
THE EVOLUTION AND ARCHITECTURE
OF MODERN COMPUTERS

Professor Ken Birman
CS4414 Lecture 2

CORNELL CS4414 - SPRING 2023 1

IDEA MAP FOR TODAY

Goal: Learn just a little about NUMA architectures.

We are not trying to be an architecture course. But we do need
to be able to visualize what we are “asking the hardware to do”

CORNELL CS4414 - SPRING 2023 2

Computers are multicore
NUMA machines capable

of many forms of parallelism.
They are extremely complex

and sophisticated.

Individual CPUs don’t make this NUMA
dimension obvious. The whole idea is
that if you don’t want to know, you can

ignore the presence of parallelism

Compiled languages are
translated to machine language.

Understanding this mapping will allow us to
make far more effective use of the machine.

EXAMPLE 1: DRIVING TO NEW YORK

Maybe you and your friends normally drive via Pennsylvania
where the speed limit is 75 on Route 280.

… gas mileage is poor at that speed. If you wanted to buy
(cheap) gas in New Jersey and were trying to stretch your tank,
you would drive slower, like 55, and maybe draft behind trucks.

You know this works because you know about cars and mileage.
CORNELL CS4414 - SPRING 2023 3

WANT GREAT COMPUTING MILEAGE?

Same idea!

Learn how the computer actually works, and understand the
costs of various things you might try doing.

Then design solution to match what the computer is good at.

CORNELL CS4414 - SPRING 2023 4

EXAMPLE: MY CODE VERSUS SAGAR’S

This was from our word count examples*. My code understood that
when loaded from files, the data is just a long “vector” of characters
– bytes – with some ‘\n’ characters (end of line).

My word-count kept the data in that form and only created
std::string objects at the last moment, to increment the count:
“wptr” is a pointer
directly to the bytes
in the input buffer

CORNELL CS4414 - SPRING 2023 5

inline void found(int& tn, char*& wptr)
{

sub_count[tn][std::string(wptr)]++;
}

Used in the hacking competition for lecture 1. All source code is on our web site!

A CHUNK OF LINUX SOURCE CODE

Notice: this has text (words)
but also lots of other stuff, like
spaces and tabs, special chars
like (){};/_&* etc.

End of line is a special ascii
char, ‘\n’ (code == 0x12).

CORNELL CS4414 - SPRING 2023 6

VISUALIZATION OF MY WORD COUNT RUNNING

CORNELL CS4414 - SPRING 2023 7

Some file with Linux source
code, like

…/kernel/dma/contiguous.c

Memory buffer

Ken’s word-count process, when running

Read data into memory from disk file

WHAT DO WE MEAN BY “READ DATA INTO MEMORY?”

In my program, some space gets allocated – set aside – in the
address space as a place for file data to be held.

The program opened a source file and told Linux to copy 4096
bytes (one block) into that buffer area.

The text that you saw in that screenshot was stored there as a series
of ascii bytes, a code that uses values 0..128

CORNELL CS4414 - SPRING 2023 8

HOW MY CODE ACTUALLY WORKED

Change all “white space” to \0 (byte containing 0). Now each
word is a null-terminated char* vector (a “c-string”)

Converted from a c-string to std::string in found:

CORNELL CS4414 - SPRING 2023 9

int ret;\nchar name[CMA_MAX_NAME];\nstruct cma **cma =

int\0ret\0\0\0char\0name\0CMA_MAX_NAME\0\0\0struct\0 cma\0\0cma\0

wptr found(current_thread_id, wptr);

sub_count[tn][std::string(word)]++;

WHAT MADE SAGAR’S VERSION SLOWER?

If you look at his code, you’ll find that it converts the whole file
into std::string objects, line by line

Then it splits lines into substrings using a “splitter” method. Each
chunk will be a std::string. But many won’t be “words”

If the substring matching the rule for a word, Sagar’s code uses
a map like Ken’s code and increments the count.

CORNELL CS4414 - SPRING 2023 10

WHAT MADE SAGAR’S CODE SLOWER?

This means Sagar was creating perhaps 15-20x more std::string
objects. At scale, with 50,000 files and millions of lines to scan,
he does a lot of object creation, splitting and deletion, copying,
garbage collection. Ken’s code “skipped” 95% of that work!

… So Ken’s code was way faster!
Yet Sagar’s was closer to being pure
C++. Ken’s mixed C++ with C

CORNELL CS4414 - SPRING 2023 11

CENTRAL MESSAGE HERE?

Understanding how the machine is representing your data can
really matter if you want that last factor of 2x (or sometimes
even 10x or 100x). Even C++ itself might miss that opportunity

So we need to learn about how NUMA computers represent
data, and how our C++ code compiles to instructions that
execute to perform the tasks we are coding!

CORNELL CS4414 - SPRING 2023 12

HOW CAN WE “KNOW” THE COSTS OF
STD::STRING?
We know that a file is basically a long vector of bytes.

A text file holds ascii chars with ‘\n’ for newline. A c-string is a
region holding chars, ending with ‘\0’. Ken worked from this.

In contrast, a std::string is an object. At a minimum it has a string
length and its own copy of the c-string holding the string data. It must
be constructed and freed. That has to be costly.

CORNELL CS4414 - SPRING 2023 13

SMALL PIVOT How do computers
“work”?

CORNELL CS4414 - SPRING 2023 14

WHAT’S INSIDE? ARCHITECTURE = COMPONENTS
OF A COMPUTER + OPERATING SYSTEM

CORNELL CS4414 - SPRING 2023 15

CPU
Registers
(L1 cache)

L2 Cache

CPU
Registers
(L1 cache)

L2 Cache

L3 Cache

Memory Bus

Core Core

PCIe Bus

SSD
storage

100G
Ethernet

Memory Unit (DRAM)

A BIG PILE OF
HARDWARE

REQUIRING A LOT OF
HIGHLY SKILLED

CARE AND FEEDING!

WHAT’S INSIDE? ARCHITECTURE = COMPONENTS
OF A COMPUTER + OPERATING SYSTEM

CORNELL CS4414 - SPRING 2023 16

CPU
Registers
(L1 cache)

L2 Cache

CPU
Registers
(L1 cache)

L2 Cache

L3 Cache

Memory Bus

Core Core

PCIe Bus

SSD
storage

100G
Ethernet

Memory Unit (DRAM)

WHAT’S INSIDE? ARCHITECTURE = COMPONENTS
OF A COMPUTER + OPERATING SYSTEM

Job of the operating system (e.g. Linux) is to manage the
hardware and offer easily used, efficient abstractions that hide
details where feasible

CORNELL CS4414 - SPRING 2023 17

Operating System

File System

Network
Bash shell

Process you
launched by

running some
program

ARCHITECTURES ARE CHANGING RAPIDLY!

As an undergraduate (in the late 1970’s) I programmed a DEC
PDP 11/70 computer:
 A CPU (~1/2 MIPS), main memory (4MB)
 A storage device (8MB rotational magnetic disk), tape drive
 I/O devices (mostly a keyboard with a printer).

At that time this cost about $100,000

CORNELL CS4414 - SPRING 2023 18

ARCHITECTURES ARE CHANGING RAPIDLY!

As an undergraduate (in the late 1970’s) I programmed a DEC
PDP 11/70 computer:
 A CPU (~1/2 MIPS), main memory (4MB)
 A storage device (8MB rotational magnetic disk), tape drive
 I/O devices (mostly a keyboard with a printer).

At that time this cost about $100,000

CORNELL CS4414 - SPRING 2023 19

Bill Gates:
“640K ought to be

enough for anybody.”

TODAY: MACHINE PROGRAMMING I: BASICS

History of Intel processors and architectures

Assembly Basics: Registers, operands, move

Arithmetic & logical operations

C/C++, assembly, machine code

CORNELL CS4414 - SPRING 2023 20

MODERN COMPUTER: DELL R-740: $2,600

2 Intel Xenon chips with 28 “hyperthreaded” cores running at 1GIPS
(clock rate is 3Ghz)

Up to 3 TB of memory, multiple levels of memory caches

All sorts of devices accessible directly or over the network

NVIDIA Tesla T4 GPU: adds $6,000, peaks at 269 TFLOPS

CORNELL CS4414 - SPRING 2023 21

MODERN COMPUTER: DELL R-740: $2,600

2 Intel Xenon chips with 28 “hyperthreaded” cores running at 1GIPS
(clock rate is 3Ghz)

Up to 3 TB of memory, multiple levels of memory caches

All sorts of devices accessible directly or over the network

NVIDIA Tesla T4 GPU: adds $6,000, peaks at 269 TFLOPS

CORNELL CS4414 - SPRING 2023 22

One CPU core actually
runs two programs at

the same time

INTEL XENON NVIDIA TESLA

CORNELL CS4414 - SPRING 2023 23

Each core is like a little computer, talking to the others
over an on-chip network (the CMS)

The GPU has so many cores that a photo of the chip is
pointless. Instead they draw graphics like these to help
you visualize ways of using hundreds of cores to process

a tensor (the “block” in the middle) in parallel!

HOW DID WE GET HERE?

In the early years of computing, we went from machines built from
distinct electronic components (earliest generations) to ones built
from integrated circuits with everything on one chip.

Quickly, people noticed that each new generation of computer
had roughly double the capacity of the previous one and could run
roughly twice as fast! Gordon Moore proposed this as a “law”.

CORNELL CS4414 - SPRING 2023 24

BUT BY 2006 MOORE’S LAW
SEEMED TO BE ENDING

CORNELL CS4414 - SPRING 2023 25

WHAT ENDED MOORE’S LAW?

To run a chip at higher and higher speeds, we
use a faster clock rate and keep more of the
circuitry busy.

Computing is a form of “work” and work generates heat… as
roughly the square of the clock rate.

Chips began to fail. Some would (literally) melt or catch fire!
CORNELL CS4414 - SPRING 2023 26

If you overclock your
desktop this can happen…

BUT PARALLELISM SAVED US!

A new generation of computers emerged in which we ran the
clocks at a somewhat lower speed (usually around 2 GHz, which
corresponds to about 1 billion instructions per second), but had
many CPUs in each computer.

A computer needs to have nearby memory, but applications
needed access to “all” the memory. This leads to what we call a
“non-uniform memory access behavior”: NUMA.

CORNELL CS4414 - SPRING 2023 27

MOORE’S LAW WITH NUMA

CORNELL CS4414 - SPRING 2023 28

Graph from prior slide

… MAKING MODERN MACHINES COMPLICATED!

Prior to 2006, a good program
 Used the best algorithm: computational complexity, elegance
 Implemented it in a language like C++ that offers efficiency
 Ran on one machine

But the past decade has been disruptive! Suddenly even a single
computer might have the ability to do hundreds of parallel tasks!

CORNELL CS4414 - SPRING 2023 29

THE HARDWARE SHAPES THE
APPLICATION DESIGN PROCESS

We need to ask how a NUMA architecture impacts our designs.

If not all variables are equally fast to access, how can we
“code” to achieve the fastest solution?

And how do we keep all of this hardware “optimally busy”?

CORNELL CS4414 - SPRING 2023 30

DEFINITIONS OF TERMS WE OFTEN USE

Architecture: (also ISA: instruction set architecture)
The parts of a processor design that one needs to understand for
writing correct machine/assembly code
 Examples: instruction set specification, registers
 Machine Code: Byte-level programs a processor executes
 Assembly Code: Readable text representation of machine code

CORNELL CS4414 - SPRING 2023 31

DEFINITIONS OF TERMS WE OFTEN USE

Microarchitecture: “drill down”.

Details or implementation of the architecture
 Examples: memory or cache sizes, clock speed (frequency)

Example ISAs:
 Intel: x86, IA32, Itanium, x86-64
 ARM: Used in almost all mobile phones
 RISC V: New open-source ISA

CORNELL CS4414 - SPRING 2023 32

TODAY: MACHINE PROGRAMMING I: BASICS

History of Intel processors and architectures

Assembly Basics: Registers, operands, move

Arithmetic & logical operations

C/C++, assembly, machine code

CORNELL CS4414 - SPRING 2023 33

HOW A SINGLE THREAD COMPUTES

In CS4414 we think of each computation in terms of a “thread”

A thread is a pointer into the program instructions. The CPU
loads the instruction that the “PC” points to, fetches any operands
from memory, does the action, saves the results back to memory.

Then the PC is incremented to point to the next instruction

CORNELL CS4414 - SPRING 2023 34

Common way to
depict a single thread

ASSEMBLY/MACHINE
CODE VIEW
Programmer-Visible State
 PC: Program counter
 Address of next instruction
 Called “RIP” (x86-64)

 Register file
 Heavily used program data

 Condition codes
 Store status information about most recent

arithmetic or logical operation
 Used for conditional branching

Memory
Byte addressable array
Code and user data
Stack to support procedures

Puzzle:
 On a NUMA machine, a CPU is near a fast

memory but can access all memory.
 How does this impact software design?

CORNELL CS4414 - SPRING 2023 35

ASSEMBLY/MACHINE
CODE VIEW
Programmer-Visible State
 PC: Program counter
 Address of next instruction
 Called “RIP” (x86-64)

 Register file
 Heavily used program data

 Condition codes
 Store status information about most recent

arithmetic or logical operation
 Used for conditional branching

Memory
Byte addressable array
Code and user data
Stack to support procedures

Puzzle:
 On a NUMA machine, a CPU is near a fast

memory but can access all memory.
 How does this impact software design?

CORNELL CS4414 - SPRING 2023 36

This memory is
slower to access!

Same with this one…

…

…

…

Example: With 6 on-board DRAM modules and 12 NUMA CPUs, each pair of
CPUs has one nearby DRAM module. Memory in that range of addresses will be
very fast. The other 5 DRAM modules are further away. Data in those address
ranges is visible and everything looks identical, but access is slower!

LINUX TRIES TO HIDE MEMORY DELAYS

If it runs thread t on core k, Linux tries to allocate memory for t
(stack, malloc…) in the DRAM close to that k.

Yet all memory operations work identically even if the thread is
actually accessing some other DRAM. They are just slower.

Linux doesn’t even tell you which parts of your address space are
mapped to which DRAM units.

CORNELL CS4414 - SPRING 2023 37

MACHINE LANGUAGE
(We’ll cover what we
can but probably
won’t have time for
all of this)

CORNELL CS4414 - SPRING 2023 38

THE HARDWARE UNDERSTANDS “PRIMITIVE”
DATA TYPES
“Integer” data of 1, 2, 4, or 8 bytes
Data values
Addresses (untyped pointers)

Floating point data of 4, 8, or 10
bytes (new: 4-bit, 8-bit, 16-bit)

Code: Byte sequences encoding
series of instructions

(SIMD vector data types of 8, 16, 32
or 64 bytes)

No aggregate types such as arrays or
structures
 Just contiguously allocated bytes in memory
 Example: Raw images are arrays in a

format defined by the camera or video,
such as RGB, jpeg, mpeg. The camera
understands the format. The host computer
the camera is attached to just sees bytes

CORNELL CS4414 - SPRING 2023 39

THE HARDWARE UNDERSTANDS “PRIMITIVE”
DATA TYPES
“Integer” data of 1, 2, 4, or 8 bytes
Data values
Addresses (untyped pointers)

Floating point data of 4, 8, or 10
bytes (new: 4-bit, 8-bit, 16-bit)

Code: Byte sequences encoding
series of instructions

(SIMD vector data types of 8, 16, 32
or 64 bytes)

No aggregate types such as arrays or
structures
 Just contiguously allocated bytes in memory
 Example: Raw images are arrays in a

format defined by the camera or video,
such as RGB, jpeg, mpeg. The camera
understands the format. The host computer
the camera is attached to just sees bytes

CORNELL CS4414 - SPRING 2023 40

X86-64 INTEGER REGISTERS

Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
Not part of memory (or cache)

CORNELL CS4414 - SPRING 2023 41

SOME HISTORY: IA32 REGISTERS

CORNELL CS4414 - SPRING 2023 42

ASSEMBLY CHARACTERISTICS: OPERATIONS

Transfer data between memory and register
Load data from memory into register
Store register data into memory

Perform arithmetic function on register or memory data

Transfer control
Unconditional jumps to/from procedures
Conditional branches
Indirect branches

CORNELL CS4414 - SPRING 2023 43

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Moving Data
 Moving Data

movq Source, Dest

 Operand Types
 Immediate: Constant integer data

 Example: $0x400, $-533
 Like C constant, but prefixed with ‘$’
 Encoded with 1, 2, or 4 bytes

 Register: One of 16 integer registers
 Example: %rax, %r13
 But %rsp reserved for special use
 Others have special uses for particular instructions

 Memory: 8 consecutive bytes of memory at address given by register
 Simplest example: (%rax)
 Various other “addressing modes”

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

Warning: Intel docs use
mov Dest, Source

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

movq Operand Combinations

Cannot do memory-memory transfer with a single instruction

movq

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Dest C/C++ Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Src,Dest

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory Addressing Modes
 Normal (R) Mem[Reg[R]]
 Register R specifies memory address
 Aha! Pointer dereferencing in C

movq (%rcx),%rax

 Displacement D(R) Mem[Reg[R]+D]
 Register R specifies start of memory region
 Constant displacement D specifies offset

movq 8(%rbp),%rdx

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of Simple Addressing Modes

whatAmI:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

void
whatAmI(<type> a, <type> b)
{

????
}

%rdi
%rsi

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of Simple Addressing Modes

void swap
(long *xp, long *yp)

{
long t0 = *xp;
long t1 = *yp;
*xp = t1;
*yp = t0;

}

swap:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

%rdi

%rsi

%rax

%rdx

Understanding swap()

void swap
(long *xp, long *yp)

{
long t0 = *xp;
long t1 = *yp;
*xp = t1;
*yp = t0;

}

Memory

Register Value
%rdi xp
%rsi yp
%rax t0
%rdx t1

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

Registers
xp

Addr

yp

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers
Memory

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

Registers
Memory

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding swap()

456

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding swap()

456

123

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory Addressing Modes
 Normal (R) Mem[Reg[R]]
 Register R specifies memory address
 Aha! Pointer dereferencing in C

movq (%rcx),%rax

 Displacement D(R) Mem[Reg[R]+D]
 Register R specifies start of memory region
 Constant displacement D specifies offset

movq 8(%rbp),%rdx

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complete Memory Addressing Modes
 Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
 D: Constant “displacement” 1, 2, or 4 bytes
 Rb: Base register: Any of 16 integer registers
 Ri: Index register: Any, except for %rsp
 S: Scale: 1, 2, 4, or 8 (why these numbers?)

 Special Cases
(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Address Computation Examples

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx,%rcx) 0xf000 + 0x100 0xf100

(%rdx,%rcx,4) 0xf000 + 4*0x100 0xf400

0x80(,%rdx,2) 2*0xf000 + 0x80 0x1e080

%rdx 0xf000

%rcx 0x0100

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Address Computation Examples

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx,%rcx) 0xf000 + 0x100 0xf100

(%rdx,%rcx,4) 0xf000 + 4*0x100 0xf400

0x80(,%rdx,2) 2*0xf000 + 0x80 0x1e080

%rdx 0xf000

%rcx 0x0100

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Machine Programming I: Basics
 History of Intel processors and architectures
 Assembly Basics: Registers, operands, move
 Arithmetic & logical operations
 C/C++, assembly, machine code

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Computation Instruction
 leaq Src, Dst
 Src is address mode expression
 Set Dst to address denoted by expression

 Uses
 Computing addresses without a memory reference
 E.g., translation of p = &x[i];

 Computing arithmetic expressions of the form x + k*y
 k = 1, 2, 4, or 8

 Example
long m12(long x)
{
return x*12;

}
leaq (%rdi,%rdi,2), %rax # t = x+2*x
salq $2, %rax # return t<<2

Converted to ASM by compiler:

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Arithmetic Operations
 Two Operand Instructions:
Format Computation
addq Src,Dest Dest = Dest + Src
subq Src,Dest Dest = Dest − Src
imulq Src,Dest Dest = Dest * Src
shlq Src,Dest Dest = Dest << Src Synonym: salq
sarq Src,Dest Dest = Dest >> Src Arithmetic
shrq Src,Dest Dest = Dest >> Src Logical
xorq Src,Dest Dest = Dest ^ Src
andq Src,Dest Dest = Dest & Src
orq Src,Dest Dest = Dest | Src

 Watch out for argument order! Src,Dest
(Warning: very old Intel docs use “op Dest,Src”)

 No distinction between signed and unsigned int (why?)

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Arithmetic Operations
 One Operand Instructions
incq Dest Dest = Dest + 1
decq Dest Dest = Dest − 1
negq Dest Dest = − Dest
notq Dest Dest = ~Dest

 See book for more instructions

 Depending how you count, there are 2,034 total x86 instructions

 (If you count all addr modes, op widths, flags, it’s actually 3,683)

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic Expression Example

Interesting Instructions
 leaq: address computation
 salq: shift
 imulq: multiplication

 Curious: only used once…

long arith
(long x, long y, long z)
{
long t1 = x+y;
long t2 = z+t1;
long t3 = x+4;
long t4 = y * 48;
long t5 = t3 + t4;
long rval = t2 * t5;
return rval;

}

arith:
leaq (%rdi,%rsi), %rax
addq %rdx, %rax
leaq (%rsi,%rsi,2), %rdx
salq $4, %rdx
leaq 4(%rdi,%rdx), %rcx
imulq %rcx, %rax
ret

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Arithmetic Expression Example

long arith
(long x, long y, long z)
{
long t1 = x+y;
long t2 = z+t1;
long t3 = x+4;
long t4 = y * 48;
long t5 = t3 + t4;
long rval = t2 * t5;
return rval;

}

arith:
leaq (%rdi,%rsi), %rax # t1
addq %rdx, %rax # t2
leaq (%rsi,%rsi,2), %rdx
salq $4, %rdx # t4
leaq 4(%rdi,%rdx), %rcx # t5
imulq %rcx, %rax # rval
ret

Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z,
t4

%rax t1, t2, rval

%rcx t5

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Evolution of Intel Instruction Set
 The Intel instruction set has changed over the decades since it was first introduced.

 Intel is a believer in the “CISC” model: complex instructions that are highly optimized

 Modern example: vector parallel instructions (also called SIMD: Single instruction,
multiple data). Introduced to make the x86 more competitive with GPU accelerators
 Such as “Multiply these two vectors and put the result in this third vector”, or “sum up the elements

in this vector, and put the result here.”
 The underlying hardware uses parallel processing to do the job faster.
 The C++ compiler can recognize many of these patterns and will emit vector parallel instructions (if

the target computer supports them). You can also provide “hints” to the compiler, to do so.

 There are many more examples; we will see a few later in the semester

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Machine Programming I: Basics
 History of Intel processors and architectures
 Assembly Basics: Registers, operands, move
 Arithmetic & logical operations
 C/C++, assembly, machine code

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

text

text

binary

binary

Compiler (c++)

Assembler (c++ or as)

Linker (c++ or ld)

C/C++ program (p1.cpp p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C/C++ into Object Code
 Code in files p1.cpp p2.c
 Compile with command: c++ pp1.cpp p2.c -o p

 There are often additional arguments such as –O3, -pg, -g…
 Put resulting binary in file p

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compiling Into Assembly
C/C++ Code

(sum.c)long plus(long x, long y);

void sumstore(long x, long y,
long *dest)

{
long t = plus(x, y);
*dest = t;

}

Generated x86-64 Assembly
sumstore:

pushq %rbx
movq %rdx, %rbx
call plus
movq %rax, (%rbx)
popq %rbx
ret

Obtain with command

C++ sum.c

Produces file sum.s

This uses the “indirect” addressing mode: dest holds
a memory address and *dest is a long integer at that
address. We are using that location as a variable here!

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What it really looks like
.globl sumstore
.type sumstore, @function

sumstore:
.LFB35:

.cfi_startproc
pushq %rbx
.cfi_def_cfa_offset 16
.cfi_offset 3, -16
movq %rdx, %rbx
call plus
movq %rax, (%rbx)
popq %rbx
.cfi_def_cfa_offset 8
ret
.cfi_endproc

.LFE35:
.size sumstore, .-sumstore

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What it really looks like
.globl sumstore
.type sumstore, @function

sumstore:
.LFB35:

.cfi_startproc
pushq %rbx
.cfi_def_cfa_offset 16
.cfi_offset 3, -16
movq %rdx, %rbx
call plus
movq %rax, (%rbx)
popq %rbx
.cfi_def_cfa_offset 8
ret
.cfi_endproc

.LFE35:
.size sumstore, .-sumstore

Things that look weird
and are preceded by a ‘.’
are generally directives.

sumstore:
pushq %rbx
movq %rdx, %rbx
call plus
movq %rax, (%rbx)
popq %rbx
ret

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Characteristics: Data Types
 “Integer” data of 1, 2, 4, or 8 bytes
 Data values
 Addresses (untyped pointers)

 Floating point data of 4, 8, or 10 bytes

 (SIMD vector data types of 8, 16, 32 or 64 bytes)

 Code: Byte sequences encoding series of instructions

 No aggregate types such as arrays or structures
 Just contiguously allocated bytes in memory

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Characteristics: Operations

 Transfer data between memory and register
 Load data from memory into register
 Store register data into memory

 Perform arithmetic function on register or memory data

 Transfer control
 Unconditional jumps to/from procedures
 Conditional branches

Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code for sumstore
0x0400595:

0x53
0x48
0x89
0xd3
0xe8
0xf2
0xff
0xff
0xff
0x48
0x89
0x03
0x5b
0xc3

Object Code

 Assembler
 Translates .s into .o
 Binary encoding of each instruction
 Nearly-complete image of executable code
 Missing linkages between code in different

files

 Linker
 Resolves references between files
 Combines with static run-time libraries

 e.g., code for malloc, printf
 Some libraries are dynamically linked

 Linking occurs when program begins
execution

• Total of 14 bytes
• Each instruction

1, 3, or 5 bytes
• Starts at address
0x0400595

Carnegie Mellon

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine Instruction Example
 C Code
 Store value t where designated by
dest

 Assembly
 Move 8-byte value to memory
 Quad words in x86-64 parlance

 Operands:
t: Register %rax
dest: Register %rbx
*dest: MemoryM[%rbx]

 Object Code
 3-byte instruction
 Stored at address 0x40059e

*dest = t;

movq %rax, (%rbx)

0x40059e: 48 89 03

Carnegie Mellon

75Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disassembled

Disassembling Object Code

 Disassembler
objdump –d sum

 Useful tool for examining object code
 Analyzes bit pattern of series of instructions
 Produces approximate rendition of assembly code
 Can be run on either a.out (complete executable) or .o file

0000000000400595 <sumstore>:
400595: 53 push %rbx
400596: 48 89 d3 mov %rdx,%rbx
400599: e8 f2 ff ff ff callq 400590 <plus>
40059e: 48 89 03 mov %rax,(%rbx)
4005a1: 5b pop %rbx
4005a2: c3 retq

Carnegie Mellon

76Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disassembled

Dump of assembler code for function sumstore:
0x0000000000400595 <+0>: push %rbx
0x0000000000400596 <+1>: mov %rdx,%rbx
0x0000000000400599 <+4>: callq 0x400590 <plus>
0x000000000040059e <+9>: mov %rax,(%rbx)
0x00000000004005a1 <+12>:pop %rbx
0x00000000004005a2 <+13>:retq

Alternate Disassembly

 Within gdb Debugger
 Disassemble procedure
gdb sum
disassemble sumstore

	The Evolution and Architecture of Modern Computers
	Idea Map for today
	Example 1: Driving to New York
	Want great computing mileage?
	Example: My code versus Sagar’s
	A chunk of Linux source code
	Visualization of my word count running
	What do we mean by “read data into memory?”
	How my code actually worked
	What made Sagar’s version slower?
	What made Sagar’s Code Slower?
	Central message here?
	How can we “know” the costs of Std::string?
	Small pivot
	What’s Inside? Architecture = components of a computer + operating System
	What’s Inside? Architecture = components of a computer + operating System
	What’s Inside? Architecture = components of a computer + operating System
	Architectures are changing rapidly!
	Architectures are changing rapidly!
	Today: Machine Programming I: Basics
	Modern Computer: Dell R-740: $2,600
	Modern Computer: Dell R-740: $2,600
	Intel Xenon NVIDIA TESLA
	How did we get here?
	But by 2006 Moore’s Law �seemed to be ending
	What ended Moore’s Law?
	But parallelism saved us!
	Moore’s Law with NUMA
	… making modern machines complicated!
	The Hardware shapes the�Application Design process
	Definitions of terms we often use
	Definitions of terms we often use
	Today: Machine Programming I: Basics
	How a single thread computes
	Assembly/Machine �Code View
	Assembly/Machine �Code View
	Linux tries to hide memory delays
	Machine Language
	The hardware understands “primitive” data types
	The hardware understands “primitive” data types
	x86-64 Integer Registers
	Some History: IA32 Registers
	Assembly Characteristics: Operations
	Moving Data
	movq Operand Combinations
	Simple Memory Addressing Modes
	Example of Simple Addressing Modes
	Example of Simple Addressing Modes
	Understanding swap()
	Understanding swap()
	Understanding swap()
	Understanding swap()
	Understanding swap()
	Understanding swap()
	Simple Memory Addressing Modes
	Complete Memory Addressing Modes
	Address Computation Examples
	Address Computation Examples
	Today: Machine Programming I: Basics
	Address Computation Instruction
	Some Arithmetic Operations
	Some Arithmetic Operations
	Arithmetic Expression Example
	Understanding Arithmetic Expression Example
	Evolution of Intel Instruction Set
	Today: Machine Programming I: Basics
	Turning C/C++ into Object Code
	Compiling Into Assembly
	What it really looks like
	What it really looks like
	Assembly Characteristics: Data Types
	Assembly Characteristics: Operations
	Object Code
	Machine Instruction Example
	Disassembling Object Code
	Alternate Disassembly

