
CS4414 Recitation 5
C++ memory management and functions

02/24/2023

Alicia Yang

C++ Pointers and Reference

• What are C++ Pointer and Reference? Why do we have them?
• How to use C++ pointers and allocate memory for my program?

Pointers

• A pointer is a variable that stores the memory address of an object. Give
programmer the ability to manipulate data directly from the computer’s memory

• Why use pointers?
• Save memory: More fine-grained object’s life-time control
• Improve the processing speed.
• Reduces the length and complexity of a program
• Provide reference semantics, allow the passing objects to function more efficiently.

……. 1780 1779 1778 1777 1776 1775

Pointers --- Address-of(&) and Dereference(*__) operators

• A pointer is a variable that stores the memory address of an object.

• Example:

int num = 10;

int* bar = #

int num2 = (* bar);

……. 1779 1778 1777 1776 1775

num

10 1778

bar

Hey, what IS your
memory address?

Hey, what IS stored IN
your memory address?

num2

10

…….
1780

References

• Reference, is an alias, is another name for an already existing variable.

• Changes to the reference are reflected on the original object

int num = 10;

int& ref = num;

ref = 2;

……. 1779 1778 1777 1776

num

10

ref

2

I’m a
reference

1780

C++ Memory

Memory

• Memory for C/C++/Java program

• Stack: used for memory needed to call
methods(such as local variables), or for
inline variables

• Heap: Dynamically memory used for
programmers to allocate. The memory will
often be used for longer period than stack

• Data: use for constants and initialized
global objects

• Code: segments that holds compiled
instructions

Stack

Heap

data

Code(Text)

High address

low address

Stack Memory

• Stack Allocation (Temporary memory
allocation):
• Allocate on contiguous blocks of

memory, in a fixed size
• Allocation happens in function call stack

Stack

Heap

data

Code(Text)

High address

low address

Stack Memory

• Stack Allocation (Temporary memory
allocation):
• Allocate on contiguous blocks of memory, in a

fixed size
• Allocation happens in function call stack
• When a function called, its variables got

allocated on stack; when the function call is
over, the memory for the variables is
deallocated. (scope)

• The allocation and deallocation for stack
memory is automatically done.

• Fast to allocate memory on stack(1CPU
operation), faster than heap

Stack

Heap

data

Code(Text)

High address

low address

• Stack Allocation (Temporary memory
allocation):

int computeA(int a){ return a*a; }

int computeFinal(int a, int b){
int c = computeA(a) + b;
return c;

}

int main()
{

int a = 1, int b = 2;
total = computeFinal(a, b);
…

}

Stack Memory

Stack

Stack

Heap

data

Code(Text)

main()
a, b

computeFinal()
a, b, c

computeA()
a

• Stack Allocation (Temporary memory
allocation):

int computeA(int a){ return a*a; }

int computeFinal(int a, int b){
int c = computeA(a) + b;
return c;

}

int main()
{

int a = 1, int b = 2;
total = computeFinal(a, b);
…

}

Stack Memory

Stack

Stack

Heap

data

Code(Text)

main()
a, b

computeFinal()
a, b, c

• Stack Allocation (Temporary memory
allocation):

Stack free memory via stack pointer

int computeA(int a){ return a*a; }

int computeFinal(int a, int b){
int c = computeA(a) + b;
return c;

}

int main()
{

int a = 1, int b = 2;
total = computeFinal(a, b);
…

}

Stack Memory

Stack

Stack

Heap

data

Code(Text)

main()
a, b

• Now, if we take a closer look on the stack
memory segment of main() function

int main()
{

int a = 1, int b = 2;
total = computeFinal(a, b);
int * p = a;
…

}

Data pointer in Stack Memory

Stack

Stack

Heap

data

Code(Text)

Int a 1

Int b 2

Int total 3

Int* p

main()

• A common mistake is to return a pointer to a
stack variable in a helper function

int* helper()
{

int a = 1, int b = 2;
int * p = a;
return p;

}

int main(){
int* h_p = helper();
…

}

Common mistake with stack memory

Stack

Stack

Heap

data

Code(Text)

Int* h_p __

Int a 1

Int b 2

Int total 3

Int* p

helper()

main()

• The stack memory of a function gets
deallocated after the function returns

int* helper()
{

int a = 1, int b = 2;
int * p = a;
return p;

}

int main(){
int* h_p = helper();
…

}

Common mistake with stack memory

Stack

Stack

Heap

data

Code(Text)

Int* h_p __

Int a 1

Int b 2

Int total 3

Int* p

main()

Undefined behavior

• Heap Allocation
• Allocated during the execution of instructions

written by programmers. (Variables allocated by
heap could last longer than the span of the
function)

Heap Memory

int *ptr = new int[10]; // This memory for 10 integers is
allocated on heap

// new key word calls malloc()

Stack

Heap

data

Code(Text)

• Heap Allocation
• Allocated during the execution of instructions

written by programmers.
• No automatic de-allocation feature is provided.

Need to use a Garbage collector to remove the
old unused objects

Heap Memory

int *ptr = new int[10];
Delete[] ptr; // release the memory

Stack

Heap

data

Code(Text)

• Heap Allocation
• Allocated during the execution of instructions

written by programmers.
• No automatic de-allocation feature is provided.

Need to use a Garbage collector to remove the
old unused objects

• If you try to use the pointers to the memory after
you free them, it will cause undefined behavior.
(A good practice to set the value of freed pointers
to nullptr immediately after delete)

Heap Memory

int *ptr = new int[10];
Delete[] ptr;
ptr = nullptr; // set the value of the freed pointer

Stack

Heap

data

Code(Text)

• Heap Allocation
• Allocated during the execution of instructions

written by programmers. (Variables allocated by
heap could last longer than the span of the
function)

• No automatic de-allocation feature is provided.
Need to use a Garbage collector to remove the
old unused objects

• If you try to use the pointers to those memory
after you free them, it will cause undefined
behavior.

• Unlike stack, memory allocated on heap is not
necessarily contiguous

Heap Memory

Stack

Heap

data

Code(Text)

Memory

• Example demo code of objects allocate memory on
Stack, Heap

Application’s memory
Heap

Stack

Static/global

Code(Text)

demo

C++ Pointers and memory

• What are C++ Pointer and Reference? Why do we have them?
• How to use C++ pointers and allocate memory for my program?

Types of Pointers

• C-style raw pointers

• Smart pointers

• unique_ptr

• shared_ptr

• Iterators

C++ raw pointer with heap-based memory allocation

#include <iostream>

int main(){

int* a = new int(10);

…

return 0;

}

Stack

Stack

Heap

data

Code(Text)

Int* a

……

main()

……

(int) 10

C++ raw pointer with heap-based memory allocation

#include <iostream>

int main(){

int* a = new int(10);

return 0;

}

Stack

Heap

data

Code(Text)

Int* a

……

(int) 10Leaked memory

main() function’s Stack
automatically gets popped

off when out of scope

Does this function looks correct?

No. It causes the program to have
memory leak

C++ raw pointers with heap-based memory allocation

// Use the * operator to declare a pointer type
// Use new to allocate and initialize memory on heap

// release memory
// anything allocate with new, should delete the memory to
prevent memory leak

#include <iostream>

int main(){

int* a = new int(10);

…

delete a;

return 0;

}

C++ raw pointer with heap-based memory allocation

Stack

Stack

Heap

data

Code(Text)

Int* a

……

main()

……

(int) 10

#include <iostream>

int main(){

int* a = new int(10);

…

delete a;

return 0;

}

C++ Raw Pointer

Example* example = new Example();

delete example;

// Use the * operator to declare a pointer type
// Use new to allocate and initialize memory

// release memory back to OS
// anything allocate with new, should delete the memory to
prevent memory leak

What if never call delete example?

It will cause the program to have
memory leak

Memory Leak

• What is memory leak in C++?

• Memory leakage in C++ is when programmers allocates heap-based

memory by using new keyword and forgets to deallocate the memory

• The problem with memory leaks is that they accumulate over time and, if left

unchecked, may cripple or even crash a program

Memory Leak

• What is memory leak in C++?

• Memory leakage in C++ is when programmers

allocates heap-based memory by using new keyword

and forgets to deallocate the memory

• The problem with memory leaks is that they accumulate

over time and, if left unchecked, may cripple or even

crash a program

Stack

Heap

data

Code(Text)

Leaked memory

Memory Leak

• What is memory leak in C++?

• Memory leakage in C++ is when programmers

allocates heap-based memory by using new keyword

and forgets to deallocate the memory

• The problem with memory leaks is that they accumulate

over time and, if left unchecked, may cripple or even

crash a program

Stack

Heap

data

Code(Text)

Leaked memory

Leaked memory

Leaked memory

Leaked memory

Memory Leak

• What is memory leak in C++?

• How to avoid memory leak in my program?

• Follow RAII principle(Resource acquisition is initialization): resource

acquisition must succeed for initialization to succeed. The resource is

guaranteed to be held between when initialization finishes and finalization

starts, and be released when not used.

• Use smart pointers instead of raw pointers

Memory Leak

• What is memory leak in C++?

• How to avoid memory leak in my program?

• How to check if my program has memory leak?

• Valgrind: https://valgrind.org

$ valgrind --leak-check=full ./exec

demo

https://valgrind.org/

C++ Raw Pointer

Example* example2 = new Example();

Example* ecopy = example2;

ecopy->print();

delete example2;

// Use the * operator to declare a pointer type
// Use new to allocate and initialize memory

// Declare a pointer that points to an object using
the address of operator

// Accessing filed/function of an object’s pointer using ->

// Dangerous behavior, leaving a dangling pointer
ecopy

Undefined behavior

C++ Raw Pointer

Example* example2 = new Example();

Example* ecopy = example2;

ecopy->print();

delete example2;

ecopy->print();

// Use the * operator to declare a pointer type
// Use new to allocate and initialize memory

// Declare a pointer that points to an object using
the address of operator

// Accessing filed/function of an object’s pointer using ->

// Dangerous behavior, leaving a dangling pointer
ecopy

// Undefined behaviour, the object pointed by
ecopy is deleted

What happen if
I try to access example2 later in my code?

Undefined behavior

Types of Pointers

• C-style raw pointers

• Smart pointers: wrapper of a raw pointer and make sure the object is deleted if

it is no longer used

• unique_ptr

• shared_ptr

• Iterators

• For C++ ownership is the responsibility for cleanup.

• The three types of pointers:

• int * : does not represents ownership — can do anything you want with it, and

you can happily use it in ways which lead to memory leaks or double-frees.

• std::unique_ptr<int>: represents the simplest form of ownership (sole owner of

resource and will get destroyed and cleaned up correctly)

• std::shared_ptr<int> : one of a group of friends who are collectively responsible

for the resource. The last of them to get destroyed will clean it up.

Ownership of Pointers

Types of Pointers --- smart pointer: unique_ptr

• a smart pointer that owns and manages an object through a pointer and disposes
of that object when the unique_ptr goes out of scope.

std::unique_ptr<Example> example = new Example();

std::unique_ptr<Example> example(new Example());
std::unique_ptr<Example> example = std::make_unique<Example>();

std::unique_ptr<Example> example2 = example;

std::unique_ptr<Example> example2 = std::move(example);

Unique_ptr needs to call the constructor explicitly

unique_ptr class doesn’t allow copy of unique_ptr

std::move() : transferring of ownership(resources) from one object to another

Exercise: std::vector of pointers

Stack

Heap

data

Code(Text)

std::unique_ptr<int>

a

……

(int) 10

#include <iostream>

int main(){

std::unique_ptr<int> a =
std::make_unique<int>(10);

…

return 0;

}

• std::shared_ptr: a smart pointer that retains shared ownership of an object
through a pointer. Several shared_ptr objects may own the same object.

• The object is destroyed and its memory deallocated, when the last shared_ptr
owning the object is destroyed or is assigned to another pointer. (when Reference
counting==0)

std::shared_ptr<Example> example = std::make_shared<Example>();

std::shared_ptr<Example> example(new Example());

std::shared_ptr<Example> example2 = example;

Types of Pointers --- smart pointer: shared_ptr

Types of Pointers

• C-style raw pointers

• Smart pointers: wrapper of a raw pointer and make sure the object is deleted if

it is no longer used

• unique_ptr : prefer, low overhead

• shared_ptr

• Array Pointer, Iterators

• An array name is a pointer to the first element of the array

• *(array + ind) is equivalent to array[ind]

int array[5] = {1, 2, 3, 4, 5};

int* ptr;
ptr = array;

cout << *(array + 3) << endl;

cout << *(ptr + 3) << endl;

Types of Pointers --- array pointer

What are the print outs?

array

ptr

1137

• Vector pointer: a direct pointer to the memory array by the vector to store its
elements.

• Buggy code example:

std::vector<int> intVector;

intVector.push_back(1);

int* pointerToInt = &intVector[0];

Types of Pointers --- vector pointer

// We get the pointer to the first element from our vector.

?

• Vector pointer: a direct pointer to the memory array by the vector to store its
elements.

• Buggy code example:

std::vector<int> intVector;

intVector.push_back(1);

int* pointerToInt = &intVector[0];

intVector.push_back(2);

intVector.push_back(3);

std::cout << "The value of our int is: " << *pointerToInt << std::endl;

Types of Pointers --- vector pointer

// Add two more elements to trigger vector resize. During
// resize the internal array is deleted causing our pointer
// to point to an invalid location.

// We get the pointer to the first element from our vector.

?

• Iterator: An iterator is an object (like a pointer) that points to an element inside the
container.

• Container: A container is a holder object that stores a collection of other objects (its
elements). Like array, vector, dequeue, list …

• Difference between pointer and iterator:
• An iterator may hold a pointer, but it may be something much more complex. (e.g.

iterator can iterate over data that’s on file system, spread across many machines.)
• An iterator is more restricted, can only refer to object inside a container (e.g. vector,

array) . A pointer of type T* can point to any type T object.

Types of Pointers --- vector iterator

• vector<T>::iterator i: create an iterator for a vector of type T

• begin() : return the beginning position of the container
• end() : return the after end position of the container
• To access the elements in the sequence container by i++

Types of Pointers --- vector pointer and iterator

std::vector<int> myvector;

For(int i=1; i<5 ; i ==) myvect.push_back(i) ;

for (std::vector<int>::iterator it = myvector.begin() ; it != myvector.end(); ++it)

std::cout << ' ' << *it << std::endl;

C++ Functions

• What are C++ Pointer and Reference? Why do we have them?
• How to use C++ memory resources for my program?

Function Parameter

• Pass by value : passing the copy of the value
void fun(X x) { std::cout << x << std::endl; }; // declare a function

X x; // create a variable

fun(x); // call the function

• Pass by pointer : passing the copy of the value’s pointer
void fun(X *x);
X x;
fun(&x); // & means get the address_of

• Pass by reference : passing a reference
void fun(X &x); // & means the parameter type is reference

X x;
fun(x);

Function Parameter --- Passing vector

• When a vector value is passed to a function, a copy of the vector is created.

void func(std::vector<int> vect)
{

vect.push_back(30);
}

int main()
{

std::vector<int> vect;
vect.push_back(10);
vect.push_back(20);

func(vect);
}

ß Passing a vector value to a function:

- changes made inside the function are not reflected

outside because function has a copy.

- it might also take a lot of time in cases of large vectors.

• Pass by reference

void func(vector<int> vect)
{

vect.push_back(30);
}

int main()
{

vector<int> vect;
vect.push_back(10);
vect.push_back(20);
func(vect);

}

Function Parameter --- Passing vector
demo

vect.size() = 2

vect.size() = 3

• Pass by reference

(preferred to pass by reference than pass by pointer)

void func(vector<int>& vect)
{

vect.push_back(30);
}

int main()
{

vector<int> vect;
vect.push_back(10);
vect.push_back(20);

func(vect);
}

Function Parameter --- Passing vector
demo

Function Parameter --- const

• Const keyword in parameter of reference: a promise that the variable being
referenced cannot be changed through the reference.

void foo(const std::string& x) // x is a const reference

{

x = "hello"; // compile error: a const reference cannot have its value changed!

}

demo

• Const keyword in parameter of pointer:
const type * identifier; // define a read-only location
• declares the identifier as a pointer whose pointed at value is constant. This construct is used

when pointer arguments to functions will not have their contents modified.

void fn(const int* p){

*p = expression;

}

Function Parameter --- const

// compiler complain: here it is illegal to have
a const pointer’s content change

• Const keyword in parameter of pointer:
type * const identifier; // define a read-only parameter
• declares the identifier as a const pointer whose memory address it points to cannot be changed.

void fn(int* const p){

int a = 5;

p = &a;

}

Function Parameter --- const

// compiler complain: here it is illegal to have
a const pointer parameter changed

• const declares an object as constant. This implies a guarantee that once initialized, the value of that
object won't change.

• A constexpr variable or function must return a literal type. (A literal type is one whose layout can be
determined at compile time. The following are the literal types:
• void
• scalar types
• references
• Arrays of void, scalar types or references
• A class that has a trivial destructor

• const variable can be deferred until run time. A constexpr variable must be initialized at compile time.
All constexpr variables are const.

constexpr float x = 42.0;
constexpr float y{108};
constexpr float z = exp(5, 3);
constexpr int i; // Error! Not initialized
int j = 0;
constexpr int k = j + 1; //Error! j not a constant expression

Const vs constexpr

• A constexpr function is one whose return value is computable at compile time when
consuming code requires it.
• A constexpr function must accept and return only literal types.
• A constexpr function can be recursive.

• A constexpr function or constructor is implicitly inline.

constexpr float exp(float x, int n)
{

return n == 0 ? 1 :
n % 2 == 0 ? exp(x * x, n / 2) :
exp(x * x, (n - 1) / 2) * x;

}

Const vs constexpr

• Return by value : returning a copy of the value

• Return by reference

Function Returns

double& getValue(int i) {
return vals[i]; // return a reference to the ith element

}

int value(int a) {
int b = a * a;
return b; // return a copy of b

}

• Return by value

• Return by reference

• Return a pointer :
• Generally not a good idea to return a pointer to a local variable

Function Returns

person* register_person(){
person a("alicia", 1, "chess");
return &a;

}

int main(){
person* b = register_person();
std::cout << b->name << std::endl;
delete b;

…
}

demo

class person{
public:

std::string name;
int id;
std::string hobby;
person(std::string _name, int _age, std::string

_hobby)
: name(_name), id(_age), hobby(_hobby){}

};

• Why this code doesn’t work?

Memory

person* register_person(){
person a("alicia", 1, "chess");
return &a;

}

int main(){
person* b = register_person();
std::cout << b->name << std::endl;
delete b;

…
}

Stack

Stack

Heap

data

Code(Text)

person* b __

…..

person a(…)Register_person()

main()

• Why this code doesn’t work?

Memory

person* register_person(){
person a("alicia", 1, "chess");
return &a;

}

int main(){
person* b = register_person();
std::cout << b->name << std::endl;
delete b;

…
}

Stack

Stack

Heap

data

Code(Text)

person* b __

…..

person a(…)

main()

😢

• Return by value

• Return by reference

• Return a pointer
• Generally not a good idea to return a raw pointer

Function Returns --- array

Fix1. return by value

person register_person(){

person a("alicia", 1, "chess");

return a;

}

Fix2. use heap (not suggested)

person* register_person(){

person* a = new person("alicia", 1, "chess");

return a;

}

// (need the caller to release the memory of the returned pointer)

Can you think of better ways?

demo

Exercise

61

From the demo examples in fn_return_example.cpp file.

What are some better solutions to return an object that is allocated on heap memory?

Try it out and explain why it works

Where to find the resources?

• Memory Heap and Stack: https://courses.engr.illinois.edu/cs225/fa2022/resources/stack-heap/
• Pointers: https://docs.microsoft.com/en-us/cpp/cpp/pointers-cpp?view=msvc-160 ,

https://www.cplusplus.com/doc/tutorial/pointers/
• Variable linking at compiler: https://www.cs.csub.edu/~melissa/cs350-f15/notes/notes05.html

• Move semantics: https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-
c++11.html

• Iterators: https://www.geeksforgeeks.org/introduction-iterators-c/
• difference between pointers: https://www.geeksforgeeks.org/difference-between-iterators-and-pointers-

in-c-c-with-examples/
• Passing arguments by reference: https://www.learncpp.com/cpp-tutorial/passing-arguments-by-

reference/
• Const vs constexpr: https://learn.microsoft.com/en-us/cpp/cpp/constexpr-cpp?view=msvc-170

• Effective C++: 55 specific ways to improve your programs and designs, Scott Meyers, 3rd edition
• A Tour of C++, Bjarne Stroustrup

https://courses.engr.illinois.edu/cs225/fa2022/resources/stack-heap/
https://docs.microsoft.com/en-us/cpp/cpp/pointers-cpp?view=msvc-160
https://www.cplusplus.com/doc/tutorial/pointers/
https://www.cs.csub.edu/~melissa/cs350-f15/notes/notes05.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.geeksforgeeks.org/introduction-iterators-c/
https://www.geeksforgeeks.org/difference-between-iterators-and-pointers-in-c-c-with-examples/
https://www.geeksforgeeks.org/difference-between-iterators-and-pointers-in-c-c-with-examples/
https://www.learncpp.com/cpp-tutorial/passing-arguments-by-reference/
https://www.learncpp.com/cpp-tutorial/passing-arguments-by-reference/
https://learn.microsoft.com/en-us/cpp/cpp/constexpr-cpp?view=msvc-170

