18

A pointer is a

variable that stores

a memory address.

*

int32_t* px;

px = &x;

memory
…

…

0x00 0x00 0x00 0x00

1 byte

4 bytes

int32_t x = 0;

// e.g. 0x7ffd39809084

Pointers

19

• On the same type of machines, all pointers have the same size

• e.g. sizes of float*, int32_t*, char*, void*, ... are the same on the

same machine.

• Across different machine architectures, pointers’ sizes may differ

• 4 bytes on 32-bit machine

• 8 bytes on 64-bit machine

*

Pointers

20

*

int32_t* px;

px = &x;

memory

…

…

0x00 0x00 0x00 0x00int32_t x = 0;

// e.g. 0x7ffd39809084
1 byte

8 bytes

0x00 0x00 0x7f 0xfd 0x39 0x80 0x90 0x84

Dereference a pointer

21

*

int32_t* px;

px = &x;

memory
…

…

0x00 0x00 0x00 0x00int32_t x = 0;

0x00 0x00 0x7f 0xfd 0x39 0x80 0x90 0x84

*px = 3;

0x03

22

memory
…

…

0x00 0x00 0x00 0x00

1 byte

4 bytes

int32_t x = 0;

Can I use a
different name for

object x?

Reference&

int32_t& ref_x = x;

Reference

23

memory
…

…

0x00 0x00 0x00 0x00

1 byte

4 bytes

int32_t x = 0;

&
an alias to an existing variable

int32_t& ref_x = x;

Reference

24

memory
…

…

0x00 0x00 0x00

1 byte

4 bytes

int32_t x = 0;

&
an alias to an existing variable

int32_t& ref_x = x;

ref_x = 3;

0x000x03

Reference

25

• Cannot be NULL

• Must be initialized at time of creation

int32_t x = 0;

int32_t& ref_x;

ref_x = x;

Compile error!

an alias to an existing variable

int32_t x = 0;

int32_t& ref_x = x;

&

Reference

26

int x = 0;

int y = 8;

int& ref = x;

ref = y;

ref = 3;
Now, what is x?

What is y?

https://pollev.com/cs4414c552
Demo

&

https://pollev.com/cs4414c552

Reference

27

A reference is an alias(alternative name) to an existing variable

• Permanently bound to a single storage location, and cannot later

be rebound

int x = 0;
int y = 8;
int& ref = x;
ref = y;

&

// initialize ref to reference variable x

// assign the value in y to ref

Some easily confused notations

29

int a = 3;

int* b = &a;

int& c = a;

int d = *b;

In an expression,
prefix with

* = “contents of”

& = “address of”

In a declaration,
prefix with

* = “pointer to”

& = “reference to”

Which program will error?

30

Option A:

int main() {
 int a = 3;
 int* p = &a;
 *p = 7;
 return 0;

}

Option B:

int main() {
 int* p;
 *p = 7;
 return 0;

}

Option C:

int main() {
 int* p = malloc(sizeof(int));
 *p = 7;

 free (p);
 return 0;

}

31

Option A:

int main() {
 int a = 3;

 //pointer to a
 int* p = &a;

 //assign contents of p (= 7)
 *p = 7;
 return 0;

}

Option B:

int main() {
 int* p;

 *p = 7;
 return 0;

}

// dereferencing an
invalid address ->
undefined behavior
(often segfault)

Option C:

int main() {
 // allocate space for one int on the

heap

 int* p = malloc(sizeof(int));
 // store 7 into that int

 *p = 7;
 // free memory

 free (p);
 return 0;

}

Which program will error?

What is C++?

32

A federation of related languages, with four primary sublanguages

• C: C++ is based on C, while offering approaches superior to C. Blocks,

statements, processor, built-in data types, arrays, pointers, etc., all come

from C

• STL(standard template library): a special template library with conventions

regarding containers, iterators, algorithms, and function objects

• Object-Oriented C++: “C with Classes”, classes including constructor,

destructors, inheritance, virtual functions, etc.

• Template C++: generic programming language. Gives a template, define

rules and pattern of computation, to be used across different classed.

Helloworld.cpp example

33

#include <iostream>

int main() {
 std::cout << "Hello world!" << std::endl;
 return 0;
}

demo

Program starting point
Every C++ program must have
exactly one main() function.

Helloworld.cpp example

34

Instruct the compiler to include
the declaration of the standard
stream I/O facilities in iostream

#include <iostream>

int main() {
 std::cout << "Hello world!" << std::endl;
 return 0;
}

Helloworld.cpp example

35

#include <iostream>

int main() {
 std::cout << "Hello world!" << std::endl;
 return 0;
}

Operator << , writes its second argument to its first.
(write “Hello world” to

the standard output stream std::cout)

std:: (standard library)
specifies that the name cout to be found

in the standard library namespace

36

C++ Containers

C-style fixed-size Array

37

• Arrays must be declared by type and size

• The size must be fixed at compile-time

• Stores elements contiguously (in continuous memory locations)

• Elements are accessed starting with position 0 (0-based indexing)

• O(1) access given the index of the element

C-style fixed-size Array

38

int32_t arr[5];

memory
…

…

4 byte

20 bytes

• Contiguously allocated sequence of objects with the same type

• The array size never changes during the array lifetime.

Array type Array size

variable name

C-style fixed-size array -- Initialization

39

int32_t arr[5]={1,2,3,4,5};

int32_t arr[]={1,2,3,4,5};

// declares int[5] initialized to {1,2,3,4,5};

// compiler could deduce the size of array is 5,
and initialized to {1,2,3,4,5};

C-style fixed-size array -- Indexing

40

int32_t arr[5];
arr[0] = 1;
arr[1] = 2;
arr[2] = 3;
arr[3] = 4;
arr[4] = 5;

memory
…

…

4 byte

20 bytes

1 2 3 4 51

C-style array pointer conversion and arithmetic

42

memory

…

…

4 byte

20 bytes

1 2 3 4 5for (int i=0; i<5; i++){
 std::cout << *ptr << “,”;

 ptr++;
}

int32_t arr[5]={1,2,3,4,5};

int32_t* ptr = arr;

// uint32_t pointer incremented by its
type size

ptr// ptr points to the address of arr[0]

arr

C-style array pointer arithmetic

43

memory

…

…

4 byte

20 bytes

1 2 3 4 51*(ptr + 2) = 10;

int32_t arr[5]={1,2,3,4,5};

int32_t* ptr = arr;

10arr

ptr

C++ Container

45

Standard Template Library

• Collection of classes and functions for general purpose use

• Provides container types (list, vector, map, …), pair, tuple, string,

thread and many other functionalities

• Available in the std namespace

C++ Container

46

• A Container is an object used to store other objects and take

care of the management of the memory of the objects it

contains.

• Containers include many commonly used structure:

• std::array,

• std::vector,

• std::queues,

• std::map,

• std::set,

• …

C-style array (fixed-size array)

47

• C-style array is a block of memory that can be interpreted as an array

int a[10];
// declare a as an array object that consist of 10 contiguous allocated objects of type int

int a[3] = {1 , 3, 6} ;
// assignment of objects in array

1 3 6a

std::array<T, N> ---a container that holds fixed size arrays

48

• Has the same semantics as a C-style array, but implemented by standard

template library

• To use this container, include it at the beginning of the file

 #include <array>

• T and N are template parameters: T is the type of the array, and N

defines the number of elements

• E.g., std::array<char, 10>, std::array<int, 3>

std::array<T, N> ---a container that holds fixed size arrays

49

• Has the same semantics as a C-style array, but implemented by standard

template library

• To use this container, include it at the beginning of the file

 #include <array>

• T and N are template parameters: T is the type of the array, and N

defines the number of elements

• E.g., std::array<char, 10>, std::array<int, 3>

Why use std::array
offered by C++

Standard Template
Library(std)?

50

• C-style array

• No bound check when accessing element using operator[]

• Undefined result if access a[20] if a is an array with size 3

• Array-to-pointer decay

• E.g., When pass a C-style array as a value to a function it decays to

a pointer of the first element in the array, losing the size information.

C-style array vs. std::array<T, N>

51

• C-style array characteristics

• No bound check when accessing element using operator[]

• Array-to-pointer decay

C-style array vs. std::array<T, N>

void print_array(int arr[]){

 size_t arr_size = sizeof(arr) / sizeof(int);

 for(int i = 0; i < arr_size; ++ i){

 std::cout << arr[i] << std::endl;

 }

}

void print_array(int * arr){

 size_t arr_size = sizeof(arr) / sizeof(int);

 for(int i = 0; i < arr_size; ++ i){

 std::cout << arr[i] << std::endl;

 }

}

https://cppinsights.io

https://cppinsights.io/

C-style array vs. std::array<T, N>

52

Std::array<T> has more functions of standard container, makes it easier to use

• size() : get the size of the array

• at() / operator [] : access specified element with bounds checking

• Use iterator to access container elements

• More functionalities: https://en.cppreference.com/w/cpp/container/array

std::array<int, 3> a = {1, 2, 3};

std::cout << a.size() << std::endl;

std::cout << a.at(2) << std::endl;

for(auto it = a.begin(); it < a.end(); ++it)
{….}

https://en.cppreference.com/w/cpp/container/array

std::vector<T>

53

• T is a template parameter

• Std::vector<int> is a vector of integers, std::vector<char> is a vector of

characters

• Same as std::array, T can be a class or other C++ container

• E.g., std::vector<Rectangle>,

 std::vector<std::map<int, std::string>>…

std::vector<T>

54

• T is a template parameter

• Std::vector<int> is a vector of integers, std::vector<char> is a vector of

characters

• Same as std::array, T can be a class or other C++ container

• E.g., std::vector<Rectangle>,

 std::vector<std::map<int, std::string>>…

Why do I want to use
std::vector<T> ?

std::vector<T> - A dynamicly-sized array

55

• Main problem: How to support adding elements efficiently?

• Concept of size vs. capacity

std::vector<T> - under the hood memory structure

56

Stack

Stack

Heap

data

Code(Text)

foo()

std::vector<int>
vect

foo()

 ……
int 1

int 3

int 2
capacity

main()void foo(){

 std::vector<int> vect= {1,2,3};

}

int main(){

 foo();

 …….

}

This slide is for curiosity only, not going to be on exam.

…

size

std::vector<T> - under the hood memory structure

57

Stack

Stack

Heap

data

Code(Text)

foo()

std::vector<int>
vect

foo()

 ……
int 1

int 3

int 2

main()void foo(){

 std::vector<int> vect= {1,2,3};

}

int main(){

 foo();

 …….

}

This slide is for curiosity only, not going to be on exam.

…

std::vector<T> - A dynamic-sized array

58

• Main problem: How to support adding elements efficiently?

• Concept of size vs. capacity

• Reallocates elements when capacity is exceeded

std::vector<T> - functionalities

59

• Element access: operator [], at, front, back, data

• Iterators: begin, end, rbegin, rend

• Capacity: size, capacity, reserve

• Modifiers: emplace, push_back, erase, resize

https://en.cppreference.com/w/cpp/container/vector

demo

https://en.cppreference.com/w/cpp/container/vector

60

Building reliable and efficient systems

61

System programming in the era of LLMs

https://karpathy.ai

https://karpathy.ai/

62

Ways you can use LLMs

• As Learning Tools

• Reinforce course concepts through continuous querying

• Ask for examples and verify by running them

• Use tools like ChatGPT's study mode

63

Ways you can use LLMs

• To Understand the Codebase

• Trace the call stack and function dependencies

• Use tools like Cursor to navigate and analyze large

codebases

Why are we
taking 4414 now

that we have?

One needs fundamental system
knowledge to use, understand and
generate reliable code with LLM

64

Ways you can use LLMs

• Acting as a Project Manager to the LLM

• Clearly provide context about the problem

• Ask precise, well-scoped questions

• Apply knowledge learnt in class to query LLM

• Check every line, verify its output

• Generating smaller blocks of code at a time and making sure you

understand it is better than generating an entire file or program

65

Example. Writing efficient code

Example. DNA Phylogenetic Tree
by Jeffrey Qian. (The top1 winning solution on leaderboard in 2024 Fall)

66

Example. Score computation

The right is a very naive implementation of

the logic. One that generative AI might give
you from a good starter prompt.

67

What’s wrong with it? Let’s ask claude

•Claude says the if-else chain causes branch predictions and proposes:
• Direct mappings from character to array index
• Switches statements

• Using a hashmap

•This is where good fundamentals comes in → direct mappings is the fastest
• Switch statements: to avoid branching costs, switch statements usually will “hash” the input and use that value

as an index into a jump table source. However, if the compiler is smart enough, it would perform similar

optimizations with if-else statements.
• Hashmaps are expected O(1) but the hash algorithm on characters is probably more expensive than a direct

mapping.

Example. Score computation

https://stackoverflow.com/questions/2596320/how-does-switch-compile-in-visual-c-and-how-optimized-and-fast-is-it

68

What did claude miss? It’s missed simplest change!

• Should replace with const std::string& s1 or const std::string_view& s1

• We’re not mutating the string inside the function, so there’s no reason to pass by copy

• Can either pass by reference, or use std::string_view which is a non-owning read only view into an

character buffer

• No reason to use one or the other in the assignment, but in practice, experience tells me to use

std::string_view because it avoids a heap allocation in this case below. Again, know the

fundamentals really well

Jeffrey spotted Claude missed something…..

69

What did that simple change get us?

70

Let’s implement what Claude told us now

•Jeffrey made everything

compile time

•Used range based for

loops

•Pragma gcc unroll

71

Jeffrey’s winning solution

72

Situations to be careful when vibe coding

o Bloated files and codebases
o Always verify. Even though hallucinations have improved with each

passing model release, it isn't 100% reliable
▪ Even 99% accuracy over 100 code changes equals a 63% chance of a

mistake
▪ If you don't have the baseline knowledge to catch the mistakes, you

may ship faulty code

74

Situations to be careful when vibe coding

• https://www.lasso.security/blog/ai-package-hallucinations

In 3 months, this
hallucinated package
got over 30k authentic
downloads!

https://www.lasso.security/blog/ai-package-hallucinations
https://www.lasso.security/blog/ai-package-hallucinations
https://www.lasso.security/blog/ai-package-hallucinations
https://www.lasso.security/blog/ai-package-hallucinations
https://www.lasso.security/blog/ai-package-hallucinations
https://www.lasso.security/blog/ai-package-hallucinations

75

Rules

• If your assignment submissions include code that
was entirely generated by AI, you must disclose
this, and you will receive a maximum of a 70/100

• You are allowed to use AI as a learning tool

76

Advice

• If you choose to use LLMs to assist you in the
HWs, make sure that you do so in such a way
where you are still learning the material
thoroughly

• By the end of this class, you should feel confident
that you could go back and complete similar HWs
without AI

References

77

Vibe Coding

• How I use LLMs, Andrej Karpathy, https://www.youtube.com/watch?v=EWvNQjAaOHw

• Vibe Coding in prod by Claude, https://www.youtube.com/watch?v=fHWFF_pnqDk

C++

• A Tour of C++, Bjarne Stroustrup, 2nd edition

• Effective C++: 55 specific ways to improve your programs and designs, Scott Meyers, 3 rd edition

• Large Scale C++, Process and Architecture, John Lakos, Volume 1

• GDB documentation: https://www.sourceware.org/gdb/

• https://www.geeksforgeeks.org/gdb-step-by-step-introduction/

• GDB quickstart tutorial: https://web.eecs.umich.edu/~sugih/pointers/gdbQS.html

• How does gbd work? https://www.aosabook.org/en/gdb.html

https://www.youtube.com/watch?v=EWvNQjAaOHw
https://www.youtube.com/watch?v=fHWFF_pnqDk
https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://web.eecs.umich.edu/~sugih/pointers/gdbQS.html
https://www.aosabook.org/en/gdb.html

	Slide 1: CS4414 Recitation 1 Introduction and C++ basics
	Slide 2: About TA -- Alicia
	Slide 3: About TA -- Shouxu
	Slide 4
	Slide 5
	Slide 6: Overview
	Slide 8: Recitation objectives
	Slide 10
	Slide 11: What is C++?
	Slide 12
	Slide 13: Address
	Slide 14: Address
	Slide 15: Address
	Slide 16: Pointers
	Slide 17: Pointers
	Slide 18: Pointers
	Slide 19: Pointers
	Slide 20: Pointers
	Slide 21: Dereference a pointer
	Slide 22: Reference
	Slide 23: Reference
	Slide 24: Reference
	Slide 25: Reference
	Slide 26: Reference
	Slide 27: Reference
	Slide 29: Some easily confused notations
	Slide 30: Which program will error?
	Slide 31: Which program will error?
	Slide 32: What is C++?
	Slide 33: Helloworld.cpp example
	Slide 34: Helloworld.cpp example
	Slide 35: Helloworld.cpp example
	Slide 36
	Slide 37: C-style fixed-size Array
	Slide 38: C-style fixed-size Array
	Slide 39: C-style fixed-size array -- Initialization
	Slide 40: C-style fixed-size array -- Indexing
	Slide 42: C-style array pointer conversion and arithmetic
	Slide 43: C-style array pointer arithmetic
	Slide 45: C++ Container
	Slide 46: C++ Container
	Slide 47: C-style array (fixed-size array)
	Slide 48: std::array<T, N> ---a container that holds fixed size arrays
	Slide 49: std::array<T, N> ---a container that holds fixed size arrays
	Slide 50
	Slide 51
	Slide 52: C-style array vs. std::array<T, N>
	Slide 53: std::vector<T>
	Slide 54: std::vector<T>
	Slide 55: std::vector<T> - A dynamicly-sized array
	Slide 56: std::vector<T> - under the hood memory structure
	Slide 57: std::vector<T> - under the hood memory structure
	Slide 58: std::vector<T> - A dynamic-sized array
	Slide 59: std::vector<T> - functionalities
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 74
	Slide 75
	Slide 76
	Slide 77: References

