
ABSTRACTING THE IDEA OF
HARDWARE (SIMD) PARALLELISM

Professor Ken Birman
CS4414 Lecture 8

CORNELL CS4414 - SPRING 2023 1

IDEA MAP FOR TODAY

CORNELL CS4414 - SPRING 2023 2

Understanding the parallelism inherent in
an application can help us achieve high
performance with less effort.

Ideally, by “aligning” the way we
express our code or solution with the way
Linux and the C++ compiler discover
parallelism, we obtain a great solution

There is a disadvantage to this, too. If we
write code knowing how that some version of the C++
compiler or the O/S will “discover” some opportunity
for parallelism, that guarantee could erode over time.

This tension between what we explicitly express and
what we “implicitly” require is universal in computing,
although people are not always aware of it

LINK BACK TO DIJKSTRA’S CONCEPT

In early generations of parallel computers, we just took the view that
parallel computing was very different from normal computing.

Today, there is a huge effort to make parallel computing as easy as
possible.

This centers on taking a single-instruction multiple data model and
integrating it with our runtime environment.

CORNELL CS4414 - SPRING 2023 3

IS “PARALLELISM” REALLY AN ABSTRACTION?

Certainly not, if you always think of abstractions as mapping to
specific code modules with distinct APIs.

But the abstraction of a SIMD operation certainly aligns with
other ideas of what machine instructions “do”.

By recognizing this, an advanced language like C++ becomes
the natural “expression” of the SIMD parallelism abstraction

CORNELL CS4414 - SPRING 2023 4

OPPORTUNITIES FOR PARALLELISM

Hardware or software prefetching into a cache
File I/O overlapped with computing in the application
Threads (for example, in word count, 1 to open files and many
to process those files).
Linux processes in a pipeline
Daemon processes on a computer
VMs sharing some host machine

CORNELL CS4414 - SPRING 2023 5

OPPORTUNITIES FOR PARALLELISM

Parallel computation on data that is inherently parallel
 Really big deal for graphics, vision, AI
 These areas are “embarrassingly parallel”

Successful solutions will be ones that are designed to leverage parallel
computing at every level!

CORNELL CS4414 - SPRING 2023 6

OPPORTUNITIES FOR PARALLELISM

CORNELL CS4414 - SPRING 2023 7

Photo on disk: It spans many blocks of the
file. Can they be prefetched while we are
processing blocks already in memory?

Block in the buffer pool was just read by
the application. Next block is being
prefetched… previously read blocks are
cached, for a while

The application has multiple threads and
they are processing different blocks. The
blocks themselves are arrays of pixels

O/S kernel

Storage
device

Application

WHAT ARE THE “REQUIREMENTS” FOR THE
MAXIMUM DEGREE OF PARALLELISM?

A task must be able to run independently from any other tasks

There should be many of these tasks running

The individual tasks shouldn’t “stall” (like by waiting for I/O, or
paging, or a lock)

CORNELL CS4414 - SPRING 2023 8

“EMBARASSING” PARALLELISM

Arises if an application makes it incredibly easy to carve off
tasks that have these basic properties.

… we just launch one thread for each task.

In word count, Ken’s solution did this for opening files, scanning
and counting words in each individual file, and for merging the
counts.

CORNELL CS4414 - SPRING 2023 9

SOME PEOPLE CALL THE OTHER KIND
“HEROIC” PARALLELISM!

If parallelism isn’t easy to see, it may be very hard to discover!

Many CS researchers have built careers around this topic

CORNELL CS4414 - SPRING 2023 10

ISSUES RAISED BY LAUNCHING THREADS:
“UNNOTICED” SHARING
Suppose that your application uses a standard C++ library

If that library has any form of internal data sharing or
dependencies, your threads might happen to call those methods
simultaneously, causing interference effects.

This can lead to concurrency bugs, which will be a big topic for
us soon (but not in today’s lecture)

CORNELL CS4414 - SPRING 2023 11

HOW ARE SUCH ISSUES SOLVED?

We will need to learn to use locking or other forms of
concurrency control (mutual exclusion).

For example, in C++:
{

std::lock_guard<std::mutex> my_lock;
… this code will be safe …

}

CORNELL CS4414 - SPRING 2023 12

LOCKING REDUCES PARALLELISM

Now thread A would wait for B, or vice versa, and the counter is
incremented in two separate actions

But because A or B paused, we saw some delay

This is like with Amdahl’s law: the increment has become a form
of bottleneck!

CORNELL CS4414 - SPRING 2023 13

PARALLEL SOLUTIONS MAY ALSO BE HARDER
TO CREATE DUE TO EXTRA STEPS REQUIRED
Think back to our word counter.

We used 24 threads, but ended up with 24 separate sub-counts
 The issue was that we wanted the heap for each thread to be a

RAM memory unit close to that thread
 So, we end up wanting each to have its own std::map to count words
 But rather than 24 one-by-one map-merge steps, we ended up going

for a parallel merge approach

CORNELL CS4414 - SPRING 2023 14

MORE COSTS OF PARALLELISM

These std::map merge operations are only needed because our
decision to use parallel threads resulted in us having many maps.

… code complexity increased

CORNELL CS4414 - SPRING 2023 15

IMAGE AND TENSOR PROCESSING

Images and the data objects that arise in ML are tensors:
matrices with 1, 2 or perhaps many dimensions.

Operations like adjusting the colors on an image, adding or
transposing a matrix, are embarrassingly parallel. Even matrix
multiply has a mix of parallel and sequential steps.

This is why hardware vendors created GPUs.
CORNELL CS4414 - SPRING 2023 16

CONCEPT: SISD VERSUS SIMD

A normal CPU is single instruction, single data

An instruction like movq moves a single quad-sized integer
to a register, or from a register to memory.

An instruction like addq does an add operation on a single register

So: one instruction, one data item

CORNELL CS4414 - SPRING 2023 17

X = Y*3;

CONCEPT SISD VERSUS SIMD

A SIMD instruction is a single instruction, but it operates on a
vector or matrix all as a single operation. For example: apply a
3-D rotation to my entire photo in “one operation”

In effect, Intel used some space on the NUMA chip to create a
kind of processor that can operate on multiple data items in a
single clock step. One instruction, multiple data objects: SIMD

CORNELL CS4414 - SPRING 2023 18

Rotate 3-D

SIDE REMARK

In fact, rotating a photo takes more than one machine instruction.

It actually involves a matrix multiplication: the photo is a kind of
matrix (of pixels), and there is a matrix-multiplication we can
perform that will do the entire rotation.

So… a single matrix multiplication, but it takes a few instructions in
machine code, per pixel. SIMD could do each instruction on many
pixels at the same time.

CORNELL CS4414 - SPRING 2023 19

Rotate 3-D

SIMD LIMITATIONS

A SIMD system always has some limited number of CPUs for
these parallel operations.

Moreover, the computer memory has a limited number of
parallel data paths for these CPUs to load and store data

As a result, there will be some limit to how many data items the
operation can act on in that single step!

CORNELL CS4414 - SPRING 2023 20

INTEL VECTORIZATION
COMPARED WITH GPU
A vectorized computation on an Intel machine is limited to a
total object size of 64 bytes.
 Intel allows you some flexibility about the data in this vector.
 It could be 8 longs, 16 int-32’s, 64 bytes, etc.

In contrast, the NVIDIA Tesla T4 GPU we talked about in lecture 4 has
thousands of CPUs that can talk, simultaneously, to the special built-in
GPU memory. A Tesla SIMD can access a far larger vector or matrix in a
single machine operation.

CORNELL CS4414 - SPRING 2023 21

… CS4414 IS ABOUT PROGRAMMING A
NUMA MACHINE, NOT A GPU
So, we won’t discuss the GPU programming case.

But it is interesting to realize that normal C++ can benefit from
Intel’s vectorized instructions, if your machine has that capability!

To do this we need a C++ compiler with vectorization support
and must write our code in a careful way, to “expose” parallelism

CORNELL CS4414 - SPRING 2023 22

SPECIAL C++ COMPILER?

There are two major C++ compilers: gcc from GNU and clang,
created by LLVM (an industry consortium)

But many companies have experimental extended compilers. The
Intel one is based on Clang but has extra features.

All are “moving targets”. For example, C++ has been evolving
(C++ 11, 17, 20….) each compiler tracks those (with delays).

CORNELL CS4414 - SPRING 2023 23

THE INTEL VECTORIZATION INSTRUCTIONS

When the MMX extensions to the Intel x86 instructions were
released in 1996, Intel also released compiler optimization
software to discover vectorizable code patterns and leverage
these SIMD instructions where feasible.

The optimizations are only available if the target computer is an
Intel chip that supports these SIMD instructions.

CORNELL CS4414 - SPRING 2023 24

INITIALLY, C++ DID NOT SUPPORT MMX

It took several years before other C++ compilers adopted the MMX
extensions and incorporated the associated logic.

Today, C++ will search for vectorization opportunities if you ask for
it, via -ftree-vectorize or –O3 flags to the C++ command line.

… so, many programs have vectorizable code that doesn’t exploit
vector-parallel opportunities even on a computer than has MMX

CORNELL CS4414 - SPRING 2023 25

ALSO, INTEL IS NOT THE ONLY CPU DESIGNER

AMD is another major player in the CPU design space. They
have their own vector-parallel design, and the instructions are
different from the Intel ones (but similar in overall approach).

ARM is an open-source CPU design. It aims at mobile phones
and similar systems, and has all sorts of specializations for tasks
such as video replay and image or video compression.

CORNELL CS4414 - SPRING 2023 26

MODERN C++ SUPPORT FOR SIMD

Requires -ftree-vectorize or –O3

You must write your code in a vectorizable manner: simple for
loops that access the whole vector (the loop condition can only
have a simple condition based on vector length), body of the
loop must map to the SIMD instructions.

CORNELL CS4414 - SPRING 2023 27

GNU C++ EXAMPLES THAT WOULD
PARALLELIZE AUTOMATICALLY
This simple addition
can be done in parallel.

The compiler will eliminate the
loop if a single operation suffices.
Otherwise it will generate one
instruction per “chunk”

CORNELL CS4414 - SPRING 2023 28

Example 1:
int a[256], b[256], c[256];
foo () {
int i;

for (i=0; i<256; i++){
a[i] = b[i] + c[i];

}
}

https://gcc.gnu.org/projects/tree-ssa/vectorization.html

https://gcc.gnu.org/projects/tree-ssa/vectorization.html

GNU C++ EXAMPLES THAT WOULD
PARALLELIZE AUTOMATICALLY
Here we see more difficult
cases

The compiler can’t predict
the possible values n could
have, making this code hard
to “chunk”

CORNELL CS4414 - SPRING 2023 29https://gcc.gnu.org/projects/tree-ssa/vectorization.html

Example 2:
int a[256], b[256], c[256];
foo (int n, int x) {

int i;
/* feature: support for unknown loop bound */
/* feature: support for loop invariants */
for (i=0; i<n; i++)

b[i] = x;
}
/* feature: general loop exit condition */
/* feature: support for bitwise operations */
while (n- -){

a[i] = b[i]&c[i]; i++;
}

}

https://gcc.gnu.org/projects/tree-ssa/vectorization.html

GNU C++ EXAMPLES THAT WOULD
PARALLELIZE AUTOMATICALLY
Parallelizing a 2-d matrix
seems “easy” but in fact
data layout matters.

To successfully handle such
cases, the dimensions must
be constants known at
compile time!

CORNELL CS4414 - SPRING 2023 30https://gcc.gnu.org/projects/tree-ssa/vectorization.html

Example 8:
int a[M][N];
foo (int x) {

int i,j;

/* feature: support for multidimensional arrays */
for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
a[i][j] = x;

}
}

}

https://gcc.gnu.org/projects/tree-ssa/vectorization.html

GNU C++ EXAMPLES THAT WOULD
PARALLELIZE AUTOMATICALLY
This sum over differences
is quite a tricky operation
to parallelize!

C++ uses a temporary
object, generates the diff,
then sums over the temporary
array

CORNELL CS4414 - SPRING 2023 31https://gcc.gnu.org/projects/tree-ssa/vectorization.html

Example 9:
unsigned int ub[N], uc[N];
foo () {
int i;

/* feature: support summation reduction.
note: in case of floats use -funsafe-math-optimizations

*/
unsigned int diff = 0;
for (i = 0; i < N; i++) {
udiff += (ub[i] - uc[i]);

}

https://gcc.gnu.org/projects/tree-ssa/vectorization.html

SUMMARY: THINGS YOU CAN DO

Apply a basic mathematical operation to each element of a
vector.

Perform element-by-element operations on two vectors of the
same size and layout

Apply a very limited set of conditional operations on an item by
item basis

CORNELL CS4414 - SPRING 2023 32

ADVICE FROM INTEL

Think hard about the layout of data in memory
 Vector hardware only reaches its peak performance for carefully

“aligned” data (for example, on 16-byte boundaries).
 Data must also be densely packed: instead of an array of structures

or objects, they suggest that you build objects that contain arrays of
data, even if this forces changes to your software design.

 Write vectorization code in simple “basic blocks” that the compiler
can easily identify. Straight-line code is best.

 “inline” any functions called on the right-hand of an = sign

CORNELL CS4414 - SPRING 2023 33

WITHIN THAT CODE…

On the right hand slide of expressions, limit yourself to accessing
arrays and simple “invariant” expressions that can be computed
once, at the top of the code block, then reused.

Avoid global variables: the compiler may be unable to prove to
itself that the values don’t change, and this can prevent it from
exploring many kinds of vectorization opportunities.

CORNELL CS4414 - SPRING 2023 34

LEFT HAND SIDE…

When doing indexed data access, try to have the left hand side
and right hand side “match up”: vectors of equal size, etc.

Build for loops with a single index variable, and use that
variable as the array index – don’t have other counters that are
also used.
 SIMD code can access a register holding the for-loop index, but

might not be able to load other kinds of variables like counters

CORNELL CS4414 - SPRING 2023 35

THINGS TO AVOID

No non-inlined function calls in these vectorizable loops, other
than to basic mathematical functions provided in the Intel library

No non-vectorizable inner code blocks (these disable vectorizing
the outer code block)

No “data dependent” end-of-loop conditions: These often make
the whole loop non-vectorizable

CORNELL CS4414 - SPRING 2023 36

POTENTIAL SPEEDUP?

With Intel MMX SIMD instructions, you get a maximum speedup
of about 128x for operations on bit vectors.

More typical are speedups of 16x to 64x for small integers.

Future processors are likely to double this every few years

CORNELL CS4414 - SPRING 2023 37

FLOATING POINT

Given this form of vectorized integer support, there has been a
lot of attention to whether floating point can somehow be
mapped to integer vectors.

In certain situations this is possible: it works best if the entire
vector can be represented using a single exponent, so that we
can have a vector of values that share this same exponent, and
then can interpret the vector as limited-precision floating point.

CORNELL CS4414 - SPRING 2023 38

C++ VECTORIZATION FOR FLOATS

There is a whole ten-page discussion of this in the compiler
reference materials!

With care, you can obtain automatically vectorizable code for
floats, but the rules are quite complicated.

… However, GPU programming would be even harder!

CORNELL CS4414 - SPRING 2023 39

COULD THIS SOLVE OUR PHOTO ROTATION?

We can think of a photo as a flat 3-D object. Each pixel is a
square. A 3-D rotation is a form of matrix multiplication.

CORNELL CS4414 - SPRING 2023 40

TWO FLOATING POINT OPTIONS

We could “construe” our pixels as floating point numbers.

But we could also replace a floating point number by a rational
number.

For example: π ≅ 22/7. So, x* π ≅ (x*22)/7.

CORNELL CS4414 - SPRING 2023 41

RATIONAL ARITHMETIC LETS US LEVERAGE
THE INTEL VECTOR HARDWARE
The Intel vector instructions only work for integers.

But they are fast, and parallel, and by converting rational
numbers to integers, we can get fairly good results.

Often this is adequate!

CORNELL CS4414 - SPRING 2023 42

THIS IS WIDELY USED IN MACHINE LEARNING!

We noted that many ML algorithms are very power-hungry

Researchers have shown that often they are computing with far more
precision than required and that reduced-precision versions work just
as well, yet can leverage these vector-parallel SIMD instructions.

These are available in reduced-precision ML libraries and graphics
libraries today.

CORNELL CS4414 - SPRING 2023 43

GPU VERSUS SIMD

Why not just ship the parallel job to the GPU?
 GPUs are costly, and consume a lot of power. A standard processor

with SIMD support that can do an adequate job on the same task
will be cheaper and less power-hungry.

 Even if you do have a GPU, using it has overheads:
The system must move the data into the GPU. Like a calculator

where you type in the data.
Then it asks the GPU to perform some operation. “Press the button”
Then must read the results out.

CORNELL CS4414 - SPRING 2023 44

NEW-AGE OPTIONS

These include TPU accelerators: “tensor processing units”

FPGA: A programmable circuit, which can be connected to other
circuits to build huge ultra-fast vision and speech interpreting
hardware, or blazingly fast logic for ML.

RDMA: Turns a rack of computers or a data center into a big NUMA
machine. Every machine can see the memory of every other machine

CORNELL CS4414 - SPRING 2023 45

An earlier “new age”

STEPPING BACK WE FIND… CONCEPTUAL
ABSTRACTION PATTERNS.
When you look at a computer, like a desktop or a laptop, what
do you see?

Some people just see a box with a display that has the usual
applications: Word, Zoom, PowerPoint…

Advanced systems programmers see a complex machine, but
they think of it in terms of conceptual building blocks.

CORNELL CS4414 - SPRING 2023 46

SPEED VERSUS PORTABILITY

One risk with this form of abstract reasoning is that code might
not easily be portable.

We are learning about SIMD opportunities because most
modern computers have SIMD instruction sets (Intel, AMD, etc).

A feature available on just one type of computer can result in a
style of code that has poor performance on other machines.

CORNELL CS4414 - SPRING 2023 47

APPLICATIONS CAN HAVE BUILT-IN CHECKS

If you do create an application that deliberately leverages
hardware such as a particular kind of vectorization, it makes
sense to have unit tests that benchmark the program on each
distinct computer.

The program can then warn if used on an incompatible platform:
“This program has not been optimized for your device, and may
perform poorly”.

CORNELL CS4414 - SPRING 2023 48

SUMMARY

Understanding the computer architecture, behavior of the
operating system, data object formats and C++ compiler
enables us to squeeze surprising speedups from our system!

Because SIMD instructions have become common, it is worth
knowing about them. When you are able to leverage them, you
gain speed and reduce power consumption.

CORNELL CS4414 - SPRING 2023 49

	Abstracting the idea of hardware (SIMD) Parallelism
	Idea Map For Today
	Link back to Dijkstra’s concept
	Is “parallelism” really an abstraction?
	Opportunities for parallelism
	Opportunities for parallelism
	Opportunities for Parallelism
	What are the “requirements” for the maximum degree of parallelism?
	“Embarassing” Parallelism
	Some people call the other kind “Heroic” parallelism!
	Issues raised by launching Threads: “unnoticed” sharing
	How are such issues solved?
	Locking reduces parallelism
	Parallel solutions may also be harder to create due to extra steps required
	More costs of parallelism
	Image and tensor processing
	Concept: SISD versus SIMD
	Concept SISD versus SIMD
	Side remark
	SIMD limitations
	Intel vectorization�compared with GPU
	… CS4414 is about programming a NUMA machine, not a GPU
	Special C++ compiler?
	The Intel Vectorization Instructions
	Initially, C++ did not support MMX
	Also, Intel is not the only CPU designer
	Modern C++ support for SIMD
	GNU C++ examples that would parallelize automatically
	GNU C++ examples that would parallelize automatically
	GNU C++ examples that would parallelize automatically
	GNU C++ examples that would parallelize automatically
	Summary: Things you can do
	Advice from Intel
	Within that code…
	Left hand side…
	Things to avoid
	Potential speedup?
	Floating Point
	C++ vectorization for floats
	Could this solve our photo rotation?
	Two floating point options
	Rational arithmetic lets us leverage the Intel vector hardware
	This is widely used in machine learning!
	GPU versus SIMD
	New-age options
	Stepping back we find… conceptual abstraction patterns.
	Speed versus portability
	Applications can have built-in Checks
	Summary

