
SHARING DATA IN
MULTI-PROCESS APPLICATIONS

Professor Ken Birman
CS4414 Lecture 19

CORNELL CS4414 - SPRING 2023 1

IDEA MAP FOR TODAY

CORNELL CS4414 - SPRING 2023 2

Linux offers too many choices! They include pipes,
mapped files (shared memory), DLLs.

Linux weakness: the “single machine” look and feel.

Modern solutions of this kind often need to run on
clusters of computers or in the cloud, and need sharing

approaches that work whether processes
are local (same machine) or remote.

Complex Systems often have
many processes in them. They are not
always running on just one computer.

As a developer, you think of the cloud itself as a
kind of distributed operating system kernel, offering

tools that work from “anywhere”.

LARGE, COMPLEX SYSTEMS

Large systems often involve multiple processes that need to
share data for various reasons.

Components may be in different languages: Java, Python, C++,
O’CaML, etc…

Big applications are also broken into pieces for software
engineering reasons, for example if different teams collaborate

CORNELL CS4414 - SPRING 2023 3

MODERN SYSTEMS DISTINGUISH TWO CASES

Many modern systems use “standard libraries” to interface to
storage systems, or for other system services.

You think of the program as an independent agent, but it uses
the same library as other programs in the application.

Here, the focus is on how to build libraries that many languages
can access. C++ is a popular choice.

CORNELL CS4414 - SPRING 2023 4

LOCAL OPTIONS

These assume that the two (or more) programs live on the same
machine.

They might be coded in different languages, which also can
mean that data could be represented in memory in different
ways (especially for complicated objects or structures – but even
an integer might have different representations!)

CORNELL CS4414 - SPRING 2023 5

SINGLE ADDRESS SPACE, TWO
(OR MORE) LANGUAGES

Issue: They may not
use the same data
representations!

CORNELL CS4414 - SPRING 2023 6

EXAMPLE 1: JAVA NATIVE INTERFACE

The Java Native Interface (JNI) allows Java applications to talk
to libraries in languages like C or C++.

In effect, you build a Java “wrapper” for each library method.

JNI will load the C++ DLL at runtime and verify that it has the
methods you expected to find.

CORNELL CS4414 - SPRING 2023 7

JNI DATA TYPE CONVERSIONS

JNI has special accessor methods to access data in C++, and
then the wrapper can create Java objects that match.

For some basic data types, like int or float, no conversion is
needed. For complex ones, where conversion does occur, the
cost is similar to the cost of copying.

JNI is generally viewed as a high-performance option
CORNELL CS4414 - SPRING 2023 8

EXAMPLE 2: FORTRAN TO C++

Fortran is a very old language, and the early versions made
memory structs visible and very easy to access.

This is still true of modern Fortran: the language has evolved
enormously, but it remains easy to talk to “native” data types.

So Fortran to C++ is particularly effective.

CORNELL CS4414 - SPRING 2023 9

EXAMPLE 3: PYTHON TO C++ (TRICKY)

There are many Python implementations.

The most widely popular ones are coded in C and can easily
interface to C++. There are also versions coded in Java, etc.

But because Python is an interpreter, Python applications can’t
just call into C++ without a form of runtime reflection.

CORNELL CS4414 - SPRING 2023 10

HOW PYTHON FINESSES THIS

Python is often used control computations in “external” systems.

For example, we could write Python code to tell a C++ library to
load a tensor, multiply it by some matrix, invert the result, then
compute the eigenvalues of the inverted matrix…

The data could live entirely in C++, and never actually be moved
into the Python address space at all! Or it could even live in a GPU

CORNELL CS4414 - SPRING 2023 11

PYTHON INTEGERS

One example of why it isn’t so trivial to just share data is that Python
has its own way of representing strings and even integers

A Python integer will use native representations and arithmetic if the
integer is small. But Python automatically switches to a larger
number of bits as needed and even to a Bignum version.

So… if Python wants to send an integer to C++, we run into the risk
that a C++ integer just can’t hold the value!

CORNELL CS4414 - SPRING 2023 12

SOLUTION? USE “BINDINGS”

Boost.Python leverages this basic mechanism to let you call Python
from C++ or C++ from Python.
1) You need to create a plain C (not C++) “interface” layer.

These methods can only take native data types + pointers.
2) Compile it and create a DLL. In Python, load this DLL, then

import the interface methods.
4) Now you can call those plain C methods, if you follow

certain (well-documented) rules (like: no huge integers!). To
call an object instance method, you pass a pointer to the object
and then the arguments, as if “this” was a hidden extra argument.

CORNELL CS4414 - SPRING 2023 13

EXAMPLE 4: MICROSOFT DOTNET CLR

Microsoft has many supported languages, including C++ on
Ubuntu (just install WSL2 on your laptop)

But C# (a variant of Java) is probably the most popular.

It turns out that ALL of them can talk to C++ via something
called the dotnet common language runtime (dotnet CLR).

CORNELL CS4414 - SPRING 2023 14

ISSUE IS SIMILAR TO PYTHON, JAVA

As with those languages, you do need to decide if the memory
for objects will be hosted in dotnet or hosted in C++

For objects hosted in dotnet there are methods you call to
prevent garbage collection or compaction while your C++ is
active. For objects hosted in C++, the dotnet languages can use
“unsafe” memory pointers to access them

CORNELL CS4414 - SPRING 2023 15

SHARING WITH
DIFFERENT PROCESSES

Issue: They have
different address
spaces!

CORNELL CS4414 - SPRING 2023 16

SHARING BETWEEN DIFFERENT PROCESSES

Large multi-component systems that explicitly share objects from
process to process need tools to help them do this.

Unlike language-to-language, the processes won’t be linked together
into a single address space.

Because cloud computing is so popular, these tools often are designed
to work over a network, not just on a single NUMA computer.

CORNELL CS4414 - SPRING 2023 17

IF PROCESSES ARE ON A SINGLE (NUMA) MACHINE,
WE HAVE A FEW “OLD” SHARING OPTIONS:

1. Single address space, threads share memory directly.
2. Linux pipes. Assumes a “one-way” structure.
3. Shared files. Some programs could write data into files; others could

later read those files.
4. Mapped files. Same idea, but now the readers can instantly see the

data written by the (single) writer. Also useful as a way to skip past
the POSIX API, which requires copying (from the disk to the kernel,
then from the kernel into the user’s buffer).

CORNELL CS4414 - SPRING 2023 18

DIMENSIONS TO CONSIDER

Performance, simplicity, security. Some methods have very
different characteristics than others.

Ease of later porting the application to a different platform . Some
modern systems are built as a collection of processes on one
machine, but over time migrate to a cluster of computers.

Standardization. Whatever we pick, it should be widely used.

CORNELL CS4414 - SPRING 2023 19

LET’S LOOK AT SOME EXAMPLES

The C++ command runs a series of sub-programs:
1. The “C preprocessor”, to deal with #define, #if, #include
2. The template analysis and expansion stage
3. The compiler, which has a parsing stage, a compilation stage, and an

optimization stage.
4. The assembler
5. The linker
… they share data by creating files, which the next stage can read

CORNELL CS4414 - SPRING 2023 20

WHY DOES C++ USE FILE SHARING?

C++ was created as a multi-process solution for a single computer. In the
old days we didn’t have an mmap system call.

Also, since one process writes a file, and the next one reads it sequentially
and “soon”, after which it gets deleted, Linux is smart enough to keep the
whole file in cache and might never even put it on disk.

There are many such examples on Linux. Most, like C++, have a controlling
process that launches subprocesses, and most share files from stage to stage.

CORNELL CS4414 - SPRING 2023 21

MMAP OPTION

We learned about mmap when we first saw the POSIX file
system API. At one time people felt that mmap could become
the basis for shared objects in Linux.

Linux allocates a segment of memory for the mapped file.
Mmap returns the base address of this segment.

Idea: mmap a memory segment, then allocate objects in it.
CORNELL CS4414 - SPRING 2023 22

A MAPPED FILE IS LIKE A BIG BYTE ARRAY

This is sometimes very convenient. Only permits a single writer

If the data being shared is some form of raw information, like
pixels in a video display, or numbers in a matrix, it works well.

There is a way to create a mapped file with no actual disk
storage. This form of shared memory can be useful!

CORNELL CS4414 - SPRING 2023 23

MAPPED FILES

Many Wall Street trading firms have real-time ticker feeds of
prices for the stocks and bonds and derivatives they trade.

Often this is managed via a daemon that writes into a shared
file. The file holds the history of prices.

By mapping the head of the file, processes can track updates.
A library accesses the actual data and handles memory fencing.

CORNELL CS4414 - SPRING 2023 24

SHARED MEMORY: SHMEM

Many gaming platforms use a set of processes that share memory
directly, without pretending the data is in files.

The shrmem system calls avoid all “storage”, so no I/O occurs. They
end up with a pure mapped “segment”

The advantage is that the game engine can be a separate process
from the GUI.

CORNELL CS4414 - SPRING 2023 25

SHARED MEMORY VIA SHMEM, SHMAT

We also use shared memory to access video displays.
 The hardware for modern screens is quite fancy.
 But basically, there is a mapped memory segment your application

can access. It sends “commands” as a stream to a special CPU
running a special video language. It may also leverage a GPU.

 However, and this is important, there is no corresponding file on disk!
 The benefit of shared memory is that data rates are too high to

write this data into a file or send it over a pipe.

CORNELL CS4414 - SPRING 2023 26

SHARED MEMORY VIA SHMEM, SHMAT

More powerful than mmap: supports two-way sharing

But can be risky: if you don’t trust your peer, they could corrupt
the shared memory and cause your application to crash

Popular for extreme performance

CORNELL CS4414 - SPRING 2023 27

LINUX ITSELF USES MAPPED FILES

The DLL concept (“linking”) is based on a mapped file.

In that case the benefits are these:
 The file actually contains executable instructions. These must be in

memory for the CPU to decode and execute.
 But the DLL can be shared between multiple applications, saving

memory and improving L3 caching performance.

CORNELL CS4414 - SPRING 2023 28

SHARING WITH PROCESSES ON
DIFFERENT MACHINES

Issue: Now we need
to also deal with
the network

CORNELL CS4414 - SPRING 2023 29

NETWORKED SETTINGS REQUIRE DIFFERENT
APPROACHES
When we run in a networked environment, we need tools that
will work seamlessly even if the processes are on different
machines.

Mapped files or segments are single-machine solutions. Mmap
can be made to work over a network, but performance is
disappointing and this option is not common.

CORNELL CS4414 - SPRING 2023 30

CLOUD COMPUTING

In other courses, you’ll use modern cloud computing systems.

Those are like a large multicomputer kernel, with services that
programs can use no matter which machine they run on.

Cloud computing has begun to reshape the ways we develop
complex programs even on a single Linux machine.

CORNELL CS4414 - SPRING 2023 31

DIFFERENT MACHINES + INTERNET

1. We will learn about TCP soon… like a pipe, but between
machines. This extends the pipe option to the cloud case!

2. We could use a technique called “remote procedure call”
where one process can invoke a method in a remote on. We
will learn about this soon, too.

3. We could pretend that everything is a web service, and use
the same tools that web browsers are built from.

CORNELL CS4414 - SPRING 2023 32

AMAZON.COM

Prior to 2005, Amazon web pages were created by a single
server per page. But these servers were just not fast enough.

Famous study: 100ms delay reduces profits by nearly 10%

Today, a request is handled by a “first tier” server supported by
a collection of services (as many as 100 per page)

CORNELL CS4414 - SPRING 2023 33

AMAZON INVENTED CLOUD COMPUTING!

The Amazon services are used by browsers from all over the
world: a networked model.

And Amazon’s explicit goal was to leverage warehouses full of
computers (modern “cloud computing” data centers).

… So Amazon is a great example of a solution that needs to
use networking techniques.

CORNELL CS4414 - SPRING 2023 34

INSIDE THE CLOUD?

Users of cloud computing platforms like Amazon’s AWS, Microsoft’s
Azure, or Google Cloud don’t need to see the internals.

They see a file system that is available everywhere, as well as other
kernel services that look the same from every machine.

The individual machine runs Linux, yet these services make it very
easy to spread one application over multiple machines!

CORNELL CS4414 - SPRING 2023 35

AIR TRAFFIC CONTROL

Ken worked on the French ATC solution

This system has been continuously used since 1996. It runs on a
private cloud, but uses cloud-computing ideas.

ATC systems have many modules that cooperate. The “flight
plan” is the most important form of shared information.

CORNELL CS4414 - SPRING 2023 36

AIR TRAFFIC CONTROL SYSTEM

CORNELL CS4414 - SPRING 2023 37

. . .

Air traffic controllers
update flight plans

Flight plan manager tracks current and
past flight plan versions. Replicated

for ultra-high reliability.
Message bus

“Microservices” for various tasks, such as checking future
plane separations, scheduling landing times, predicting

weather issues, offering services to the airlines

WAN link to other ATC centers

Flight plan update
broadcast service

SOFTWARE ENGINEERING AT LARGE SCALE

Big modern applications are created by software teams

They define modular components, which could co-exist in one
address space or might be implemented by distinct programs

There is a science of software engineering that focuses on best
ways of collaborating on big tasks of this kind.

CORNELL CS4414 - SPRING 2023 38

SOFTWARE ENGINEERING AT LARGE SCALE

Each team needs a way to work independently and concurrently.

The teams agree on specifications for each component, then build,
debug and unit test their component solutions.

We often pre-agree on some of the unit tests: “release validation”
tests and “acceptance” tests. Integration occurs later when all the
elements seem to be working.

CORNELL CS4414 - SPRING 2023 39

SHOULD WE SHARE OBJECTS… OR FILES?

If we agree that component A will do something, then produce a
file that becomes input to component B, and we agree on the file
format and contents, the teams can already start work.

The A and B “interfacing” team would jointly construct some
hand-crafted instances of the files A might output. Both teams
check their solutions against these files.

CORNELL CS4414 - SPRING 2023 40

FILES WORK IN ALL SETTINGS

Up to now we have always used the “local” file system on our
Linux machines.

But Linux can also access a “remote” file system, and these can
be shared by many machines.

So sharing via files works at any scale.

CORNELL CS4414 - SPRING 2023 41

ADVANTAGES OF FILES

The B component team can run their solution again and again
with the identical inputs.

This facilitates debugging and is a valuable form of unit test.

If the test files are complete, most of the B functionality gets
checked.

CORNELL CS4414 - SPRING 2023 42

DISADVANTAGES OF FILES

Files need to be read block by block.

Perhaps A works with “objects” and B is expected to treat them
as objects. Yet the file will only contain bytes: the object format
and layout is lost.

The file blocks might not correspond to any form of data chunks

CORNELL CS4414 - SPRING 2023 43

MORE DISADVANTAGES

In Linux, temporary files are very common and can be inefficient:
 Editors write the whole new version of your file to disk, sync

the file (to be sure it is actually on the disk), then use a file
rename operation to “atomically” replace the old version.

 C++ stages use files to pass intermediary information
 Many applications have lock files, used very briefly.

Issue: The file “lifetime” might be just a few milliseconds!

CORNELL CS4414 - SPRING 2023 44

MORE DISADVANTAGES

In Linux, temporary files are very common and can be inefficient:
 Editors write the whole new version of your file to disk, sync

the file (to be sure it is actually on the disk), then use a file
rename operation to “atomically” replace the old version.

 C++ stages use files to pass intermediary information
 Many applications have lock files, used very briefly.

Issue: The file “lifetime” might be just a few milliseconds!

CORNELL CS4414 - SPRING 2023 45

This issue was noticed by researchers about 15 years ago.

Linux was modified to not actually write the data out, if permitted, and also
to cache entire recently-written files in the kernel disk buffer, just in case it will be
read immediately after creation.

But some applications like databases and the editor actually need to be sure the
temporary file was written to disk – this is called “write-ahead logging” or “write-
ahead file storage” and provides crash-tolerance guarantees. Those can’t avoid
the overheads of the disk I/O

MULTI-LINGUAL ISSUE

Modularity permis us to use different languages for different tasks.
For example, a great deal of existing ATC code is in Fortran 77.

Byte arrays (or text files, character strings) are a least common
denominator. Every language has a way to easily access them.

Modern systems have converged around the idea that this matches
best with some form of “message passing”.

CORNELL CS4414 - SPRING 2023 46

SERIALIZATION/DESERIALIZATION

Converting an object to a byte array serializes the object. Later
we deserialize to recreate the object.

A serialized object can be stored in a file, or we can use a
“message passing” technology to send them from process to
process over a network.

CORNELL CS4414 - SPRING 2023 47

FEATURES OF SERIALIZATION TECHNOLOGIES

Some have notions of software version numbers. These allow you
to ensure that software is properly patched and upgraded.

It is unwise to pass an object from version 2.0 of some
component to version 1.0 of the next component. This mix might
never have been tested!

CORNELL CS4414 - SPRING 2023 48

FULLY ANNOTATED OBJECTS?

In addition to version numbering, it is important to document the
data types in use, sizes of arrays, requirements or assumptions
that methods are making, limits on sizes of things, permissions
required, etc.

It is easy to “serialize” an object into a byte-array format
containing pure data. But there is very little agreement on how
these annotation should look.

CORNELL CS4414 - SPRING 2023 49

DATA REPRESENTATIONS AND PADDING

An additional issue is that computers and languages can use
different representations.

For example, even on a single machine, some languages end
character strings with a null byte (0). Others track the string length.

And if data is shared between machines, different computer vendors
often use CPU chips that represent numbers in different ways!

CORNELL CS4414 - SPRING 2023 50

DATA REPRESENTATION ISSUES

Each language represents objects in its own way.

For example, in Python every integer can have unlimited
numbers of digits.

In C++, the various int types match hardware word sizes: 8, 16,
32, 64 and 128 bits. So there are Python integers that can’t fit
into any C++ data type, unless you use a Bignum package.

CORNELL CS4414 - SPRING 2023 51

MULTI-LINGUAL APPLICATIONS

But shared segments are not popular for applications like the air
traffic control system.

That sort of system often has components in C++, components in
Java or Python, components in Fortran

How are objects like “flight plans” shared in such systems?

CORNELL CS4414 - SPRING 2023 52

NETWORKING STANDARDS AND FLEXIBILITY

If we think about Linux pipes, they are extremely simple and
flexible. The main cost is simply that the data itself is a byte
stream.

Developers began to question all of these shared memory ideas
and complexities. Are they worth all the trouble?

CORNELL CS4414 - SPRING 2023 53

THREE EXAMPLES OF STANDARDS

CORBA: A standard architecture for sharing objects between
programs or components from many languages or developers.

Google RPC (GRPC): A faster way for a client program to invoke a
method in a server, perhaps over the Internet. We’ll discuss this soon.

Web services: An approach in which web pages in HTML are used to
share information between programs. Widely available but slow.

CORNELL CS4414 - SPRING 2023 54

ROLE OF A STANDARD

Like POSIX, a standard specifies rules that vendors agree to
respect, in their mutual interest.

Standards for object sharing allow different companies to build
solutions that interoperate.

CORBA is the most widely used standard for encoding objects
and later decoding them. In between, we have a byte array.

CORNELL CS4414 - SPRING 2023 55

COST ANALYSIS EXAMPLE: AIR TRAFFIC
FLIGHT PLAN IN THE ATC SYSTEM WE SAW
In memory, a flight plan is generally no more than 125k bytes.

With CORBA encoding, this grows to between 1MB and 10MB
 All numbers are “printed out”, usually in base 10
 CORBA includes details on the way the data types were declared,

version information, etc.

Effect? In some ATC settings, the system spends more time encoding and
decoding flight plans than controlling aircraft!

CORNELL CS4414 - SPRING 2023 56

WHERE ARE OBJECTS MOVED OR SHARED?

CORNELL CS4414 - SPRING 2023 57

. . .

Air traffic controllers
update flight plans

Flight plan manager
tracks current and past

flight plan versions
Message bus

Microservices for various tasks, such as checking future
plane separations, scheduling landing times, predicting

weather issues, offering services to the airlines

WAN link to other ATC centers

Flight plan update
broadcast service

WHERE ARE OBJECTS MOVED OR SHARED?

CORNELL CS4414 - SPRING 2023 58

. . .

Air traffic controllers
update flight plans

Flight plan manager
tracks current and past

flight plan versions
Message bus

Microservices for various tasks, such as checking future
plane separations, scheduling landing times, predicting

weather issues, offering services to the airlines

WAN link to other ATC centers

Flight plan update
broadcast service

WHERE ARE OBJECTS MOVED OR SHARED?

CORNELL CS4414 - SPRING 2023 59

. . .

Air traffic controllers
update flight plans

Flight plan manager
tracks current and past

flight plan versions
Message bus

Microservices for various tasks, such as checking future
plane separations, scheduling landing times, predicting

weather issues, offering services to the airlines

WAN link to other ATC centers

Flight plan update
broadcast service

WHEN DO WE SERIALIZE/DESERIALIZE?

Each time an object is read or written (from disk or network)

Each time an object is passed from one module to another

CORNELL CS4414 - SPRING 2023 60

Time →

ATC
controller

Version
Mgr

Message
Bus

ATC rules
checker . . .

Points at which we might do
serialization/deserializationO

ve
rh

ea
d
→

COST IMPLICATIONS

Potentially, a major source of overhead!

Often, it is best to store a complex serialized object in a file,
and then just pass the file name from place to place. Then the
CORBA object just has a few bytes in it (very cheap).

In a complex application where the actual fields in the object
aren’t needed by many modules, this reduces costs dramatically!

CORNELL CS4414 - SPRING 2023 61

WHY WOULD A MODULE NOT LOOK AT THE
DATA?
In the air traffic example, some modules just look at a few fields.

The WAN module is responsible for sharing updates with other air
traffic control centers. It doesn’t need to actually see the details.

… in fact, several modules simply move objects from process to process.

… all of these would be happy with just sharing the object name.

CORNELL CS4414 - SPRING 2023 62

OLD APPROACH

Each time an object is read or written (from disk or network)

Each time an object is passed from one module to another

CORNELL CS4414 - SPRING 2023 63

Time →

ATC
controller

Version
Mgr

Message
Bus

ATC rules
checker . . .

Points at which we might do
serialization/deserializationO

ve
rh

ea
d
→ Wasted work!

SHARING OBJECT NAMES, ONLY FETCH THE
DATA IF THE MODULE REALLY REQUIRES IT
We only do a costly action when the module will actually touch
the inner data fields!

CORNELL CS4414 - SPRING 2023 64

Time →

ATC
controller

Version
Mgr

Message
Bus

ATC rules
checker . . .

Dual scheme reduces overheads!

A A B B B B B B B B B A B B B

O
ve

rh
ea

d
→

Here we fetch the full data for the flight
plan from the flight plan database

SUMMARY

Modular design creates a need for processes to share data.

In a single Linux system, pipes and file sharing are by far the
most common models. But there are some important uses of
shared memory.

The options are easy to use, but we need to be very aware of
overheads and costs!

CORNELL CS4414 - SPRING 2023 65

	Sharing Data in �Multi-Process Applications
	Idea Map For Today
	Large, complex systems
	Modern systems distinguish two cases
	Local options
	Single Address space, two (or more) languages
	Example 1: Java Native Interface
	JNI data type conversions
	Example 2: Fortran to C++
	Example 3: Python to C++ (tricky)
	How Python finesses this
	Python integers
	Solution? Use “bindings”
	Example 4: Microsoft dotnet CLR
	Issue is similar to Python, Java
	Sharing with �different processes
	Sharing between different processes
	If processes are on a Single (NUMA) machine, we have a few “old” sharing options:
	Dimensions to consider
	Let’s look at some examples
	Why does C++ use file sharing?
	mmap option
	A mapped file is like a big byte array
	mapped files
	Shared memory: shmem
	Shared Memory via shmem, shmat
	Shared Memory via shmem, shmat
	Linux itself uses mapped files
	Sharing with processes on �different machines
	Networked settings require different approaches
	Cloud computing
	Different machines + Internet
	Amazon.com
	Amazon invented cloud computing!
	Inside the cloud?
	Air Traffic control
	Air traffic Control System
	Software engineering at large scale
	Software engineering at large scale
	Should we share objects… or files?
	Files work in all settings
	Advantages of files
	Disadvantages of files
	More disadvantages
	More disadvantages
	Multi-lingual issue
	Serialization/Deserialization
	Features of serialization technologies
	Fully annotated objects?
	Data representations and padding
	Data representation issues
	Multi-lingual applications
	Networking standards and flexibility
	Three examples of standards
	Role of a standard
	Cost analysis example: Air Traffic Flight plan in the ATC system we saw
	Where are objects moved or shared?
	Where are objects moved or shared?
	Where are objects moved or shared?
	When do we serialize/Deserialize?
	Cost implications
	Why would a module not look at the data?
	Old approach
	Sharing object names, only fetch the data if the module really requires it
	Summary

