
ABSTRACTION ↔ PERFORMANCE:
AN ENDURING BATTLE

Professor Ken Birman
CS4414 Lecture 6

CORNELL CS4414 - SPRING 20231

IDEA MAP FOR TODAY

CORNELL CS4414 - SPRING 20232

A thing should be as simple as possible.
This argues for elegant abstractions

Yet some things are just not simple, like
NUMA hardware! This argues for powerful APIs

that expose performance-critical controls

Complex tensions: Simplicity/expressiveness.
Performance/elegance
Correctness and Security/ convenience

Virtualization arises in many forms in Linux:
virtual memory, the process abstraction, full
virtual machines, container virtualization.
These offer good examples of those tensions

To illustrate this idea we will look at the file system abstraction

EARLY COMPUTER SYSTEMS DIDN’T HAVE AN
OPERATING SYSTEM!
You wrote your program out on paper

Then “toggled it into memory”

Put the start execution address into the PC register by hand.
Pressed “run”

CORNELL CS4414 - SPRING 2023 3

CODE REUSE EMERGED AS AN IMPORTANT GOAL

Once you have a working solution such as code to print to the
lineprinter, why reimplement it?

At first you had to attach a punch-card deck to your punch-card
deck, with a copy of the code you wanted to reuse.

This led to the idea that a computer should have built-in
functionality to manage the hardware and make programming
easier. The idea of an operating system was born!

CORNELL CS4414 - SPRING 2023 4

THE O/S AND THE KERNEL

Some parts of the operating system run the computer hardware,
but other parts do other tasks, such as copying files.

Over time, we began to refer to the resident portion of the O/S
as the kernel, and the rest as “additional O/S components”

… it quickly turned out that protecting the kernel is important!

CORNELL CS4414 - SPRING 2023 5

THE DAWN OF HACKING
(IBM 360, 1978)
The IBM 360 kernel managed a list of user
names and passwords.

Of course, passwords shouldn’t be in plain text. So the passwords
were encrypted by a messy function that did a lot of shift and rotate
and multiplication operations and ended up with a 16-bit number.

On the IBM 360, the kernel memory was “visible” to any process

CORNELL CS4414 - SPRING 2023 6

The dawn of whacking.
1.8M BC

GUESS WHAT?

With the help of a friendly math student, it
was possible to invert this function.

… for each user account, we ended up with a whole list of passwords!

Late one night, the “IT police” rushed to the
computer center… my list of passwords was
right there, but they didn’t recognize them. So,
it didn’t occur to them that I was the criminal!

CORNELL CS4414 - SPRING 2023 7

The bad guy went that-a-way

Helpful math wizard

IN FACT THERE WERE MANY ISSUES

Theft of passwords was a big issue, but even without passwords, any
user could literally see the memory in use by other users.

Personal information was completely visible, such as healthcare
records, payroll records, etc.

Even the code of the kernel itself was visible. Other companies could
dissemble it as a shortcut to competing with IBM!

CORNELL CS4414 - SPRING 2023 8

IBM 370 KERNEL PROTECTIONS

… So, it was not a surprise when the IBM 370 introduced a wide
range of additional kernel protections!

 User mode / kernel mode: The kernel had a long list of special
instructions that it could execute, that were illegal for users.

 Each user process was given its own page table, and limited
to seeing its own memory (the kernel, in contrast, “sees all”).

 Traps and exceptions switched from user mode to kernel mode

CORNELL CS4414 - SPRING 2023 9Take a security course to learn more, including how some traps returned to the user… in kernel mode!

PROTECTION OF THE FILE SYSTEM

The file system is just a data structure built and managed by the
kernel, on the storage unit (disk or USB drive or whatever).

In Linux, you could literally “see” that disk in two ways:
 You can chdir into the folders and open files and access them.
 If you knew the name of the device, such as /dev/usb2, you could

access that device in “raw” mode and see the actual blocks holding
the directories and files.

CORNELL CS4414 - SPRING 202310

WHY WOULD THIS MATTER?

Imagine that you and your friends are sharing a
top-secret plan for the big surprise party for Rachel.

Rachel has access to your computer, so once you print the plan
you delete all the copies – including any backup copies.

But Rachel has a friend who is a “disk forensics specialist”…

CORNELL CS4414 - SPRING 2023 11

HOW DO FILE SYSTEMS REALLY WORK?

Think about malloc from our previous lecture.

Linux is managing a form of tree, on the disk, by reading blocks
(fixed size, default is currently 4192 bytes), modifying data
within them, then writing them back.

It has a free list of blocks: new space needs are satisfied from it,
and any freed blocks (deleted files) are added to this list.

CORNELL CS4414 - SPRING 2023 12

LINUX FILE SYSTEM DATA STRUCTURE

Could span multiple storage devices, but we will focus on one

Can reach over the network to a file system server (but we won’t
worry about that case)

Supports various “kinds” of files: small, medium, large, immense.
File names can also be short or long or very, very long.

CORNELL CS4414 - SPRING 2023 13

LINKS

In Linux, we distinguish the inode (the “file data structure”) from the
name. A name is said to be a “link” to the inode.

A single file (or even directory) can have multiple names.
 Original form: “link”. A and B can be two names referencing the same

inode number. Only works in a single file system, not across mount points.
 New form: “symbolic link”. File B contains the actual name for file A.

Works in a similar way… yet not identical.

CORNELL CS4414 - SPRING 2023 14

LINKS

In Linux, we distinguish the inode (the “file data structure”) from the
name. A name is said to be a “link” to the inode.

A single file (or even directory) can have multiple names.
 Original form: “link”. A and B can be two names referencing the same

inode number. Only works in a single file system, not across mount points.
 New form: “symbolic link”. File B contains the actual name for file A.

Works in a similar way… yet not identical.

CORNELL CS4414 - SPRING 2023 15

Thought puzzle 1:

Suppose file “B” is a link to file “A”.

You delete A. What will happen to B?

LINKS

In Linux, we distinguish the inode (the “file data structure”) from the
name. A name is said to be a “link” to the inode.

A single file (or even directory) can have multiple names.
 Original form: “link”. A and B can be two names referencing the same

inode number. Only works in a single file system, not across mount points.
 New form: “symbolic link”. File B contains the actual name for file A.

Works in a similar way… yet not identical.

CORNELL CS4414 - SPRING 2023 16

Thought puzzle 2:

Suppose file “B” is a link to file “A”.

You edit A. What will happen to B?

SYMBOLIC LINKS

These were added later because with mounted file systems, it
was a problem that links didn’t work across mount points.

With a symbolic link, a file can contain a pathname.

If you access it (or search through it), Linux “switches” to the
symbolic link pathname.

CORNELL CS4414 - SPRING 2023 17

SYMBOLIC LINKS

These were added later because with mounted file systems, it
was a problem that links didn’t work across mount points.

With a symbolic link, a file can contain a pathname.

If you access it (or search through it), Linux “switches” to the
symbolic link pathname.

CORNELL CS4414 - SPRING 2023 18

Thought puzzle 3:

Suppose file “B” is a symbolic link to file “A”.

You delete A. What will happen to B?

SYMBOLIC LINKS

These were added later because with mounted file systems, it
was a problem that links didn’t work across mount points.

With a symbolic link, a file can contain a pathname.

If you access it (or search through it), Linux “switches” to the
symbolic link pathname.

CORNELL CS4414 - SPRING 2023 19

Thought puzzle 4:

Suppose file “B” is a symbolic link to file “A”.

You edit A. What will happen to B?

SYMBOLIC LINKS

These were added later because with mounted file systems, it
was a problem that links didn’t work across mount points.

With a symbolic link, a file can contain a pathname.

If you access it (or search through it), Linux “switches” to the
symbolic link pathname.

CORNELL CS4414 - SPRING 202320

Thought puzzle 5:

Suppose file “B” is a symbolic link to file “A”.

You delete B. What will happen to A?

SYMBOLIC LINKS

These were added later because with mounted file systems, it
was a problem that links didn’t work across mount points.

With a symbolic link, a file can contain a pathname.

If you access it (or search through it), Linux “switches” to the
symbolic link pathname.

CORNELL CS4414 - SPRING 2023 21

Thought puzzle 6:

A is a symbolic link to B. B is a symbolic link to A.

What happens if you try to open A?

POSIX FILE SYSTEM API

You access files via the “POSIX” API.

A process first must open the file:
int fd = open(“filename”, O_RDWR);

Now the file descriptor, fd, can be used to access the bytes.
Linux considers all data files to just be buckets of bytes.

CORNELL CS4414 - SPRING 2023 22

POSIX FILE SYSTEM API

You access files via the “POSIX” API.

A process first must open the file:
int fd = open(“filename”, O_RDWR);

Now the file descriptor, fd, can be used to access the bytes.
Linux considers all data files to just be buckets of bytes.

CORNELL CS4414 - SPRING 2023 23

Many Linux system calls take extra arguments, often as bit masks,
where each set bit requests some feature.

O_RDWR is a mask that means “open for reading and writing…

POSIX FILE SYSTEM API

You can also create a file with “open”:

fd = open(“file”, O_CREAT, S_IRWXU|S_IRGRP|S_IROTH);

For O_CREAT you specify “permissions” on the new file, for
yourself (as owner), your “group” (team members) and “others

CORNELL CS4414 - SPRING 2023 24

MORE POSIX OPERATIONS

lseek(fd, location, SEEK_SET); // Move file “pointer”

nb = read(fd, buffer, nbytes); // nb will be “bytes actually read”

write(fd, buffer, nbytes); // Write nbytes at the current pointer

close(fd); // Releases resources

… many of these have also have options.

CORNELL CS4414 - SPRING 2023 25

C++ FILE WRAPPERS, MMAP

In C++, wrappers are sometimes used to treat files like objects.
 Use std::iostream if you plan to just scan a text file.
 Use std::FILE if your file is a series of fixed-sized records.

There is also a way to “map” a file into memory: mmap.
 A mapped file looks like a vector of bytes (in C++, of type “char*”)
 You read or write the data by simply indexing into this vector.
 Must call fsync() or close() to force the writes back out to disk.

CORNELL CS4414 - SPRING 2023 26

STORED DATA RESIDES IN BLOCKS

Linux stores data in fixed-sized blocks. Each file has a length, in
bytes. The last block might be partially filled.

A process can’t read beyond the end of the file (EOF): read indicates
this by returning nb < nbytes. nb can be zero

You can create a gap by seeking beyond the end of a file and then
writing. Linux returns 0’s if an application reads the gap.

CORNELL CS4414 - SPRING 2023 27

ON THE DISK AND INSIDE THE KERNEL, A FILE
HAS A FILE CONTROL BLOCK (INODE)

} For historical
reasons, Linux
calls this an
inode structure

Each inode has a
unique id number.

CORNELL CS4414 - SPRING 202328

ON THE DISK AND INSIDE THE KERNEL, A FILE
HAS A FILE CONTROL BLOCK (INODE)

} For historical
reasons, Linux
calls this an
inode structure

Each inode has a
unique id number.

Short for “index node”, meaning a data structure used to rapidly
find information. In the Linux file system the role of the inode

index is to rapidly find the data blocks in the file

CORNELL CS4414 - SPRING 202329

IN-MEMORY FILE SYSTEM STRUCTURES

One file or directory can have
multiple “alias” names (links)

A name in a directory lets us
determine the inode number.
This gets us to the data structure
with file content information

Once a file is open, the inode is
also listed in the kernel’s “open
files” table. Again, we can use
this to get to the inode data
structure containing information
about the file permissions and
contents.

CORNELL CS4414 - SPRING 202330

FILE DATA IS STORED IN BLOCKS

Inode 1234:
File Control Block for

Party-Plan.docx

outer-index

index table file

To keep the inode structure
size small, the inode itself
only can list a small number
of blocks. If the file is small,
these hold data.

For a large file, each of
these blocks themselves hold
lists of blocks: a hierarchy of
index blocks, with the actual
data blocks as the “leaves”
of the structure.

Huge files have additional
layers of index blocks

Party-Plan.docx, 1234

CORNELL CS4414 - SPRING 202331

WITH A NETWORK FILE SYSTEM, SAME IDEA…

CORNELL CS4414 - SPRING 202332

…. SO, WHEN YOU DELETED “PARTY-PLAN.DOCX”

In fact the actual disk I/O that occurred was this:
 Linux accessed the block containing the directory, zeroed the inode

number next to the file name, rewrote the block.
 Linux accessed the tree node for the file (called an “inode”) and

changed its state from allocated to free. It put the inode on a freelist
 Linux walked down the list of blocks in the file, and put them on the

freelist for disk blocks, and wrote that back to the disk.

What did Linux not do?

CORNELL CS4414 - SPRING 2023 33

…. SO, WHEN YOU DELETED “PARTY-PLAN.DOCX”

In fact the actual disk I/O that occurred was this:
 Linux accessed the block containing the directory, zeroed the file

name in the list of active files, rewrote the block.
 Linux accessed the tree node for the file (called an “inode”) and

changed its state from allocated to free. It put the inode on a freelist
 Linux walked down the list of blocks in the file, and put them on the

freelist for disk blocks, and wrote that back to the disk.

What did Linux not do?

CORNELL CS4414 - SPRING 2023 34

Linux never zeroed the actual contents of the inode, it only was put
on the inode freelist. It never overwrote the file name – it just
changed the inode number in the directory to 0.

And it never zeroed the contents of the file, either. It simply put the
blocks on the freelist for blocks.

Thus, if you can “find” the inode, you can still reconstruct the whole
file, until those blocks are actually reused for some other purpose!

WHY WAS THE KERNEL SO “LAZY”?

Linux is optimized for speed.

The designers thought about it this way: if you really wanted to
ensure that Party-Plan.docx was destroyed, you could have used a
tool to rewrite the actual bytes with gibberish, before deleting it.

You didn’t do this, hence you must care mostly about speed, and so
you want Linux to be as fast as possible for file deletes.

CORNELL CS4414 - SPRING 2023 35

IS IT POSSIBLE TO “REALLY” DELETE A FILE?

In some situations, yes. There are Linux tools to help you do this.
Spies use them… most users don’t even know about them.

They overwrite the file bits with random garbage dozens of times.

But for most mortals, the real answer is: Maybe not. Any file you
create, or download – including a web page – may linger on your
machine! (And web pages can even have hidden content)

CORNELL CS4414 - SPRING 2023 36

RACHEL’S FORENSIC TOOLKIT

Her friend gave her copies of programs, easily downloaded
from the network (in fact Linux even has standard ones you can
install using apt-get) that
 Open the disk as a raw block device
 Scan the inode freelist looking for inodes that were freed yet where

haven’t actually be reused for some other purpose yet
 Access the corresponding blocks, copying their data

This allows them to generate “recovered files” without the proper name,
but with some or even all of the data that they had when deleted!

CORNELL CS4414 - SPRING 2023 37

THESE TOOLS BYPASS FILE SYSTEM SECURITY

In the file control block is a record of the file owner, permissions
and last access time.

But when accessed as a raw disk block, the kernel ignores the
existence of that file system data structure and treats the whole
disk as a huge block device. The blocks are just byte arrays!

So normal file system permissions aren’t checked.
CORNELL CS4414 - SPRING 2023 38

… WHICH IS WHY LINUX NORMALLY ALLOWS
THEIR USE ONLY BY THE SUPERUSER
You can’t just open /dev/usb2 as a raw device without
permission to access /dev/usb2 in the first place!

However… those permissions are fairly soft. If I found a
backup of your disk, and plugged that into a Linux computer
without telling it that the USB contains a file system, I could
connect to it in this raw mode, and then could access the contents.

CORNELL CS4414 - SPRING 2023 39

… HOW WOULD RACHEL EVEN FIGURE OUT
THE FILE NAMES?
Some versions of the Linux kernel wipe clean the names of
deleted files.

But the file system supports very long file names, and it can be
costly to zero all of those bytes.

So many versions of Linux delete files by just zeroing the inode
number in the directory, leaving the file name itself untouched.

CORNELL CS4414 - SPRING 202340

… OF COURSE IT MAY NOT BE TRIVIAL TO
MATCH THE NAME TO THE FILE
But many forensic tools make a good guess of which names
match which inodes, with a good chance of finding
 Its old name (“Possibly PartyPlan.docx”)
 The correct list of blocks
 Most or all of the data it used to contain

Rachel realizes her mom is not coming.

CORNELL CS4414 - SPRING 2023 41

So my mom is not coming to my
baby shower?

A FILE SYSTEM MAY LOOK IMMACULATE…

… yet to a forensic specialist, the disk is like a genome, full of
junk (non-coding) DNA that still reveals a lot about the past!

And this doesn’t even consider forensic tools that try to use fancy
hardware features to “recover” bytes that may have been
written once, but then overwritten recently with zeros, or with
random garbage.

CORNELL CS4414 - SPRING 2023 42

THE FIRST-WRITE ISSUE

With most forms of storage, the first bits written in a block leave
a ghostly impression.

With cutting edge forensic tools (magnetic force microscopy),
those ghostly images can be pulled off the disk. Then you can
use tools (like gdb) to examine the data.

CORNELL CS4414 - SPRING 2023 43

EVEN USB STORAGE
DEVICES CAN BE DANGEROUS!
Hackers have attacked via “poisoned” file systems.

How this worked: they damaged the file system data structures,
and when mounted, this allowed them to take full control!

The damage could be found and repaired by checking integrity
of the file system structure before mounting it. But with a large
file system this is quite slow.

CORNELL CS4414 - SPRING 2023 44

CORNELL CS4414 - SPRING 2023 45

THIS IS A STORY ABOUT FILE SYSTEM
SECURITY BUT ALSO ABOUT ABSTRACTIONS
We want to think about a storage system in terms of elegant, high-
level concepts like files and directories and links.

Yet there is an underlying reality here: data lives on a device. And
there are situations where we need direct access to devices, such as
when importing files from a different operating system.

The tension is fundamental: abstraction ↔ reality, performance, …

CORNELL CS4414 - SPRING 2023 46

DEFINITION: ABSTRACTION

Abstraction is the process of filtering out – ignoring - the
characteristics of patterns that we don't need in order to

concentrate on those that we do.

Abstractions arise we filter out details to focus on key ideas.

CORNELL CS4414 - SPRING 2023 47

WE (WANT TO) TRUST THE KERNEL!

The O/S kernel is creating an illusion of private files, that we can
safely delete or copy or modify.

But this illusion is only as good as the protection features that surround
the O/S and those raw hardware devices. As historical operating
systems got more complex, more and more issues surfaced!

When Unix was introduced, and then “reimplemented” as Linux, it was
in part a response to a demand for simplicity

CORNELL CS4414 - SPRING 2023 48

YET NO KERNEL IS ALL-POWERFUL

If someone can get physical access to a storage device, for
example, those forensic tools still work. (Modern Linux does
include the option of encrypting the contents of every file)

The idea, though, it to create a secure, performant, efficient
environment for running programs and managing data.

CORNELL CS4414 - SPRING 2023 49

LINUX THEMES

Minimalism: If something doesn’t have to be in the kernel, leave it
out! Instead of rarely used complex features, limit the kernel to
simple, general features that can be combined to solve all needs!

Performance: The kernel should be blazingly fast and reliable.

Correctness and security: The kernel should behave as advertised,
always, and defend itself against attacks.

CORNELL CS4414 - SPRING 2023 50

MODERN HARDWARE IS NOT AT ALL SIMPLE…

… so this creates a dilemma. In fact,
modern Linux is not remotely as simple
as the earliest Unix.

Yet this tension between features and
simplicity is still evident!

The modern concern is mostly centered on trust: If the kernel is small we
have a better chance to verify its security!

CORNELL CS4414 - SPRING 202351

LINUX IS MODULAR AND COMPOSITIONAL

We saw how Linux encourages combining a few programs to
accomplish a general task.

The kernel itself has some basic modules, that combine to offer all
sorts of broader functionality. These have simple interfaces.

In the CS4410 course, O/S, you’ll learn all about how these work.

CORNELL CS4414 - SPRING 2023 52

ROLES OF THE MODERN LINUX KERNEL

Manage the hardware and devices and file system. Be minimal,
performant, correct, secure. Use energy efficiently.

Offer a process abstraction, segmented memory, threads.

Many computers are shared. Guarantee protection so that user
A can’t be attacked by user B (includes theft of data, disruption,
viruses, crashes…). Create a “virtual private computer” for each.

CORNELL CS4414 - SPRING 2023 53

ROLES OF THE MODERN LINUX KERNEL

Be easy to manage (“administer”), and make it easy to diagnose
problems when they occur.

Be portable: the same kernel should run on many kinds of
computers, and it should be easy to move a user and her
processes from machine to machine.

CORNELL CS4414 - SPRING 2023 54

THEME: ABSTRACTIONS

Idea dates to Edsger Dijkstra and
others.

… think of a complex system as a layered structure, in which each
layer transforms layers below it into a higher-level abstraction
 At every layer we have data types, and abstract operations
 Each hides its implementation and introduces properties and guarantees

CORNELL CS4414 - SPRING 2023 55

WIKIPEDIA

Consider some concrete computing task.

Now remove “details” until only the pattern remains.

This process allows you to identify the underlying abstraction. A
mathematician would say we are “modelling” the task.

CORNELL CS4414 - SPRING 2023 56https://en.m.wikipedia.org/wiki/Abstraction_(computer_science);

EXAMPLE: GATEKEEPER AT BOOK SALE

Friend of the Library is limited to 50 customers at a time.

But as people come in and out, it was hard to count.

They adopted a “people counting” scheme

CORNELL CS4414 - SPRING 2023 57

Current occupancy

Spaces remaining

Someone enters

Someone leaves

… THIS IDEA IS ADAPTABLE!

Two or more doors? Just partition the 50 tokens!

Load balance by shifting tokens (but you must keep them in the
same status, of course)

Even works for ATMs with
connectivity issues!

CORNELL CS4414 - SPRING 2023 58

I have $150 of Ken’s
money available

$150 of Ken’s
money is blocked

THE “TOKEN ABSTRACTION”

Here we are using some form of token as an abstraction

The invariant differs: Maximum of 50 people inside. But they
can enter or exit via any door
Account cannot be overdrawn

Yet the token abstraction covers all of these cases

CORNELL CS4414 - SPRING 2023 59

PROS AND CONS OF ABSTRACTIONS

Dijkstra: The real power of layered
abstractions centers on specifications
and proofs. But proofs are just one aspect.

If we can fully describe the interfaces to our systems (APIs), and their
behaviors, we can rigorously verify implementations.

This type of verification has been done for some versions of Linux
and even for some C compilers (not C++ 11, however)

CORNELL CS4414 - SPRING 2023 60

CONCRETE ABSTRACTIONS VERSUS
CONCEPTUAL ONES
In low-level computing courses most abstractions map directly to
some sort of object class, like a binary tree or a list. These are
concrete abstractions.

But when we create systems, abstractions can be “ideas”. We
refer to these as conceptual abstractions.

We will give one example today and more in future lectures.
CORNELL CS4414 - SPRING 202361

… A THREE-WAY TUG OF WAR!

We want simple, elegant abstractions. But abstractions can hide
costs, as we saw with Python & Java!

We want to leverage high-performance hardware. But most
hardware is very complex to use directly. Abstractions help!

We want security and protection… without sacrificing speed.

CORNELL CS4414 - SPRING 2023 62

EXAMPLE:
VIRTUAL MEMORY

In lecture 5, we learned about process address spaces (segments and
paging), and used the term virtual memory.

The hardware doesn’t “have” process address spaces. The abstraction
is an idea that the kernel implements using hardware features.

If you see the term “virtual” it almost always means “an abstraction
layered over a more general underlying feature.”

CORNELL CS4414 - SPRING 2023 63

VIRTUAL MACHINES AND
CONTAINERS

Covered if time
permits

CORNELL CS4414 - SPRING 2023 64

VIRTUALIZATION CAN APPLY
TO THE ENTIRE MACHINE

Dijkstra is suggesting that the entire computing experience is virtual.
He sees layers and layers of abstractions. At the time this was a
revolutionary concept.

Today, the entire computer actually can be “virtualized”:
 We create a form of snapshot of the machine + your processes
 This virtual machine image can be moved easily, then restarted!

CORNELL CS4414 - SPRING 2023 65

VIRTUALIZATION IS A VALUABLE TOOL!

It is extremely useful to be able to “move” programs or entire
servers from place to place.

A virtual machine image is like a “program” that simulates your
entire computer (even the file system, background jobs, etc).

You can even virtualize a legacy system and run it on a modern
computer, if the modern system is compatible with the virtual image.

CORNELL CS4414 - SPRING 2023 66

PROS AND CONS OF VIRTUALIZATION

But…
 Some programs depend on things they access over the network, such

as default printers, remote file systems, databases
 These might not work if you move the VM to a setting where those

other systems aren’t available, or even if they have different host names

Virtualization also imposes some overheads, and many programs slow
down (especially if several VMs actually share one file system: even if the
VM is unaware, all the file open requests would need to be translated)

CORNELL CS4414 - SPRING 2023 67

CONTAINER VIRTUALIZATION

There are actually two major kinds of virtualization
 With “true” virtualization, we literally virtualize the entire computer

and run the original operating system as a process in some other
computer.

 But as noted, this can be costly.

Container virtualization is a response (the “Docker” approach)
 In this approach a process or a set of processes are given the illusion

that they run on a private computer, but in fact others can use it too.

CORNELL CS4414 - SPRING 2023 68

CONTAINER VIRTUALIZATION

Each distinct user ends up with a seemingly private file system (in
reality these are folders in a master file system, but they can’t see
the higher levels of it)

Each thinks they have private control over configurations, chron jobs
and daemons, etc.

Sudo seems to work, but really works only within the scope of the
user’s own jobs. For example, a “su” user can’t kill processes
someone else actually owns (and can’t see them, either).

CORNELL CS4414 - SPRING 2023 69

CONTAINERS OFFER A PATH TO THE CLOUD

The approach centers on changes to Linux and to the libraries,
and the famous packaging of this is Kubenetes+Docker.

Linux and the libraries work jointly to hide the processes one
user is running from the processes other users created.

For example, the “ps” command, which lists active processes, will
only show the ones I am running.

CORNELL CS4414 - SPRING 2023 70

CONTAINERS OFFER A PATH TO THE CLOUD

A major trend is to develop code on your own computers but
eventually run the production versions “in the cloud”.

Here the idea is that a big company (such as Amazon, Microsoft
or Google… but there are many more) operates a huge data
center, maintaining the machines and managing them carefully.

They offer a virtualized “private cloud” to each customer.
CORNELL CS4414 - SPRING 2023 71

ABSTRACTIONS AND SECURITY

Abstractions simply and allow us to work with a layered
computing model.

Yet mundane tasks (like needing access to raw disks in order to
import data from other operating systems, or to fix damage
after a nasty crash) often involve tools that can “break” the
abstraction boundary. Doing so exposes security risks!

CORNELL CS4414 - SPRING 202372

CONCLUSION

We started by looking at the evolution of the kernel, leading to
Dijkstra’s idea of “layered abstractions” and the KISS approach

Some layers we touched upon:
 The file system, the network, remote file servers.

A USB drive is not “a file system” yet Linux lets us treat it that way.
 The process abstraction, the runtime environment…

CORNELL CS4414 - SPRING 2023 73

CONCLUSION

Abstraction is a powerful tool for improving specifications, verifying systems
and introducing protective boundaries.
 A file system abstracts storage: The device just hold bytes
We can abstract a system as a VM/container, use this to move applications

to a new environment like a cloud.

Yet excessive simplicity through an abstraction that hides performance-critical
aspects can harm performance and even create security issues!

CORNELL CS4414 - SPRING 2023 74

	Abstraction Performance: �An Enduring battle
	Idea Map For Today
	Early computer systems didn’t have an operating system!
	�code reuse emerged as an important goal
	The O/S and the Kernel
	The Dawn of Hacking �(IBM 360, 1978)
	Guess what?
	In fact there were many issues
	IBM 370 Kernel protections
	Protection of the File System
	Why would this matter?
	How do file systems really work?
	Linux File System Data Structure
	Links
	Links
	Links
	Symbolic links
	Symbolic links
	Symbolic links
	Symbolic links
	Symbolic links
	POSIX File System API
	POSIX File System API
	POSIX File System API
	More POSIX operations
	C++ FILE wrappers, mmap
	Stored data resides in blocks
	On the disk and Inside the kernel, a file has a File Control Block (inode)
	On the disk and Inside the kernel, a file has a File Control Block (inode)
	In-Memory File System Structures
	File data is stored in blocks
	With a network file system, same idea…
	…. So, when you deleted “party-plan.docx”
	…. So, when you deleted “party-plan.docx”
	Why was the kernel so “Lazy”?
	Is it possible to “really” delete a file?
	Rachel’s forensic toolkit
	These tools bypass file system security
	… which is why Linux normally allows their use only by the superuser
	… how would Rachel even figure out the file names?
	… Of course it may not be trivial to match the name to the file
	A file system may look immaculate…
	The first-write issue
	Even USB storage �devices can be dangerous!
	Slide Number 45
	This is a story about file system security but also about abstractions
	Definition: Abstraction
	We (want to) trust the kernel!
	Yet no kernel is all-powerful
	Linux themes
	Modern hardware is not at all simple…
	Linux is modular and compositional
	Roles of the modern Linux kernel
	Roles of the modern Linux kernel
	Theme: Abstractions
	Wikipedia
	Example: Gatekeeper at Book sale
	… this idea is adaptable!
	The “token abstraction”
	Pros and cons of abstractions
	Concrete abstractions versus conceptual ones
	… a three-way tug of war!
	Example:�Virtual Memory
	Virtual Machines and containers
	Virtualization can apply�to the entire machine
	virtualization is a valuable tool!
	Pros and cons of virtualization
	Container virtualization
	Container Virtualization
	Containers offer a path to the cloud
	Containers offer a path to the cloud
	Abstractions and security
	Conclusion
	Conclusion

