
CS4414 Recitation 2
C++ Types and Containers

02/03/2023

Alicia Yang

1

2

C++ Built-in Types

C++ is strongly typed

3

• A declaration is a statement that introduce a name to the program with a specified type

int x ; // declaration

type
variable

C++ is strongly typed

4

• A declaration is a statement that introduce a name to the program, with a specified type

• A declaration can also follow with an initialization

int x ; // declaration

type variable

int x = 5; // declaration + initialization

Initial value

C++ is strongly typed

5

• A declaration is a statement that introduce a name to the program with a specified type

• A declaration can also follow with an initialization

• Later, you can use variable x in expressions such as

int x ; // declaration

int x = 5; // declaration + initialization

int y = x + 1; // initialization of y using x
x = 7; // reassignment

C++ is strongly typed

6

• A C++ variable has a name, a type, a value and an address in memory

• A type: defines a set of possible values and operations that this variable
can do

• A value: a set of bits to be interpreted by its type
• An object: some memory that holds a value of some type

int x = 5;

type
variable

value

C++ types

7

• Primitive(fundamental)

data types

• bool
• char
• int
• float
• double

• Derived data types

• pointer
• array
• function

• User-defined data types

• class
• struct

C++ types

8

• bool // boolean, possible values are true and false

• char // character, possible values are ‘a’, ‘z’, ‘9’, ‘\’’ ..

• int // integer, possible values are 36, -273, 10006, ..

• double // double-prevision floating-point number, possible values are 3.14, 230421.0, ..

• unsigned // non-negative integer, possible values are 0, 365,…

• uint8_t // 8-bit(1-byte) unsigned integer, possible values are 0, .. 200, .. 255

C++ is strongly typed

9

• A C++ variable has a name, a type, a value and an address in memory

• A type: defines a set of possible values and operations that this variable
can do

• A value: a set of bits to be interpreted by its type
• An object: some memory that holds a value of some type

int x = 5;

type
variable

value

C++ fundamental data type

10

• Lots of integer types

• int, short, unsigned int, long, long long, unsigned long, …
• Even more: int8_t, int16_t, int32_t, int64_t, …

• bool // each boolean variable has 1 byte(8 bit)

• char

• int

• double

• uint8_t

C++ fundamental type correspond to fixed sizes

11

C++ fundamental data type

12

• How do I find out the size of a built-in type?

• Use the built-in function sizeof(variable name) or sizeof(<type>) to
find out the size of the variable’s type

long long int x = 0;

std::cout << sizeof(x) << std::endl; // print 8

std::cout << sizeof(long long int) << std::endl; // print8

Question: What is the largest value that a 4-byte
integer can represent?

13

• 4 bytes = 32 bits
A 32-bit datatype can represent 𝟐𝟑𝟐 distinct values

• A signed 4-byte integer can represent numbers from −𝟐𝟑𝟏 (-2,147,483,648) to
𝟐𝟑𝟏 − 𝟏 (2,147,483,647)

• An unsigned 4-byte integer can represent numbers from 0 to 𝟐𝟑𝟐 − 𝟏
(4,294,967,295)

• Tip: Use fixed-width integer types defined in cstdint. 4-byte integers for normal
use(int32_t, uint32_t) and 8-byte integers(int64_t, uint64_t) for representing larger
values

Question: What is the largest value that a 4-byte
integer can represent?

14

• Arithmetic: a + b, a – b, a * b, …

• Logical: !a, a&&b, a || b

• Relational: a == b, a < b, a > b, a <=b, …

• Assignment: a = b, a += b, a /= b, …

• Increment: ++ a, --a, a++, a--

Operators defined by types

15

if (x + y < 7 && !(z > 10)){
// do something

}

• x += y is equivalent to writing x = x + y

• Can also use for bools: b1 |= b2

+= , -=, *=, /=, …

16

More on increment and decrement

17

• Pre-increment (++a) and post-increment (a++) behave differently

2 3

x y

? ?

x y

x = ++y;
or
x = y++;

More on increment and decrement

18

• Pre-increment (++a) and post-increment (a++) behave differently

2 3

x y

4 4

x y

x = y++;

x = ++y;

3 4

x y

C++ is strongly typed

19

• A C++ variable has a name, a type, a value and an address in memory

• A value: a set of bits to be interpreted by its type
• A type: defines a set of possible values and operations that this variable

can do
• An object: some memory that holds a value of some type

int x = 5;

type
variable

value

Address and initial value

20

• Can obtain the address (represented in hex) with the & operator

std::cout << &x << std::endl;

// prints 0x7ffd55bdaa4

Address and initial value

21

• Can obtain the address (represented in hex) with the & operator

• What happens if you use an uninitialized variable?

int x ;
std::cout << x << std::endl;

std::cout << &x << std::endl;

// prints 0x7ffd55bdaa4

Address and initial value

22

• Can obtain the address (represented in hex) with the & operator

• What happens if you use an uninitialized variable?

int x ; // uninitialized value
std::cout << x << std::endl;

// the value of x is undefined

std::cout << &x << std::endl;

// prints 0x7ffd55bdaa4

Implicit conversion

23

• False is 0, true is 1. Any non-zero int is true, int 0 is false.

if (my_int) {} // equivalent to if (my_int != 0)

• Implicit conversion from char to int (use ASCII code)

isdigit(ch): ch >= 48 && ch <= 57

Implicit conversion

24

• False is 0, true is 1. Any non-zero int is true, int 0 is false.

if (my_int) {} // equivalent to if (my_int != 0)

• Implicit conversion from char to int (use ASCII code)

isdigit(ch): ch >= 48 && ch <= 57

• Written better as,

isdigit(ch): ch >= ‘0’ && ch <= ‘9’

C++ auto keyword and const qualifier

25

• Compiler infers type of variable defined with the auto keyword

int max(int x, int y); // function declaration
auto m = max(x, y); // m is an int,

// the return type of m of max()

• const keyword before a variable declaration fixes its value to the initial value

const double pi = 3.14; // good for readability

demo

Exercise: Explain the error

26

Exercise: Explain the error

27

• Print function can potentially change the state of a myClass Object, so it cannot
be called on a const object

• To assert that print cannot change object state, change it to void print () const {}

Follow up: What happens when myInt is incremented in
the const print function?

28

More in future recitations

29

POINTERS CLASSES

30

C++ Containers

C++ Container

31

• A Container is an object used to store other objects and take care of the

management of the memory of the objects it contains.

• Containers include many commonly used structure:

• std::array,
• std::vector,
• std::queues,
• std::map,
• std::set,
• …

Array – a fundamental data type

32

• Arrays must be declared by type and size
• The size must be fixed at compile-time
• Stores elements contiguously (in continuous memory locations)
• Elements are accessed starting with position 0 (0-based indexing)
• O(1) access given the index of the element

C-style array (raw array)

33

• C-style array is a block of memory that can be interpreted as an array

int a[10];
// declare a as an array object that consist of 10 contiguous allocated objects of type int

int a[3] = {1 , 3, 6} ;
// assignment of objects in array

1 3 6a

std::array<T, N> ---a container that holds fixed size arrays

34

• Has the same semantics as a C-style array, but implemented by standard

template library

• To use this container, include it at the beginning of the file

#include <array>

• T and N are template parameters: T is the type of the array, and N

defines the number of elements

• E.g., std::array<char, 10>, std::array<int, 3>

std::array<T, N> ---a container that holds fixed size arrays

35

• Has the same semantics as a C-style array, but implemented by standard

template library

• To use this container, include it at the beginning of the file

#include <array>

• T and N are template parameters: T is the type of the array, and N

defines the number of elements

• E.g., std::array<char, 10>, std::array<int, 3>Why do we want to use std::array offered by
C++ Standard Template Library(std)?

36

• C-style array Notes

• No bound check when accessing element using operator[]

• Undefined result if access a[20] if a is an array with size 3

• Array-to-pointer decay

• E.g., When pass a C-style array as a value to a function it decays to

a pointer of the first element in the array, losing the size information.

C-style array vs. std::array<T, N>
demo

37

• C-style array characteristics
• No bound check when accessing element using operator[]
• Array-to-pointer decay

C-style array vs. std::array<T, N>
demo

void print_array(int arr[]){
size_t arr_size = sizeof(arr) / sizeof(int)
for(int i = 0; i < arr_size; ++ i){

std::cout << arr[i] << std::endl;
}

}

void print_array(int * arr){
size_t arr_size = sizeof(arr) / sizeof(int)
for(int i = 0; i < arr_size; ++ i){

std::cout << arr[i] << std::endl;
}

}

https://cppinsights.io

https://cppinsights.io/

C-style array vs. std::array<T, N>

38

Std::array<T> has more functions of standard container, makes it easier to use

• size() : get the size of the array

• at() : access specified element with bounds checking

• Use iterator to access container elements

• More functionalities: https://en.cppreference.com/w/cpp/container/array

demo

std::array<int, 3> a = {1, 2, 3};

std::cout << a.size() << std::endl;

std::cout << a.at(2) << std::endl;

for(auto it = a.begin(); it < a.end(); ++it)
{….}

https://en.cppreference.com/w/cpp/container/array

std::vector<T>

39

• T is a template parameter

• Std::vector<int> is a vector of integers, std::vector<char> is a vector of

characters

• Same as std::array, T can be a class or other C++ container

• E.g., std::vector<std::vector<int>> ,

std::vector<std::map<int, std::string>>…

std::vector<T>

40

• T is a template parameter

• Std::vector<int> is a vector of integers, std::vector<char> is a vector of

characters

• Same as std::array, T can be a class or other C++ container

• E.g., std::vector<std::vector<int>> ,

std::vector<std::map<int, std::string>>…Why do we want to use std::vector<T> ?

std::vector<T> - A dynamic-sized array

41

• Main problem: How to support inserting elements efficiently?

• Concept of size vs. capacity

std::vector<T> - A dynamic-sized array

42

• Main problem: How to support inserting elements efficiently?

• Concept of size vs. capacity

• Reallocates elements when capacity is exceeded

Complexity of std::vector<T>::push_back

43

• Most push_backs will be O(1) (when size < capacity)

• Some will have linear complexity (when the vector is reallocated)

• Amortized O(1) complexity with exponential growth in capacity

• What about the complexity of inserting at a random position in the vector?

Complexity of std::vector<T>::push_back

44

• Most push_backs will be O(1) (when size < capacity)

• Some will have linear complexity (when the vector is reallocated)

• Amortized O(1) complexity with exponential growth in capacity

• What about the complexity of inserting at a random position in the vector?

std::vector<T>::insert(iterator pos, const T& value)

Must shift elements to the right! Linear complexity

Exercise

45

• Pick a large N (> 1 million)

• Program A: Creates a vector of N elements and assigns vec[i] = i for each i in
a for-loop

• Program B: Creates an empty vector and calls vec.push_back(i) N times in a
for-loop

• Program C: Creates an empty vector and calls vec.insert(vec.begin(), N-i-1)
N times in a for-loop

• Measure the time taken by program A, B and C

Reference

• Effective C++: 55 specific ways to improve your programs and designs, Scott Meyers, 3rd edition

• A Tour of C++, Bjarne Stroustrup

• Large Scale C++, Process and Architecture, John Lakos, Volume 1

• C-style array cppreference: https://en.cppreference.com/w/cpp/language/array

• Container reference: https://cplusplus.com/reference/stl/

• std::array documentation: https://en.cppreference.com/w/cpp/container/array

• std::vector documentation: https://cplusplus.com/reference/vector/vector/

• CS4414 recitation slides, from Sagar Jha, TA for this course in 2020, 2021

46

https://cplusplus.com/reference/stl/
https://cplusplus.com/reference/stl/
https://en.cppreference.com/w/cpp/container/array
https://cplusplus.com/reference/vector/vector/

