
CS4414 Recitation 3
A bit about Linux. And a bit about Classes.

02/10/2023

Ricky Takkar

1

Part 1/2
A bit about Linux

2

What is Linux?

• But first, what’s an operating system (OS)?

• A system software that manages computer hardware, software
resources, and provides common services for computer
programs

• Analogy: If hardware = back-end, then OS = API,
and user space = front-end

3

What is Linux?
• If hardware = back-end, then OS = API, and user space = front-end

• Which component within OS serves as this “bridge” between
hardware and user space?

• Answer: Kernel

4

What is Linux?
• Ok. I understand what an OS is, and I see how it relates to the user

space and hardware. But what inside the OS does a kernel do?

1. Access computer hardware resources

2. Resource management

3. Memory management

4. Device management

5

What is Linux?
• Ok, I now understand: (1) what an OS is, (2) how it relates to the

user space and hardware, and (3) what a kernel does. But I still
don’t know…

• What on earth Linux is!

• What people actually mean when they say “I run a Linux machine”
—> “My machine runs a Linux kernel” or “my server runs Linux” —>
“my server runs a Linux kernel”

• But not all Linux machines “look”/“feel” the same…
6

What is Linux?
• Remember: the kernel is invisible to the user. So what are they

seeing when they use Linux?

• Various distributions of Linux exist and are used widely, e.g., Linux
Mint, Debian, Ubuntu, Fedora, etc…

• Distro is based on user preference

7

Linux File Structure
Absolute path: Location of file/folder from root directory /

What’s the absolute path of work folder

/home/jono/work/

8

Linux File Structure
Relative path: Location of file/folder from present working directory (pwd)

What’s the relative path of work folder
assuming pwd is /home/

./jono/work/

9

Directory and Navigation Commands
• pwd get present working directory (pwd)

• ls show what’s in current directory

• ls <directory> show what’s in specific <directory>

• ls -l ‘-’ is argument pass to command, <l> command indicates long
listing

• cd <directory> move to another directory (change directory)

• cd / change to root directory from anywhere

• mkdir <directory> create a directory

10

Directory and Files Commands
• echo "This is a test” ‘echo’ prints its arguments back out again

• mv [file1] [directory1] move file1 to directory1

• rm [file1] remove file1

• rmdir [directory] remove empty directory

• rm –r [directory] remove [directory] and all files in the [directory]

11

Command Line I/O Redirection

• echo "This is a test" > test_1.txt ‘>’ redirect the content to the file

• cat < test_1.txt ‘<’ display the content in file

• cat test_1.txt test_2.txt ‘cat’ can concatenate/link the
[file2] and [file1], then display

• ./helloworld > test_1.txt write output from ‘helloworld’
program to file

12

Basic Commands
• echo $SHELL

• Within a terminal, there’s a shell.

• Shell is a part of the operating system, defines how the terminal behaves after a
command.

• Examples: bash, zsh (~/.bash_profile set the environment for shell, same for
~/.zsh_profile)

• lsb_release –a Display Linux distribution

• free -g Display how much space freed/used

13

Basic Commands
• which g++ shows which compiler is running

• uname basic info about OS name + system hardware

• uname -s print kernel name

• uname -a print all info

• …

• man uname ‘man’(manual) command like [help] can print details of
cmd’s optional argument

14

Wildcard and alias
• ? Wildcard: matches a single character.

• * Wildcard: matches any character or set of
characters

• Alias

• alias clean=‘rm -f *~’ Defile alias of clean

• touch a~ b~ x~ Create some files with ~ ending

15

Recap of Lecture Slides
PROGRAMS CONTROLLED BY
CONFIGURATION FILES
In Linux, many programs use some sort of configuration file, just
like cron is doing. Some of those files are hidden but you can
see them if you know to ask.

 In any directory, hidden files will simply be files that start with
a name like “.bashrc”. The dot at the start says “invisible”

 If you use “ls –a” to list a directory, it will show these files.
You can also use “echo .*” to do this, or find, or

CORNELL CS4414 - SPRING 2023 16

16

Recap of Lecture Slides

A FEW COMMON HIDDEN FILES

~/.bashrc − The Bourne shell (bash) initialization script

~/.vimrc – A file used to initialize the vim visual editor

~/.emacs – A file used to initialize the emacs visual editor

/etc/init.d – When Linux starts up, the files here tell it how to
configure the entire computer

/etc/init.d/cron – Used by cron to track periodic jobs

CORNELL CS4414 - SPRING 2023 17

Bash replaces “~” with the pathname to your home directory

17

Recap of Lecture Slides
EXAMPLE, FROM KEN’S LOGIN

HOSTTYPE=x86_64

USER=ken

HOME=/home/ken

SHELL=/bin/bash

PYTHONPATH=/home/ken/z3/build/python/

PATH=/home/ken/.local/bin:/usr/local/sbin:/usr/local/bin:/usr
/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games

CORNELL CS4414 - SPRING 2023 20

ENVIRONMENT VARIABLES

The bash configuration file is used to set the environment variables.

Examples of environment variables on Ubuntu include
 HOME: my “home directory”
 USER: my login user-name
 PATH: A list of places Ubuntu searches for programs when I run

a command
 PYTHONPATH: Where my version of Python was built

CORNELL CS4414 - SPRING 2023 19

Other versions of Linux, like CentOS,
RTOS, etc might have different

environment variables, or additional
ones. And different shells could use

different variables too!

18

Recap of Lecture Slides

BASH INITIALIZES ITSELF

The .bashrc file is “executed” by bash to configure itself for me

I can customize this (and many people do!), to set environment
variables, run programs, etc – it is actually a script of bash
commands, just like the ones I can type on the command line.

By the time my command prompt appears, bash is configured.

CORNELL CS4414 - SPRING 2023 27

WHEN YOU LOG IN

The login process sees that “ken” is logging in.

It checks the secure table of permitted users and makes sure I am a
user listed for this machine – if not, “goodbye”!

In fact I am, and I prefer the bash shell. So it launches the bash
shell, and configures it to take command-line input from my console.
Now when I type commands, bash sees the string as input.

CORNELL CS4414 - SPRING 2023 26

19

Permission
• sudo command for super user to execute (be careful)

• ls -l file shows permission of [file]

• chmod [who][+,-,=][permissions] filename change the permissions

• chmod u-r filename remove read permission from [file]

• chmod a-x filename add execute permission to [file]

• chmod 750 ~/example.txt is equivalent to chmod u=rwx,g=rx,o= ~/
example.txt

20

Permission details
https://en.wikipedia.org/wiki/Chmod

21

Processes
• ps aux Show all processes

• ps aux | grep Grep (search output within input)

• sleep 10 Sleep for 10 seconds

• sleep 10 & Sleep for 10 seconds (in background)

• Ctr+ c Send signal to terminate process

• ps Show only current user’s running processes

22

g++ Compilation
• -g turn on debugging (so GDB gives more friendly output)

• -Wall turns on most warnings

• -O or -O2 turn on optimizations

• -o <name> name of the output file

• -c output an object file (.o)

• -l<include path> specify an include directory

• -L<library path> specify a lib directory

• -l<library> link with library lib<library>.a

23

Demo (optional, if time permits)

24

Part 2/2
A bit about Classes

25

What is a class?

26

Best practices for classes in C++
• Define class, e.g., MyClass, inside header file with same name as the

class (MyClass.hpp)

• Implement class’ non-access member functions (“getters”) and
constructor(s) inside a .cpp file with the same name as the class

• To use MyClass in your program, #include “MyClass.hpp” at the top and
compile MyClass.cpp into the project

• Question: Since the class is defined in a header file of the same name,
what’s the use of another .cpp file with the same name? Why not just
implement all class attributes and methods inside the header?

27

C++’s One-Definition Rule (ODR)
• Only one definition of any variable, function, class type, enumeration type,

concept (since C++20) or template is allowed in any one translation unit

• But what about this case:

28

What do you think will happen during compilation?

C++’s One-Definition Rule (ODR) Cont’d

29

Compilation result:

The fix: New compilation result:

Compiling Classes

• Run “g++ -o exec_name main.cpp rest.cpp …”

• Include all the cpp files in the g++ command

• Ignore header files in compilation command as they should be
included in the cpp files

• Only one program should contain the main function (in the above
example, main.cpp)

30

Using Classes

• A class is the blueprint. Its instance, called an “object” is the real
thing.

• Objects have their own state, but share class methods and
attributes

31

Classes: C++ vs Java
• Unlike Java, class objects are NOT null references in C++!

• This means that when you create an object, all of its internal fields must be initialized
(constructed). When the object goes out of scope, its allocated memory must be
deallocated. But this isn’t always handled done automatically.

• Dynamically allocated memory or use of pointer in class necessitates user-defined
destructor

• Each class has at least one constructor and only one destructor (preceded by ~ and
without parameters or return type)

32

Default Initialization in C++
• Example: class myClass { int x; std::string str; };

• Note:

• Constructor undefined

• No initialization

• Compiler provides default constructor which default initializes
fields

33

More on Constructors
• A constructor has the same name as the class and no return type. It can

have as many arguments as needed (just like a regular function)

• You can write as many constructors as you need

• E.g.,

• myClass();

• myClass(int x, std::string str);

• myClass(someOtherClass otherClassObject) and so on

34

(Even) More on Constructors
• Special constructors:

• Default constructor – takes no arguments

• Copy constructor (careful with this!) – myClass(const myClass& other);

• Move constructor – myClass(myClass&& other);

• The compiler provides a default constructor (public) when no constructors are
defined

• It also provides a default copy and a default move constructor unless the user
defines them

35

(Just a bit) More on Constructors
• Using the keywords default and delete, you can enable or disable a

constructor

• What if you want to disable the copy constructor? For e.g., you want
unique ownership of a resource and don’t want it duplicated.

• myClass(const myClass& other) = delete;

• What if you write a custom constructor that takes some arguments, but
still want to keep a default constructor?

• myClass() = default;
36

Constructors and Destructor: Creation
and Use

37

TA.hpp main.cpp

Question: What will the output be?

38

Answer:

Static Members

39

Static members of a class are shared by all objects. Similarly, objects
declared as static live until the program lives.

Question: Can static variables be initialized using constructors?

Exercise: Create a simple class and create multiple objects of that
class in your main function. Utilize a static class member to get the

count of objects created.

Access Specifiers

• 3 access specifiers for class variables and methods in C++:

• public - accessible outside the class

• private (default) - inaccessible outside the class

• protected - only accessible to inherited classes outside the class
itself. More on Inheritance later…

40

Let’s code!

41

References
1. https://data-flair.training/blogs/kernel-in-operating-system/

2. https://www.linux.com/what-is-linux/

3. https://www.geeksforgeeks.org/absolute-relative-pathnames-unix/

4. https://www.learncpp.com/cpp-tutorial/class-code-and-header-files/

5. https://en.wikipedia.org/wiki/Pragma_once

6. https://en.cppreference.com/w/cpp/language/definition

42

https://data-flair.training/blogs/kernel-in-operating-system/
https://www.linux.com/what-is-linux/
https://www.geeksforgeeks.org/absolute-relative-pathnames-unix/
https://www.learncpp.com/cpp-tutorial/class-code-and-header-files/
https://en.wikipedia.org/wiki/Pragma_once
https://en.cppreference.com/w/cpp/language/definition

