
CS4414: RECITATION 8 –
FORK(), EXEC(), AND THREADS

Ricky Takkar

Friday, March 17, 2023

INTRODUCING OUR NEXT MODULE

 Our next large module looks at threads and thread-level
synchronization

 More broadly, our focus is on multiprocessing:
situations in which more than one element of a system
cooperate to carry out some task, using a mixture of
methods:

multiple threads, multiple processes, perhaps multiple
computers, perhaps even attached hardware
accelerators that are themselves programmable.

2CORNELL CS4414 - SPRING 2023 (RECITATION)

REMINDER: WHAT IS A THREAD? (FROM
LECTURE 14)

But we can also write a single program that, at runtime, uses
parallelism internally, via what we call a thread.

Use of threads requires a deep understanding of performance
consequences, overheads, and how to program correctly with
concurrency.

Many programs would slow down or crash if you just threw threads in.

CORNELL CS4414 - SPRING 2023 3

THREADS IN THE LINUX KERNEL! (FROM
LECTURE 14)

Linux itself is a multithreaded program. Each system call runs on
a distinct thread, and the Linux scheduler and file system have
additional threads of their own.

Linux evolved over decades to take full advantage of this
power. It wasn’t obvious or easy!

CORNELL CS4414 - SPRING 2023 4

WORD COUNT (FROM LECTURE 14)

Recall our word count from Lectures 1-3. It had:
➢ One “main” thread to process the arguments, then launch threads

➢ One thread just to open files

➢ N threads to count words, in parallel, on distinct subsets of the files
and implement parallel count-tree merge

Main thread resumed control at the end, sorted output, printed it.

CORNELL CS4414 - SPRING 2023 5

HOW LINUX CREATES THREADS/PROCESSES
(FROM LECTURE 14)

Any process can “clone itself” by calling pid = fork().

The parent process will receive the pid of its new child.

The child process is identical to the parent (even shares the same
open files, like stdin, stdout, stderr), but gets pid 0. Typically,
the child immediately “sets up” a runtime environment for itself.

CORNELL CS4414 - SPRING 2023 6

WHY “FORK”
(FROM LECTURE 14)

Because of poetry!

Recall that in Linux, every process has a parent process, and
/etc/init (runs at boot time) is the parent of everything.

The inventors of Unix (first version of Linux) visualized this a bit
like that famous road in the woods…

CORNELL CS4414 - SPRING 2023 7

“Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood…”

-- Robert Frost

THE TERM “FORK” HAS LINGERED
(FROM LECTURE 14)

If someone says “fork off a thread” or “fork off a process” it
refers to creating a new concurrent task.

Later, we might wait for that thread or
thread to finish. This is called a join

event. (like when a stream joins a river)

CORNELL CS4414 - SPRING 2023 8

FORK FOLLOWED BY EXEC
(FROM LECTURE 14)

In Linux we normally call exec after calling fork.

Fork creates the process and leaves the parent process an
opportunity to “set up” the runtime environment of the child.

Then exec launches some other program, but it runs in the same
process “context” that the forked child set up.

CORNELL CS4414 - SPRING 2023 9

FORK() AND EXEC() SYSTEM CALLS

• fork() system call creates a separate, duplicate process

•Process that calls fork() is the parent; the spawned
process is its child (parent and child have different pid)

•exec() system call replaces calling process (including all
threads) with program specified in parameter (original
and replacement processes share pid)

CORNELL CS4414 - SPRING 2023 (RECITATION) 10

USING FORK() AND EXEC() IN C++ (PLUS SOME
BONUS LINUX COMMANDS)

Let’s code!

Outcome:

• Learned how and why fork() and exec() can be used in

C++

• Utilized Linux commands such as ps and fg to monitor

and control processes

• Realized the importance of perror()

CORNELL CS4414 - SPRING 2023 (RECITATION) 11

BREAK: 5-10 MINUTES

CORNELL CS4414 - SPRING 2023 (RECITATION) 12

WITH THREADS, YOU CAN “FOLLOW BOTH PATHS”
IN THE WOODS…
(FROM LECTURE 14)
In computing, some ideas (like recursion) are really earth-shaking

Concurrency is one of them! In some ways very hard to do
properly, because of mistakes that can easily arise, and hidden
costs that can destroy the speedup benefits.

But in other ways, concurrency is revolutionary because we use
the hardware so efficiently.

CORNELL CS4414 - SPRING 2023 13

THREAD CONTEXTS (FROM LECTURE 14)

CORNELL CS4414 - SPRING 2023 14

 Multiple threads can be associated with a process
▪ Each thread has its own logical control flow
▪ Each thread shares the same code, data, and kernel context
▪ Each thread has its own stack for local variables

▪ but not protected from other threads
▪ Each thread has its own thread id (TID)

Thread 1 context:

Data registers
Condition codes
SP1

PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:

VM structures
Descriptor table
brk pointer

Thread 2 context:

Data registers
Condition codes
SP2

PC2

stack 2

Thread 2 (child thread)

THREAD STACKS (FROM LECTURE 14)

Although the main thread has a stack that can grow without limit,
this is not the situation for spawned child threads.

They have limited stack sizes (default: 2MB, but you can specify
a larger size)

Overflow will cause the entire process to crash.

CORNELL CS4414 - SPRING 2023 15

STACK ALLOCATION: SAFE, BUT BE CAUTIOUS
(FROM LECTURE 14)

2MB is a large amount of space and won’t easily be used up.
C++ gives a stack overflow exception if you manage to do so.

But we can’t put really big objects on the stack, or do really
deep recursion with even medium-sized objects on the stack.

CORNELL CS4414 - SPRING 2023 16

SO FAR IN THIS COURSE, WE’VE NOT EXPLOITED
MULTITHREADING

• What that means is each program we’ve written so far
has been run by a machine in a line-by-line way

• What are some multithreaded programs you use
everyday, and what makes you say they are
multithreaded?

• Would you say this notion of concurrent programming
serves, generally, to make programs more performant
and functional?

CORNELL CS4414 - SPRING 2023 (RECITATION) 17

TIME FOR ANOTHER DEMO

Outcome:

• Created and accessed threads to boost functionality of
program

• Realized thread lifecycle and consider design to optimize
joint behavior

CORNELL CS4414 - SPRING 2023 (RECITATION) 18

SUMMARY

• fork() and exec() demo
• Learned how and why fork() and exec() are used in

C++
• Utilized Linux commands such as ps and fg to monitor

and control processes through the command line
• Realized the importance of perror() to locate errors in code

• threads demo
• Created and accessed threads to boost functionality of program
• Realized thread lifecycle and considered design to optimize joint
behavior

19CORNELL CS4414 - SPRING 2023 (RECITATION)

