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IDEA MAP FOR TODAY

Goal: Learn just a little about NUMA architectures.

We are not trying to be an architecture course.  But we do need 
to be able to visualize what we are “asking the hardware to do”
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Computers are multicore
NUMA machines capable

of many forms of parallelism. 
They are extremely complex 

and sophisticated.

Individual CPUs don’t make this NUMA
dimension obvious. The whole idea is 
that if you don’t want to know, you can

ignore the presence of parallelism

Compiled languages are
translated to machine language. 

Understanding this mapping will allow us to 
make far more effective use of the machine.



EXAMPLE 1: DRIVING TO NEW YORK

Maybe you and your friends normally drive via Pennsylvania 
where the speed limit is 75 on Route 280.

… gas mileage is poor at that speed.  If you wanted to buy 
(cheap) gas in New Jersey and were trying to stretch your tank, 
you would drive slower, like 55, and maybe draft behind trucks.

You know this works because you know about cars and mileage.
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WANT GREAT COMPUTING MILEAGE?

Same idea!

Learn how the computer actually works, and understand the 
costs of various things you might try doing.

Then design solution to match what the computer is good at.
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EXAMPLE: MY CODE VERSUS SAGAR’S

This was from our word count examples*.  My code understood that 
when loaded from files, the data is just a long “vector” of characters 
– bytes – with some ‘\n’ characters (end of line).

My word-count kept the data in that form and only created 
std::string objects at the last moment, to increment the count:
“wptr” is a pointer
directly to the bytes
in the input buffer
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inline void found(int& tn, char*& wptr)
{

sub_count[tn][std::string(wptr)]++;
}

Used in the hacking competition for lecture 1.  All source code is on our web site!



A CHUNK OF LINUX SOURCE CODE

Notice: this has text (words)
but also lots of other stuff, like
spaces and tabs, special chars
like (){};/_&* etc.

End of line is a special ascii
char, ‘\n’ (code == 0x12).
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VISUALIZATION OF MY WORD COUNT RUNNING
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Some file with Linux source 
code, like 

…/kernel/dma/contiguous.c

Memory buffer

Ken’s word-count process, when running

Read data into memory from disk file



WHAT DO WE MEAN BY “READ DATA INTO MEMORY?”

In my program, some space gets allocated – set aside – in the 
address space as a place for file data to be held.

The program opened a source file and told Linux to copy 4096 
bytes (one block) into that buffer area.

The text that you saw in that screenshot was stored there as a series 
of ascii bytes, a code that uses values 0..128
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HOW MY CODE ACTUALLY WORKED

Change all “white space” to \0 (byte containing 0).  Now each 
word is a null-terminated char* vector (a “c-string”)

Converted from a c-string to std::string in found:
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int ret;\nchar name[CMA_MAX_NAME];\nstruct cma **cma =

int\0ret\0\0\0char\0name\0CMA_MAX_NAME\0\0\0struct\0 cma\0\0cma\0

wptr found(current_thread_id, wptr);

sub_count[tn][std::string(word)]++;



WHAT MADE SAGAR’S VERSION SLOWER?

If you look at his code, you’ll find that it converts the whole file 
into std::string objects, line by line

Then it splits lines into substrings using a “splitter” method.  Each 
chunk will be a std::string.  But many won’t be “words”

If the substring matching the rule for a word, Sagar’s code uses 
a map like Ken’s code and increments the count.
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WHAT MADE SAGAR’S CODE SLOWER?

This means Sagar was creating perhaps 15-20x more std::string 
objects.  At scale, with 50,000 files and millions of lines to scan, 
he does a lot of object creation, splitting and deletion, copying, 
garbage collection.  Ken’s code “skipped” 95% of that work!

… So Ken’s code was way faster!
Yet Sagar’s was closer to being pure
C++.  Ken’s mixed C++ with C
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CENTRAL MESSAGE HERE?

Understanding how the machine is representing your data can 
really matter if you want that last factor of 2x (or sometimes 
even 10x or 100x).  Even C++ itself might miss that opportunity

So we need to learn about how NUMA computers represent 
data, and how our C++ code compiles to instructions that 
execute to perform the tasks we are coding!
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HOW CAN WE “KNOW” THE COSTS OF
STD::STRING?
We know that a file is basically a long vector of bytes.  

A text file holds ascii chars with ‘\n’ for newline.   A c-string is a 
region holding chars, ending with ‘\0’.  Ken worked from this.

In contrast, a std::string is an object.  At a minimum it has a string 
length and its own copy of the c-string holding the string data. It must 
be constructed and freed.  That has to be costly.
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SMALL PIVOT How do computers 
“work”?  
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WHAT’S INSIDE?  ARCHITECTURE = COMPONENTS 
OF A COMPUTER + OPERATING SYSTEM
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A BIG PILE OF 
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REQUIRING A LOT OF 
HIGHLY SKILLED 

CARE AND FEEDING!
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WHAT’S INSIDE?  ARCHITECTURE = COMPONENTS 
OF A COMPUTER + OPERATING SYSTEM

Job of the operating system (e.g. Linux) is to manage the 
hardware and offer easily used, efficient abstractions that hide 
details where feasible
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Operating System

File System

Network
Bash shell

Process you 
launched by 

running some 
program



ARCHITECTURES ARE CHANGING RAPIDLY!

As an undergraduate (in the late 1970’s) I programmed a DEC 
PDP 11/70 computer:
 A CPU (~1/2 MIPS), main memory (4MB)
 A storage device (8MB rotational magnetic disk), tape drive
 I/O devices (mostly a keyboard with a printer).

At that time this cost about $100,000
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Bill Gates: 
“640K ought to be 

enough for anybody.”



TODAY: MACHINE PROGRAMMING I: BASICS

History of Intel processors and architectures

Assembly Basics: Registers, operands, move

Arithmetic & logical operations

C/C++, assembly, machine code
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MODERN COMPUTER: DELL R-740: $2,600

2 Intel Xenon chips with 28 “hyperthreaded” cores running at 1GIPS 
(clock rate is 3Ghz)

Up to 3 TB of memory, multiple levels of memory caches

All sorts of devices accessible directly or over the network

NVIDIA Tesla T4 GPU: adds $6,000, peaks at 269 TFLOPS
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One CPU core actually 
runs two programs at 

the same time



INTEL XENON                           NVIDIA TESLA
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Each core is like a little computer, talking to the others 
over an on-chip network (the CMS)

The GPU has so many cores that a photo of the chip is 
pointless.  Instead they draw graphics like these to help 
you visualize ways of using hundreds of cores to process 

a tensor (the “block” in the middle) in parallel!



HOW DID WE GET HERE?

In the early years of computing, we went from machines built from 
distinct electronic components (earliest generations) to ones built 
from integrated circuits with everything on one chip.

Quickly, people noticed that each new generation of computer 
had roughly double the capacity of the previous one and could run 
roughly twice as fast!  Gordon Moore proposed this as a “law”.
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BUT BY 2006 MOORE’S LAW 
SEEMED TO BE ENDING
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WHAT ENDED MOORE’S LAW?

To run a chip at higher and higher speeds, we 
use a faster clock rate and keep more of the 
circuitry busy.

Computing is a form of “work” and work generates heat… as 
roughly the square of the clock rate.

Chips began to fail.  Some would (literally) melt or catch fire!
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If you overclock your 
desktop this can happen…



BUT PARALLELISM SAVED US!

A new generation of computers emerged in which we ran the 
clocks at a somewhat lower speed (usually around 2 GHz, which 
corresponds to about 1 billion instructions per second), but had 
many CPUs in each computer.

A computer needs to have nearby memory, but applications 
needed access to “all” the memory.  This leads to what we call a 
“non-uniform memory access behavior”: NUMA.
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MOORE’S LAW WITH NUMA
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Graph from prior slide



… MAKING MODERN MACHINES COMPLICATED!

Prior to 2006, a good program 
 Used the best algorithm: computational complexity, elegance
 Implemented it in a language like C++ that offers efficiency
 Ran on one machine

But the past decade has been disruptive!  Suddenly even a single 
computer might have the ability to do hundreds of parallel tasks!
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THE HARDWARE SHAPES THE
APPLICATION DESIGN PROCESS

We need to ask how a NUMA architecture impacts our designs.

If not all variables are equally fast to access, how can we 
“code” to achieve the fastest solution?

And how do we keep all of this hardware “optimally busy”?
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DEFINITIONS OF TERMS WE OFTEN USE

Architecture: (also ISA: instruction set architecture) 
The parts of a processor design that one needs to understand for 
writing correct machine/assembly code
 Examples:  instruction set specification, registers
 Machine Code: Byte-level programs a processor executes 
 Assembly Code: Readable text representation of machine code
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DEFINITIONS OF TERMS WE OFTEN USE

Microarchitecture: “drill down”.  

Details or implementation of the architecture
 Examples: memory or cache sizes, clock speed (frequency)

Example ISAs: 
 Intel: x86, IA32, Itanium, x86-64
 ARM: Used in almost all mobile phones
 RISC V: New open-source ISA
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TODAY: MACHINE PROGRAMMING I: BASICS

History of Intel processors and architectures

Assembly Basics: Registers, operands, move

Arithmetic & logical operations

C/C++, assembly, machine code

CORNELL CS4414 - SPRING 2023 33



HOW A SINGLE THREAD COMPUTES

In CS4414 we think of each computation in terms of a “thread”

A thread is a pointer into the program instructions.  The CPU 
loads the instruction that the “PC” points to, fetches any operands 
from memory, does the action, saves the results back to memory.

Then the PC is incremented to point to the next instruction
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Common way to 
depict a single thread



ASSEMBLY/MACHINE 
CODE VIEW
Programmer-Visible State
 PC: Program counter
 Address of next instruction
 Called “RIP” (x86-64)

 Register file
 Heavily used program data

 Condition codes
 Store status information about most recent   

arithmetic or logical operation
 Used for conditional branching

Memory
Byte addressable array
Code and user data
Stack to support procedures

Puzzle:
 On a NUMA machine, a CPU is near a fast

memory but can access all memory.
 How does this impact software design?

CORNELL CS4414 - SPRING 2023 35



ASSEMBLY/MACHINE 
CODE VIEW
Programmer-Visible State
 PC: Program counter
 Address of next instruction
 Called “RIP” (x86-64)

 Register file
 Heavily used program data

 Condition codes
 Store status information about most recent   

arithmetic or logical operation
 Used for conditional branching

Memory
Byte addressable array
Code and user data
Stack to support procedures

Puzzle:
 On a NUMA machine, a CPU is near a fast

memory but can access all memory.
 How does this impact software design?

CORNELL CS4414 - SPRING 2023 36

This memory is 
slower to access!

Same with this one…

…

…

…

Example: With 6 on-board DRAM modules and 12 NUMA CPUs, each pair of 
CPUs has one nearby DRAM module.  Memory in that range of addresses will be 
very fast.  The other 5 DRAM modules are further away.  Data in those address 
ranges is visible and everything looks identical, but access is slower!



LINUX TRIES TO HIDE MEMORY DELAYS

If it runs thread t on core k, Linux tries to allocate memory for t
(stack, malloc…) in the DRAM close to that k.

Yet all memory operations work identically even if the thread is 
actually accessing some other DRAM.  They are just slower.

Linux doesn’t even tell you which parts of your address space are 
mapped to which DRAM units.
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MACHINE LANGUAGE
(We’ll cover what we 
can but probably 
won’t have time for 
all of this)
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THE HARDWARE UNDERSTANDS “PRIMITIVE” 
DATA TYPES
“Integer” data of 1, 2, 4, or 8 bytes
Data values
Addresses (untyped pointers)

Floating point data of 4, 8, or 10 
bytes (new: 4-bit, 8-bit, 16-bit)

Code: Byte sequences encoding 
series of instructions

(SIMD vector data types of 8, 16, 32 
or 64 bytes)

No aggregate types such as arrays or 
structures
 Just contiguously allocated bytes in memory
 Example: Raw images are arrays in a 

format defined by the camera or video, 
such as RGB, jpeg, mpeg.  The camera
understands the format.  The host computer
the camera is attached to just sees bytes
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X86-64 INTEGER REGISTERS

Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
Not part of memory (or cache)
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SOME HISTORY: IA32 REGISTERS
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ASSEMBLY CHARACTERISTICS: OPERATIONS

Transfer data between memory and register
Load data from memory into register
Store register data into memory

Perform arithmetic function on register or memory data

Transfer control
Unconditional jumps to/from procedures
Conditional branches
Indirect branches
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Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Moving Data
 Moving Data

movq Source, Dest

 Operand Types
 Immediate: Constant integer data

 Example: $0x400, $-533
 Like C constant, but prefixed with ‘$’
 Encoded with 1, 2, or 4 bytes

 Register: One of 16 integer registers
 Example: %rax, %r13
 But %rsp reserved for special use
 Others have special uses for particular instructions

 Memory: 8 consecutive bytes of memory at address given by register
 Simplest example: (%rax)
 Various other “addressing modes”

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

Warning: Intel docs use
mov Dest, Source
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movq Operand Combinations

Cannot do memory-memory transfer with a single instruction

movq

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Dest C/C++ Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Src,Dest
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Simple Memory Addressing Modes
 Normal (R) Mem[Reg[R]]
 Register R specifies memory address
 Aha! Pointer dereferencing in C

movq (%rcx),%rax

 Displacement D(R) Mem[Reg[R]+D]
 Register R specifies start of memory region
 Constant displacement D specifies offset

movq 8(%rbp),%rdx
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Example of Simple Addressing Modes

whatAmI:
movq    (%rdi), %rax
movq    (%rsi), %rdx
movq    %rdx, (%rdi)
movq    %rax, (%rsi)
ret

void
whatAmI(<type> a, <type> b)
{

????
}

%rdi
%rsi
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Example of Simple Addressing Modes

void swap
(long *xp, long *yp) 

{
long t0 = *xp;
long t1 = *yp;
*xp = t1;
*yp = t0;

}

swap:
movq    (%rdi), %rax
movq    (%rsi), %rdx
movq    %rdx, (%rdi)
movq    %rax, (%rsi)
ret
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%rdi

%rsi

%rax

%rdx

Understanding swap()

void swap
(long *xp, long *yp) 

{
long t0 = *xp;
long t1 = *yp;
*xp = t1;
*yp = t0;

}

Memory

Register Value
%rdi xp
%rsi yp
%rax t0
%rdx t1

swap:
movq    (%rdi), %rax  # t0 = *xp  
movq    (%rsi), %rdx  # t1 = *yp
movq    %rdx, (%rdi)  # *xp = t1
movq    %rax, (%rsi)  # *yp = t0
ret

Registers
xp

Addr

yp
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Understanding swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers
Memory

swap:
movq    (%rdi), %rax  # t0 = *xp  
movq    (%rsi), %rdx  # t1 = *yp
movq    %rdx, (%rdi)  # *xp = t1
movq    %rax, (%rsi)  # *yp = t0
ret

0x120 

0x118

0x110 

0x108 

0x100 

Address
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Understanding swap()
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%rdx

0x120

0x100

123
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Simple Memory Addressing Modes
 Normal (R) Mem[Reg[R]]
 Register R specifies memory address
 Aha! Pointer dereferencing in C

movq (%rcx),%rax

 Displacement D(R) Mem[Reg[R]+D]
 Register R specifies start of memory region
 Constant displacement D specifies offset

movq 8(%rbp),%rdx
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Complete Memory Addressing Modes
 Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
 D: Constant “displacement” 1, 2, or 4 bytes
 Rb: Base register: Any of 16 integer registers
 Ri: Index register: Any, except for %rsp
 S: Scale: 1, 2, 4, or 8 (why these numbers?)

 Special Cases
(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]
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Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Address Computation Examples

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx,%rcx) 0xf000 + 0x100 0xf100

(%rdx,%rcx,4) 0xf000 + 4*0x100 0xf400

0x80(,%rdx,2) 2*0xf000 + 0x80 0x1e080

%rdx 0xf000

%rcx 0x0100
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Today: Machine Programming I: Basics
 History of Intel processors and architectures
 Assembly Basics: Registers, operands, move
 Arithmetic & logical operations
 C/C++, assembly, machine code
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Address Computation Instruction
 leaq Src, Dst
 Src is address mode expression
 Set Dst to address denoted by expression

 Uses
 Computing addresses without a memory reference
 E.g., translation of p = &x[i];

 Computing arithmetic expressions of the form x + k*y
 k = 1, 2, 4, or 8

 Example
long m12(long x)
{
return x*12;

}
leaq (%rdi,%rdi,2), %rax # t = x+2*x
salq $2, %rax # return t<<2

Converted to ASM by compiler:
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Some Arithmetic Operations
 Two Operand Instructions:
Format Computation
addq Src,Dest Dest = Dest + Src
subq Src,Dest Dest = Dest − Src
imulq Src,Dest Dest = Dest * Src
shlq Src,Dest Dest = Dest << Src Synonym: salq
sarq Src,Dest Dest = Dest >> Src Arithmetic
shrq Src,Dest Dest = Dest >> Src Logical
xorq Src,Dest Dest = Dest ^ Src
andq Src,Dest Dest = Dest & Src
orq Src,Dest Dest = Dest | Src

 Watch out for argument order!  Src,Dest
(Warning:  very old Intel docs use “op Dest,Src”)

 No distinction between signed and unsigned int (why?)
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Some Arithmetic Operations
 One Operand Instructions
incq Dest Dest = Dest + 1
decq Dest Dest = Dest − 1
negq Dest Dest = − Dest
notq Dest Dest = ~Dest

 See book for more instructions

 Depending how you count, there are 2,034 total x86 instructions

 (If you count all addr modes, op widths, flags, it’s actually 3,683)
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Arithmetic Expression Example

Interesting Instructions
 leaq: address computation
 salq: shift
 imulq: multiplication

 Curious: only used once…

long arith
(long x, long y, long z)
{
long t1 = x+y;
long t2 = z+t1;
long t3 = x+4;
long t4 = y * 48;
long t5 = t3 + t4;
long rval = t2 * t5;
return rval;

}

arith:
leaq (%rdi,%rsi), %rax
addq %rdx, %rax
leaq (%rsi,%rsi,2), %rdx
salq $4, %rdx
leaq 4(%rdi,%rdx), %rcx
imulq %rcx, %rax
ret
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Understanding Arithmetic Expression Example

long arith
(long x, long y, long z)
{
long t1 = x+y;
long t2 = z+t1;
long t3 = x+4;
long t4 = y * 48;
long t5 = t3 + t4;
long rval = t2 * t5;
return rval;

}

arith:
leaq (%rdi,%rsi), %rax # t1
addq %rdx, %rax # t2
leaq (%rsi,%rsi,2), %rdx
salq $4, %rdx # t4
leaq 4(%rdi,%rdx), %rcx # t5
imulq %rcx, %rax # rval
ret

Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z, 
t4

%rax t1, t2, rval

%rcx t5
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Evolution of Intel Instruction Set
 The Intel instruction set has changed over the decades since it was first introduced.

 Intel is a believer in the “CISC” model: complex instructions that are highly optimized

 Modern example: vector parallel instructions (also called SIMD: Single instruction, 
multiple data).  Introduced to make the x86 more competitive with GPU accelerators
 Such as “Multiply these two vectors and put the result in this third vector”, or “sum up the elements 

in this vector, and put the result here.”
 The underlying hardware uses parallel processing to do the job faster.
 The C++ compiler can recognize many of these patterns and will emit vector parallel instructions (if 

the target computer supports them).  You can also provide “hints” to the compiler, to do so.

 There are many more examples; we will see a few later in the semester
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Today: Machine Programming I: Basics
 History of Intel processors and architectures
 Assembly Basics: Registers, operands, move
 Arithmetic & logical operations
 C/C++, assembly, machine code
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text

text

binary

binary

Compiler (c++)

Assembler (c++ or as)

Linker (c++ or ld)

C/C++ program (p1.cpp p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries 
(.a)

Turning C/C++ into Object Code
 Code in files  p1.cpp p2.c
 Compile with command:  c++ pp1.cpp p2.c -o p

 There are often additional arguments such as –O3, -pg, -g… 
 Put resulting binary in file p
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Compiling Into Assembly
C/C++ Code 

(sum.c)long plus(long x, long y); 

void sumstore(long x, long y, 
long *dest)

{
long t = plus(x, y);
*dest = t;

}

Generated x86-64 Assembly
sumstore:

pushq %rbx
movq %rdx, %rbx
call    plus
movq %rax, (%rbx)
popq %rbx
ret

Obtain with command

C++ sum.c

Produces file sum.s

This uses the “indirect” addressing mode: dest holds
a memory address and *dest is a long integer at that
address.  We are using that location as a variable here!
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What it really looks like
.globl sumstore
.type sumstore, @function

sumstore:
.LFB35:

.cfi_startproc
pushq %rbx
.cfi_def_cfa_offset 16
.cfi_offset 3, -16
movq %rdx, %rbx
call plus
movq %rax, (%rbx)
popq %rbx
.cfi_def_cfa_offset 8
ret
.cfi_endproc

.LFE35:
.size sumstore, .-sumstore
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What it really looks like
.globl sumstore
.type sumstore, @function

sumstore:
.LFB35:

.cfi_startproc
pushq %rbx
.cfi_def_cfa_offset 16
.cfi_offset 3, -16
movq %rdx, %rbx
call plus
movq %rax, (%rbx)
popq %rbx
.cfi_def_cfa_offset 8
ret
.cfi_endproc

.LFE35:
.size sumstore, .-sumstore

Things that look weird 
and are preceded by a ‘.’ 
are generally directives. 

sumstore:
pushq %rbx
movq %rdx, %rbx
call    plus
movq %rax, (%rbx)
popq %rbx
ret
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Assembly Characteristics: Data Types
 “Integer” data of 1, 2, 4, or 8 bytes
 Data values
 Addresses (untyped pointers)

 Floating point data of 4, 8, or 10 bytes

 (SIMD vector data types of 8, 16, 32 or 64 bytes)

 Code: Byte sequences encoding series of instructions

 No aggregate types such as arrays or structures
 Just contiguously allocated bytes in memory
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Assembly Characteristics: Operations

 Transfer data between memory and register
 Load data from memory into register
 Store register data into memory

 Perform arithmetic function on register or memory data

 Transfer control
 Unconditional jumps to/from procedures
 Conditional branches
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Code for sumstore
0x0400595: 

0x53
0x48
0x89
0xd3
0xe8
0xf2
0xff
0xff
0xff
0x48
0x89
0x03
0x5b
0xc3

Object Code

 Assembler
 Translates .s into .o
 Binary encoding of each instruction
 Nearly-complete image of executable code
 Missing linkages between code in different 

files

 Linker
 Resolves references between files
 Combines with static run-time libraries

 e.g., code for malloc, printf
 Some libraries are dynamically linked

 Linking occurs when program begins 
execution

• Total of 14 bytes
• Each instruction 

1, 3, or 5 bytes
• Starts at address 
0x0400595
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Machine Instruction Example
 C Code
 Store value t where designated by 
dest

 Assembly
 Move 8-byte value to memory
 Quad words in x86-64 parlance

 Operands:
t: Register %rax
dest: Register %rbx
*dest: MemoryM[%rbx]

 Object Code
 3-byte instruction
 Stored at address 0x40059e

*dest = t;

movq %rax, (%rbx)

0x40059e:  48 89 03
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Disassembled

Disassembling Object Code

 Disassembler
objdump –d sum

 Useful tool for examining object code
 Analyzes bit pattern of series of instructions
 Produces approximate rendition of assembly code
 Can be run on either a.out (complete executable) or .o file

0000000000400595 <sumstore>:
400595:  53               push   %rbx
400596:  48 89 d3         mov %rdx,%rbx
400599:  e8 f2 ff ff ff callq 400590 <plus>
40059e:  48 89 03         mov %rax,(%rbx)
4005a1:  5b               pop    %rbx
4005a2:  c3               retq
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Disassembled

Dump of assembler code for function sumstore:
0x0000000000400595 <+0>: push   %rbx
0x0000000000400596 <+1>: mov %rdx,%rbx
0x0000000000400599 <+4>: callq 0x400590 <plus>
0x000000000040059e <+9>: mov %rax,(%rbx)
0x00000000004005a1 <+12>:pop    %rbx
0x00000000004005a2 <+13>:retq

Alternate Disassembly

 Within gdb Debugger
 Disassemble procedure
gdb sum
disassemble sumstore
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