
CS4414 Recitation 4
Continuing on with classes. And a bit on compiling.

02/17/2023

Ricky Takkar

1

Part 1/2
Continuing on with classes

2

http://www.trytoprogram.com/cplusplus-programming/hierarchical-inheritance/

Recap: Constructors
• A constructor has the same name as the class and no return type. It can

have as many arguments as needed (just like a regular function)

• You can write as many constructors as you need

• E.g.,

• myClass();

• myClass(int x, std::string str);

• myClass(someOtherClass otherClassObject) and so on

3

Recap: Constructors
• Special constructors:

• Default constructor – takes no arguments

• Copy constructor (careful with this!) – myClass(const myClass& other);

• Move constructor – myClass(myClass&& other); *see Ed post #71 for more info
between “&” and “&&”

• The compiler provides a default constructor (public) when no constructors are
defined

• It also provides a default copy and a default move constructor unless the user
defines them

4

Recap: Constructors
• Using the keywords default and delete, you can enable or disable a

constructor

• What if you want to disable the copy constructor? For e.g., you want
unique ownership of a resource and don’t want it duplicated.

• myClass(const myClass& other) = delete;

• What if you write a custom constructor that takes some arguments, but
still want to keep a default constructor?

• myClass() = default;
5

Constructors you may be familiar with
• Think of different ways to construct a vector object
 std::vector<int> numbers; // default constructor
 std::vector<int> numbers(5); // notice the parentheses, creates a vector of size 5, all 0s
 std::vector<int> numbers(5, 100); // all 5 elements initialized to 100
 std::vector<int> one_to_ten = {1, 2, 3, 4, 5, 6, 7,. 8, 9, 10}; // uses initializer list
 std::vector<int> numbers(one_to_ten); // one_to_ten is of type std::vector<int>, invokes the copy
constructor

• Vectors use dynamically allocated arrays to store elements. What happens
when this array needs to grow to accommodate new elements?

• A new array is allocated to which all elements are moved. This is expensive

• Tip: reserve() allocates sufficient memory to store specified number of
elements in vector

6

Find the error

7

Solution:
Vector cannot default construct

constituent objects

How to rectify

8

Solution:
push_back() constructed

elements. push_back() will
invoke the copy constructor to
copy objects into the vector

Bonus

9

• To reduce copy operations
(i.e., improve performance),

one can use emplace_back()
instead of push_back().

• Note the argument passed to
emplace_back(): it matches
that of myClass constructor.

Constructor initializer list
• Problem: How to construct constituent objects of a class in the

constructor?

• e.g.,

• Suppose we have Person(std::string name);, constructor for Person

• Next, we have Group constructor that contains three Person objects
A, B, and C

• How can we construct the Person objects, part of a group, in the
constructor of Group?

10

Constructor initializer list

• Unlike Java, you cannot construct data members in the body of the
constructor. In Java, you would do something like,

• But in C++, objects cannot be null. Member objects must be
constructed when the enclosing class object is constructed.

11

Group::Group() {
 this->A(“Ken”);
 this->B(“Ricky”);
 this->C(“Alicia”);
}

Constructor initializer list
• So, the signature of the constructor and before the body, include a

constructor initializer list

• comma-separated list of the type class_member(args...)

12

Group::Group(std::string name1, std::string name2,
std::string name3) : A(name1),
 B(name2),
 C(name3) {
 // body of constructor
}

Hierarchical Inheritance
• Sometimes, it’s important to create a new (sub) class derived from some base

class so objects of the derived class have both: access to inherited traits of the
base class, but liberty to extend beyond…

• e.g., child inherits traits of parents but also develops unique features

13

https://www.geeksforgeeks.org/cpp-hierarchical-inheritance/

Base/Parent class

Derived/
Child class

Hierarchical Inheritance

14

class BaseClass
{
// data members
// member functions
}

class DerivedClass1 : visibility_mode BaseClass
{
 // data members
 // member functions
}

class DerivedClass2 : visibility_mode BaseClass
{
 // data members
 // member functions
}

Recap: Access Specifiers

• 3 access specifiers for class variables and methods in C++:

• public - accessible outside the class

• private (default) - inaccessible outside the class

• protected - only accessible to inherited classes outside the class
itself. More on Inheritance later…

15

Hierarchical Inheritance: Visibility Mode
• Determines how base class features will be inherited by child class

16

class DerivedClass1 : public BaseClass
{ // body }

class DerivedClass2 : private BaseClass
{ // body }

class DerivedClass3 : protected BaseClass
{ // body }

Access specifiers of base class
maintained as is (private remains

private, public remains pub…)

Public and protected access
specifiers from base become
private (i.e., inaccessible by

derived class objects)

Public members from base class
become protected (while

protected and private members
remain as is).

Exercise: Fill in the blanks

17

Base
Class

Derived
Class

Derived
Class

Derived
Class

Public Protected Private

Public Public Protected Private

Protected Protected Protected Private

Private Not
inherited

Not
inherited

Not
inherited

Function Overloading

• What happens if functions share the same name in the same
scope?

• No problem! As long as…

• At compile time, the compiler can can choose which overload
to use based on types and number of arguments passed in by
caller

18

Function Overloading
• Both, free and member functions, can be overloaded

19

https://learn.microsoft.com/en-us/cpp/cpp/function-overloading?view=msvc-170

What about function overloading with
hierarchical inheritance?

20

Question: What will the program output?

A. foo(double): 5.1
 foo(double): 5.4

B. foo(int): 5
 foo(double): 5.4

C. Error

No overload resolution between
class hierarchy in C++

Exercise

• Using demo code from Recitation 3, implement

• Hierarchical inheritance (hint: create some new classes that
inherit from Student - feel free to modify Student)

• Constructor initializer list

• Function overloading

21

Part 2/2
A bit about compiling

22

https://www.codecademy.com/article/cpp-compile-execute-locally

Recap: Compiling Classes

• Run “g++ -o exec_name main.cpp rest.cpp …”

• Include all the cpp files in the g++ command

• Ignore header files in compilation command as they should be
included in the cpp files

• Only one program should contain the main function (in the above
example, main.cpp)

23

Journey of C++ Compilation

• Step 1: The preprocessor

• Before the C++ compiler compiles, the source code file is
processed by a preprocessor

• The compiler automatically invokes the preprocessor

• Preprocessor commands start with “#”, e.g., #include <iostream>

24

Journey of C++ Compilation

• Step 2: The compiler

• By now, the compiler has included all header files and expanded
#include statements

• Compiler transforms C++ source code into object code file (*.o)
containing binary version of source code

• Object code file is not directly executable

25

Journey of C++ Compilation

• Step 3: The linker

• Separate program called ld akin to preprocessor (also invoked
automatically by compiler like preprocessor program)

• Links together object files (including object files created from
source code and pre-compiled object files collected into library
files with *.a or *.so extension) into a single binary executable

26

Build Files and Generate Executables Makefile

• Makefile is a special file containing shell commands executed by
running the ‘make’ command inside the Makefile directory

27

Build Files and Generate Executables CMake

28

• Why CMake?

• Makefiles are low-level, clunky creatures

• CMake is a higher level language to automatically generate Makefiles

• CMake contains more features, such as finding library, files, header files; it makes the linking
process easier, and gives readable errors

• What is CMake?

• CMake is an extensible, open-source system that manages the build process in an operating
system and in a compiler-independent manner.

• CMakeLists.txt files in each source directory are used to generate Makefiles

Build Files and Generate Executables CMake

29

• Build and Run

• Navigate to the source directory, and create a build directory

• $ cd ./myproject & $ mkdir build

• Navigate to the build directory, and run CMake to configure the project and generate a build system

• $ cd build & $ cmake

• Call build system to compile/link the project

• Either run $ make

• Or run $ cmake-build .

Example

30

• CMakeLists.txt files placed in each source directory are used to generate standard build
files (e.g., makefiles on Unix and projects/workspaces in Windows MSVC).

• CMake supports in-place and out-of-place builds, and can therefore support multiple
builds from a single source tree.

Cmake
3. Cmake with subdirectory

say-hellohello-exe

hello-exe say-hello

Root
(source directory)

hello-exesay-hello

CMakeLists.txt

CMakeLists.txtCMakeLists.txt

Demo

Root_directory

31

32

References
1. https://www.youtube.com/watch?v=HcESuwmlHEY

2. https://www.simplilearn.com/tutorials/cpp-tutorial/hierarchical-
inheritance-in-cpp

3. https://www.geeksforgeeks.org/does-overloading-work-with-
inheritance/

4. http://courses.cms.caltech.edu/cs11/material/cpp/mike/misc/
compiling_c++.html

33

https://www.youtube.com/watch?v=HcESuwmlHEY
https://www.simplilearn.com/tutorials/cpp-tutorial/hierarchical-inheritance-in-cpp
https://www.simplilearn.com/tutorials/cpp-tutorial/hierarchical-inheritance-in-cpp
https://www.geeksforgeeks.org/does-overloading-work-with-inheritance/
https://www.geeksforgeeks.org/does-overloading-work-with-inheritance/
http://courses.cms.caltech.edu/cs11/material/cpp/mike/misc/compiling_c++.html
http://courses.cms.caltech.edu/cs11/material/cpp/mike/misc/compiling_c++.html

