
1) Install Memcached
2) Run Memcached (on Mac: /opt/homebrew/opt/memcached/bin/memcached

-l localhost) <— open a new terminal window once this is running
in background

3) Ensure Memcached is running (on Unix: ps -ef | grep -i memc)
4) Connect to Memcached through telnet (telnet localhost 11211) <— note that

11211 is default Memcached port
5) Run stats to retrieve statistics of our Memcached server (e.g., uptime, view how

many times certain queries were run, etc…)
6) Let’s add a key-val pair (<command> <key> <flag> <exp_time> <byte_size>

<no_op>)
⁃ First (add key): set foo 0 3600 3
⁃ Second: Press enter to actually enter the value on the next line
⁃ Third (add val): bar

7) Memcached will return STORED
8) Run stats again to analyze differences
9) Run get foo and see return
10) Run delete foo and wait for Memcached to let you know it’s gone
11) Run get foo and nothing is returned
12) Run stats to see that get_misses is now 1
13) Let’s add another key-val (note: different between add and set is that add will not

change value of a key but set will):
⁃ add num 0 3600 2 0
⁃ 50

14) Let’s get num
15) Now let’s append:

⁃ append num 0 3600 2
⁃ 25

16) What do you think get num will return? (Ans: 5025)
17) Now let’s prepend:

⁃ prepend num 0 3600 2
⁃ 44

18) What do you think get num will return? (Ans: 445025)
19) Now let’s replace:

⁃ replace num 0 3600 2
⁃ 40

20) What do you think get num will return? (Ans: 40)
21) We can increment num by 2: incr num 2
22) And then decrement by 2 as well: decr num 2
23) Let’s clear our cache: flush_all
24) Running stats again shows that while curr_items are 0, total_items are still 5
25) Let’s close our connection with memcached through telnet: quit
26) Let’s open it back up with command from 4) and notice that there

are still total_items == 5
27) Let’s kill our current Memcached server by canceling the process we spawned in

step 2 in another terminal window
28) Now we can restart our server by simply running the command from step 2 and

reinitiating a connection with telnet - at this point, total_items should be 0
29) The great thing about memcached is that it works with pretty much all languages

and there are myriad interfaces… Let’s experiment with one in Python!
30) Make sure a Memcached server is running and a telnet connection is open in

another window
31) Open a new window and create a venv and specify a python version (e.g., conda

create --name test python=3.5)
32) Activate your venv: conda activate test
33) Install the python-memcached interface into your venv: conda install -c

anaconda python-memcached
34) Enter a Python shell: python
35) Write the following script to import, initiate a client, and set/get key/val pair:

36) Double-check existence of 'greet' by running 'get greet' in your telnet terminal
window

37) This shows Memcached is language agonstic in real-time - great!
38) Let's now leverage our interface language by assigning Memcached to values we

can extend...
39) Let's create an object with multiple keys: mc.set_multi({'name':'John Doe',

'email':'jdoe@cornell.edu'})
40) We can:

⁃

⁃
41) Let's assign this key/val in our network cache to a Python value: person =

mc.get_multi(['name','email'])
42) We can:

⁃

⁃
43) More:

⁃

