
PERFORMANCE: BIG PICTURE Professor Ken Birman
CS4414 Lecture 11

CORNELL CS4414 - SPRING 2023 1

IDEA MAP FOR TODAY

CORNELL CS4414 - SPRING 2023 2

With so much to keep in mind, how can we
possibly understand performance?

Today will be a “big picture” lecture talking
about the challenge of visualizing all those

different elements

YOUR JOB? BE A DETECTIVE!

You suspect that your program isn’t the fastest it could be.

You need to be the sleuth and track down the bottleneck!

 This centers on developing a mental image of your code
as it executes

 You’ll need to have a theory of how fast it “could be”, than
search for evidence that something is slowing it down

CORNELL CS4414 - SPRING 2023 3

Nancy Drew

A GOOD DETECTIVE HAS AN OPEN MIND

You do need a mental image… but your theory could be wrong.

Sometimes the most obvious “issue” isn’t the root cause – it may be a
symptom of the real cause, but “downstream” from it.

 Example: your code isn’t scanning files quickly. Is it the algorithm?

 Perhaps, the issue isn’t the scanning logic itself. Maybe something
else is causing this slowdown, and the scanner is just “waiting”

CORNELL CS4414 - SPRING 2023 4

DEFINITION: CRITICAL PATH

A critical path is the longest end-to-end sequence of sequentially
dependent activities in an application.

This example shows 11 subtasks in some program (node numbers)
each annotated by the expected delay.

The application has parallelism,
yet the steps shown in red
determine the critical path

CORNELL CS4414 - SPRING 2023 5

GOOD PERFORMANCE VERSUS BUSY WORK

One huge challenge for performance tuning is that a busy
machine often isn’t an optimized machine!

We can be busy for a good reason, like training a machine-
learning model

But often a busy computer is “thrashing” – doing work pointlessly

CORNELL CS4414 - SPRING 2023 6

IDEAL VERSUS REALITY…

Ideally, we want all the “moving parts” seamlessly interacting to
provide a smooth, efficient workflow

In practice we often find that most parts of the system are
bottlenecked behind some very busy but ineffective component

CORNELL CS4414 - SPRING 2023 7

PREMATURE… OPTIMIZATION

It can be very tempting to rush to optimize some part of your
program where you’ve just come up with an idea to speed it up

Recall the “drive to Niagara Falls” example from Lecture 3 –
sure, a fast car can go faster, but if this means that you catch up
to the next bottleneck sooner, you don’t really arrive any earlier!

CORNELL CS4414 - SPRING 2023 8

BIG PICTURE PROCESS

It is important to approach a systems programming challenge by
really visualizing the whole task – all aspects of the solution

This includes the tasks that the operating system or network will
be responsible for, and perhaps even things that other services
are providing (in larger settings your programs often talk to
services that run on other machines or in the cloud)

CORNELL CS4414 - SPRING 2023 9

DOMAIN CROSSINGS CAN BE COSTLY

A domain crossing occurs when we move data from the storage
device to the Linux kernel or from kernel to user memory

They also occur when the user process issues a system call,
requesting that Linux do something (like open a file, read data)

And they even occur if threads share a resource and must take
turns accessing it (we’ll talk about this case a lot in future classes)

CORNELL CS4414 - SPRING 2023 10

MODERN SYSTEMS HIDE THESE COSTS

Your code can access data without considering costs, and Linux
will conceal the overheads

But this means that the same logic might be faster or slower
depending on factors you aren’t controlling.

Gaining control involves intentionally designing code to ensure
that data will be in the most efficient place at the right time

CORNELL CS4414 - SPRING 2023 11

TOOLS OF THE TRADE

When you approach a performance question, pause and think
about this big picture, and try to visualize all aspects

 Is your program reading files? How many? How big?

 Overall, are you working with a really large amount of
data, like gigabytes, or smaller things?

 How fast is the hardware you’ll run on?

 Complexity of the algorithms you’ll be using.

CORNELL CS4414 - SPRING 2023 12

ISOLATION TESTING

Used to study some component of your application. You create a
dedicated specialized test to measure its speed or hunt for bugs.

You often can do this by “breaking” your application – with some
special argument, main just calls the test logic, then exits.

This allows you to understand the speed of that element and to tune
it, without worrying about the rest of your program.

CORNELL CS4414 - SPRING 2023 13

HOW FAST “SHOULD” YOUR CODE BE?

With a whiteboarding process you can often arrive at very
crude estimates – rough but still very useful!

 Time needed to do the file I/O

 Computational time per “data item”, and “how many items”?

 Will there be a great deal of copying needed?

 What aspects look very sequential to you?

CORNELL CS4414 - SPRING 2023 14

HIERARCHY OF DELAY

Think of each part of your application in terms of

 Bandwidth: How fast data can be moved through it.

 Latency: How long it takes.

Keep in mind that the disk and Linux and the network are all
parts of your application even if you didn’t code those

CORNELL CS4414 - SPRING 2023 15

A BUSY THING CAUSES DELAY. BUT SO DOES
AN IDLE THING!
We tend to think that delay is always caused by heavy loads

This is sometimes true. If you put a storage device under heavy
load, it bogs down. But this might not consume CPU time.

But often, being “overloaded” shows up as “100% idle”. That
component is spending all its time waiting, not computing.

CORNELL CS4414 - SPRING 2023 16

CPU IS NOT ALWAYS THE ISSUE!

Sometimes we see components that are waiting for other things.

Each type of device has a minimal delay. This can grow if a
backlog occurs due to overload.

 Reading from a storage device? Normally < 1 ms

 Reading over a network? Similar, but also depends on
…. Where the service resides
…. How you talk to it

CORNELL CS4414 - SPRING 2023 17

NETWORK TYPES

The fastest networks are used in high speed clusters or data
centers. Some use hardware accelerators called RDMA (remote
DMA transfer over the network – ultra high bandwidth)

TCP/IP is fast in a cluster or inside a data center, but can be
much slower with a wide-area link.

Terms: LAN means “local area network”. WAN: “wide area”.
CORNELL CS4414 - SPRING 2023 18

LOCKING DELAYS

Later in the course we will be focused on multithreaded code.

In that sort of program, we use “locking” to prevent threads
from interfering with one-another and breaking the logic.

Waiting for a lock could be a cause of delay in such cases…
and threads with locking are very common these days!

CORNELL CS4414 - SPRING 2023 19

X

A B

Holds lock on X,
does updates

Needs lock on X,
must wait

PIPELINING

A huge tool is the idea of creating a steady flow via a pipeline

We say that we have a pipeline if there is some “sender” and
some “receiver”, and they can both run simultaneously

Like a bucket brigade, a pipeline buffers some data
(a cost), freeing sender and receiver to run in parallel

CORNELL CS4414 - SPRING 2023 20

PIPELINES HIDE DELAY!

They let us request something “long before” we need it. A
producer task can run faster than the consumer task.

If the data shows up when we aren’t yet ready to process it, that
data just waits in the pipeline

CORNELL CS4414 - SPRING 2023 21

YOU SHOULDN’T LET PIPELINES GET “TOO
DEEP”
If a pipeline is holding huge amounts of data, or huge amounts
of some other resources, costs accumulate
 That memory could have been useful elsewhere
 Linux limits how many files can be open all at once
 Data might even become stale, if the underlying files change

Use your analysis to select a smart pipeline size – “depth”

CORNELL CS4414 - SPRING 2023 22

OFTEN WE HAVE ADEQUATE MEMORY AND
PROCESSORS TO SHIFT LOGIC THIS WAY
A pipeline is just one way to use memory to speed things up. A
machine has many resources… what is the best use for that space?

CORNELL CS4414 - SPRING 2023 23

Storage
device

Linux
Kernel

Buffer pool

File blocks

User process with multiple threads

NUMA effects matter here!

OUR APPLICATION DESIGN SHAPES
PERFORMANCE
It does so explicitly when we launch multiple threads, or decide
to have each thread use its own std::map to avoid locking and
improve data locality.

It also does so implicitly, when our code includes hints that can
lead the C++ compiler to discover the best compilation strategy,
or behaves in a way that helps Linux prefetch file blocks.

CORNELL CS4414 - SPRING 2023 24

EXAMPLES OF COMPILATION HINTS

 C++ will optimize inner loops with integer loop variables and
simple termination conditions, putting loop variables in registers

 The compiler will put pointers into registers in “tight loops”

 Values reused close to one-another will be held in registers

 Methods with modest numbers of “native type” arguments
will be called using registers to pass the parameters

CORNELL CS4414 - SPRING 2023 25

WRITE YOUR CODE AS IF YOU WERE
DESCRIBING THE DESIRED MACHINE CODE
The cleaner the mapping to efficient machine code, the easier it
will be for C++ to discover your intent and generate great code

In contrast, very complex logic may be harder for it to optimize

This matters for performance-critical code, but not for “general”
logic. When tuning a critical path component, aim for simple,
ultra-efficient C++ code that the compiler can easily optimize

CORNELL CS4414 - SPRING 2023 26

WRITE YOUR CODE AS IF YOU WERE
DESCRIBING THE DESIRED MACHINE CODE
Compilers do best with loops that have “simple” termination
conditions, not complicated expressions that call functions.

They are very good at sequentially scanning data structures or
arrays in memory.

Any form of straightline code will compile well.

CORNELL CS4414 - SPRING 2023 27

AVOID CODING CHOICES THAT CAN
OBSTRUCT COMPILER ANALYSIS
Loop conditions that involve lots of function calls to functions that
can’t be “pre-evaluated” at compile time.

Lots of inline if statements with unpredictable test conditions

Complicated array indexing with expressions that can only be
evaluated “at runtime”

CORNELL CS4414 - SPRING 2023 28

REMEMBER THAT CLASSES AND TEMPLATES
ARE AUTOMATICALLY ELIMINATED!
C++ eliminates these at compile time, and once you understand how
it does this, you can “visualize” the resulting code.

It does end up with very long, messy, variable names. But names are
just compile time information and won’t change the machine code.

Once templates are eliminated, constant expression evaluation
eliminates most remaining overheads due to classes and generics!

CORNELL CS4414 - SPRING 2023 29

This is in contrast to Java or Python,
and one reason C++ performs so well!

THE CPU PLAYS A BIG ROLE, TOO!

After C++ maps your code to machine instructions we aren’t
even finished!

The CPU itself will look ahead at many instructions and try to
pre-load operands and might even reorder instructions! It also
predicts which way branches (ifs, loops) will go.

The rule is to “preserve the semantics, not the rigid ordering.”
CORNELL CS4414 - SPRING 2023 30

EVERYTHING IS PROGRAMMABLE. BUT NOT
ALWAYS DIRECTLY USING C++ CODE
We have many ways to “take control” of the operating system, or
the devices, or choices the compiler will make.

They are not always the identical mechanism. Our C++ code is our
way of talking to the compiler, and through it, ending up with
machine code matched to the hardware.

But the pattern of system calls we issue is our way of talking to Linux

CORNELL CS4414 - SPRING 2023 31

BUFFERED PRINTING

When a program is being debugged we often send output to
the console.

This is very helpful for debugging. (Useful features: ^Z to pause
the program, fg to restart it, ^S/^Q to pause/resume printing)

But for this to work, your program will do one I/O system call
either per line, or per character. (Default: per line)

CORNELL CS4414 - SPRING 2023 32

IMPROVING CRITICAL PATH PERFORMANCE

Often a program generating an output file turns out to have a
critical path in which the actual output operations are costly.

Core issue? Linux I/O system calls can be expensive and slow.
Writing one character or one line at a time “maximizes” this cost.

Remedy? Write into a buffer… configure it to output each time
4096 bytes accumulate.

CORNELL CS4414 - SPRING 2023 33

… WHY 4096 BYTES?

Linux is optimized for 4K I/O operations

So if you write 15 characters, then 7, then 24… this is slow! You are
doing multiple system calls when perhaps one would suffice

As a result, the streaming I/O library can buffer. It switches to 4K
mode if the output target is another program (via a pipe) or a file
(via I/O redirect). This improves efficiency dramatically!

CORNELL CS4414 - SPRING 2023 34

EVERYTHING HAS A PRICE…

The downside of 4K writes is that if a program dies (or
terminates) while buffering data that has not yet been written,
the last lines won’t be written out.

It becomes important for you to “flush” those last buffered lines

So here we see a form of active control, yet it isn’t purely in the
form of writing C++ code that takes control of something

CORNELL CS4414 - SPRING 2023 35

WHAT WAS THE PRICE?

You gained performance, but accepted that I/O will be buffered and
hence that your program might run for a while before each new write
occurs.

This creates a mental cost: if the program stops unexpectedly or
crashes, some I/O might not have been done. You need to be sure to
flush that I/O – and this is the cost of buffering.

“Simpler, but slower” versus “faster, but a little harder to understand”

CORNELL CS4414 - SPRING 2023 36

DON’T SWEAT THE SMALL STUFF

Start by trying to understand whether something is 10x slower
than it should be.

Finding the major bottlenecks, or the very inefficient pieces of a
solution, can pay off: fixing those first gives dramatic
improvements… After that, you can focus on smaller things

CORNELL CS4414 - SPRING 2023 37

ALGORITHMS (SOMETIMES) MATTER…

As a student you’ve learned a lot about algorithms

If the complexity genuinely reflects the costly resource, and we
are in a situation where asymptotic costs are the bottleneck,
picking the right algorithm is key.

But those two “ifs” are not minor points!

CORNELL CS4414 - SPRING 2023 38

EFFICIENT ALGORITHMS DON’T ALWAYS
FOCUS ON THE COSTLY RESOURCE
Many algorithms were created using standard metrics like
compute time for one thread, or space consumed

In a parallel setting with a lot of memory, we might be fine with
spending memory to save time – we saw examples earlier today.

And computing may actually be “cheap” too!

CORNELL CS4414 - SPRING 2023 39

WHAT WOULD BE A COSTLY RESOURCE OTHER
THAN MEMORY OR CPU TIME?
Think about disk access

If an algorithm is designed to focus on, say, balancing a tree for
constant depth, but the tree is on a disk, the tree nodes might not
really match one-to-one with 4K disk blocks.

The algorithm might do a lot of disk block reads and writes that the
complexity metric doesn’t count. Those I/Os are costly!

CORNELL CS4414 - SPRING 2023 40

… ALGORITHMS ARE CONCEPTUAL TOOLS

When we work with algorithms we are working in a very
conceptual way, highly abstracted from concrete resources. An
algorithm is a design pattern

Our challenge as systems builders – engineers – is to map our
understanding of the application into “relevant” algorithmic
questions where the metrics we optimize are the costly aspects
of the overall application pipeline.

CORNELL CS4414 - SPRING 2023 41

SUMMARY: BIG PICTURE

The big picture is central to performance-oriented systems
programming. Concurrency can hide pipeline delays.

We “gain control” over mechanisms in many ways – sometimes
with our direct C++ code, but sometimes by arranging our
program in clever ways, or by giving useful hints to the C++
compiler or Linux knowing they will make smart choices

CORNELL CS4414 - SPRING 2023 42

SUMMARY: BOTTLENECKS

Start by understanding bottlenecks and the critical path, and
visualizing the desired flow of your computation.

You won’t be able to improve performance unless you
understand goals, and understand where you started.

Random changes just make code messy, add bugs, and might not
help – we want to only make the right changes.

CORNELL CS4414 - SPRING 2023 43

SUMMARY: BOTTLENECKS

They really come in two forms

 Unavoidable work being done as efficiently as possible

 Accidental work (or delays, perhaps even idle time) arising
from some form of mismatch between our code and the system

Once you identify a bottleneck, you can often intervene to
improve exactly the slow step

CORNELL CS4414 - SPRING 2023 44

NEXT LECTURE: PERFORMANCE MONITORING

Linux is full of tools we can use to measure performance and
even understand overhead sources

These tools enable us to compare actual behavior of a program
with our conceptual expectations

We’ll see how they can let us find bottlenecks

CORNELL CS4414 - SPRING 2023 45

	Performance: Big Picture
	Idea Map For Today
	Your job? Be a detective!
	A good detective has an open mind
	Definition: Critical Path
	Good performance versus busy work
	Ideal versus reality…
	Premature… optimization
	Big Picture process
	Domain crossings can be costly
	Modern systems hide these costs
	Tools of the trade
	Isolation Testing
	How fast “should” your code be?
	Hierarchy of delay
	A busy thing causes delay. But so does an idle thing!
	CPU is not always the issue!
	Network types
	Locking delays
	Pipelining
	Pipelines hide delay!
	You shouldn’t let pipelines get “too deep”
	Often we have adequate memory and processors to shift logic this way
	Our application design shapes performance
	Examples of compilation hints
	Write your code as if you were describing the desired machine code
	Write your code as if you were describing the desired machine code
	Avoid coding choices that can obstruct compiler analysis
	Remember that classes and templates are automatically eliminated!
	The CPU plays a big role, too!
	Everything is programmable. But not always directly using C++ code
	Buffered Printing
	Improving critical path performance
	… why 4096 bytes?
	Everything Has a price…	
	What was the price?
	Don’t sweat the small stuff
	Algorithms (sometimes) matter…
	Efficient Algorithms don’t always focus on the costly resource
	What would be a costly resource other than memory or CPU time?
	… algorithms are conceptual tools
	Summary: Big Picture
	Summary: Bottlenecks
	Summary: Bottlenecks
	Next lecture: Performance monitoring

