
CS4414 Recitation 1
Course Introduction and C++ Setup

01/27/2022

Alicia Yang, Ricky Takkar

1

Recitation Overview

• Recitations introduction

• Programming environment setup

• Beginning C++ introduction, helloworld.cpp program demo and explain

• System performance

2

About TA --- Alicia

• 3rd year PhD student in CS

• Advised by Prof. Birman in the area of distributed system

• TA experience:

• CS4320 Database System (Fall ‘19)

• CS4412 System Programing (Fall ‘20, Fall ‘21)

• CS5412 Cloud Computing (Spring ‘21, Spring ‘22)

• Office Hours :

• Thursday 4:15 - 5:15PM, Upson102

• Saturday 7:30 – 9:30PM, Zoom

3

About TA --- Ricky

4

• 2nd year PhD student in Systems Engineering

• Advised by Oliver Gao and Ken Birman. Topic: Verifiability via blockchain.

• TA experience:

• CEE/ENMGT 5900 Project Management (Spring ‘22, Fall ‘22)

• Office Hours :

• Tuesday 2:00 - 3:00PM, CRP 104

• Thursday 2:00 – 4:00PM, Zoom

Goals

Develop systems in C++ that perform well

5

Goals

Develop systems in C++ that perform well

For the recitation:

• Basic C++ proficiency: Read, write, and debug C++ code

• Working knowledge of Linux: the Linux command line and the file system

6

Goals for the recitation

• Basic C++ proficiency: Read, write, and debug C++ code

• Standard containers – std::vector<T>, std::map<K,V>

• Memory management, RAII principle

• gdb for debugging, gprof for profiling

• Multi-threading, synchronization

• Working knowledge of Linux: the Linux command line and the file system
7

Secondary goals

• Make efficient use of hardware – learn to exploit CPU cores with threads

• Demystify systems’ program

• Understand solutions to assignments/exams

8

Make recitations useful

• Ask questions

• Co-creating the recitations:

• Post comments on Ed discussions(link) about the topics you find interesting

and want to learn more in-depth about in recitations

• Try out the small puzzle in the end of the recitation

• Test out the confusion with a simple runnable program

9

https://edstem.org/us/courses/36051/discussion/2444777

10

C++ Environment Setup

demo

C++ Coding Environment

11

• Compilation tools: GNU Compiler Collection(GCC) with gcc-8 or recent

• Check your gcc compiler version: run command “ g++ -v ”

• Most linux distrubutions have GCC

• MacOS has Clang compiler (do not use this for this course, since Clang and

GCC compiler have different compilation results on certain programs. The

submitted assignments are run via GCC)

• C++ version: 20

• Compile code with flag: -std=c++2a

C++ Coding Environment

12

For the course assignments, it’s optimal to use the following standard environment setup,
which we have set up to have the required C++ and compiler version

• Server:

• Cornell engineering ugclinux server remote access (link)

• Editing Tools:

• Visual Studio Code with C/C++ extension

https://it.coecis.cornell.edu/cis/cisugcvm/

Coding Environment Setup Steps

13

1. Download Visual Studio Code on your computer (link)

https://code.visualstudio.com/

Coding Environment Setup Steps

14

1. Download Visual Studio Code on your computer (link)

2. Connect to Cornell VPN (if you are on-campus using eduroam wifi, then

skip this step)

https://code.visualstudio.com/

Coding Environment Setup Steps

15

1. Download Visual Studio Code on your computer (link)

2. Connect to Cornell VPN

1. Install CU VPN (link)

2. Login using your Cornell id,

Cornell password,

and type ”push” for DUO confirm on your phone app(link)

https://code.visualstudio.com/
https://it.cornell.edu/cuvpn
https://it.cornell.edu/twostep

Coding Environment Setup Steps

16

1. Download Visual Studio Code on your computer (link)

2. Connect to Cornell VPN

3. SSH to your ugclinux server from VSCode

1. Install Remote Explorer extension

https://code.visualstudio.com/

Coding Environment Setup Steps

17

1. Download Visual Studio Code on your computer (link)

2. Install C++ extension on your VSCode (link)

3. Connect to Cornell VPN

4. SSH to your ugclinux server from VSCode

1. Install Remote Explorer extension

https://code.visualstudio.com/
https://code.visualstudio.com/docs/languages/cpp

Coding Environment Setup Steps

18

1. Download Visual Studio Code on your computer (link)

2. Connect to Cornell VPN

3. SSH to your ugclinux server from VSCode

1. Install Remote Explorer extension
2. On VSCode: view -> command Palette

https://code.visualstudio.com/

Coding Environment Setup Steps

19

1. Download Visual Studio Code on your computer (link)

2. Connect to Cornell VPN

3. SSH to your ugclinux server from VSCode

1. Install Remote Explorer extension
2. On VSCode: view -> command Palette

https://code.visualstudio.com/

Coding Environment Setup Steps

20

1. Download Visual Studio Code on your computer (link)

2. Connect to Cornell VPN

3. SSH to your ugclinux server from VSCode
1. Install Remote Explorer extension
2. On VSCode: view -> command Palette
3. Remote SSH: Connect to host

https://code.visualstudio.com/

Coding Environment Setup Steps

21

1. Download Visual Studio Code on your computer (link)

2. Connect to Cornell VPN

3. SSH to your ugclinux server from VSCode
1. Install Remote Explorer extension
2. On VSCode: view -> command Palette
3. Remote SSH: Connect to host

https://code.visualstudio.com/

Coding Environment Setup Steps

22

1. Download Visual Studio Code on your computer (link)

2. Connect to Cornell VPN

3. SSH to your ugclinux server from VSCode
1. Install Remote Explorer extension
2. On VSCode: view -> command Palette
3. Remote SSH: Connect to host
4. Add New SSH Host

https://code.visualstudio.com/

Coding Environment Setup Steps

23

1. Download Visual Studio Code on your computer (link)

2. Connect to Cornell VPN

3. SSH to your ugclinux server from VSCode
1. Install Remote Explorer extension
2. On VSCode: view -> command Palette
3. Remote SSH: Connect to host
4. Add New SSH Host

https://code.visualstudio.com/

Coding Environment Setup Steps

24

1. Download Visual Studio Code on your computer (link)

2. Connect to Cornell VPN

3. SSH to your ugclinux server from VSCode
1. Install Remote Explorer extension
2. On VSCode: view -> command Palette
3. Remote SSH: Connect to host
4. Add New SSH Host
5. In command palette, type: ssh [your netid]@ugclinux.cs.cornell.edu

https://code.visualstudio.com/

Coding Environment Setup Steps

25

1. Download Visual Studio Code on your computer (link)

2. Connect to Cornell VPN

3. SSH to your ugclinux server from VSCode
1. Install Remote Explorer extension
2. On VSCode: view -> command Palette
3. Remote SSH: Connect to host
4. Add New SSH Host
5. In command palette, type: ssh [your netid]@ugclinux.cs.cornell.edu

https://code.visualstudio.com/

Coding Environment Setup Steps

26

1. Download Visual Studio Code on your computer (link)

2. Connect to Cornell VPN

3. SSH to your ugclinux server from VSCode
1. Install Remote Explorer extension
2. On VSCode: view -> command Palette
3. Remote SSH: Connect to host
4. Add New SSH Host
5. In command palette, type: ssh [your netid]@ugclinux.cs.cornell.edu
6. Type in the password related to your cornell netID, to access your ugclinux server

https://code.visualstudio.com/

Coding Environment Setup Steps

27

1. Download Visual Studio Code on your computer (link)

2. Connect to Cornell VPN

3. SSH to your ugclinux server from VSCode

4. Install C++ extension on your VSCode (link)

https://code.visualstudio.com/
https://code.visualstudio.com/docs/languages/cpp

Coding Environment Setup Steps

28

1. Download Visual Studio Code on your computer (link)

2. Connect to Cornell VPN

3. SSH to your ugclinux server from VSCode

4. Install C++ extension on your VSCode (link)
1. Click on extension tab on the left side of VSCode screen
2. Search with key word C++
3. Install package C/C++, for code browsing and debugging
4. [optional] install package C/C++ Extension Pack for CMake tools

https://code.visualstudio.com/
https://code.visualstudio.com/docs/languages/cpp

Coding Environment Setup Steps

29

Congratulations

You are all set to start your first program!

30

C++ Basics

What is C++?

31

A federation of related languages, with four primary sublanguages
• C: C++ is based on C, while offering approaches superior to C. Blocks,

statements, processor, built-in data types, arrays, pointers, etc., all come
from C

• Object-Oriented C++: “C with Classes”, classes including constructor,
destructors, inheritance, virtual functions, etc.

• Template C++: generic programming language. Gives a template, define
rules and pattern of computation, to be used across different classed.

• STL(standard template library): a special template library with
conventions regarding containers, iterators, algorithms, and function
objects

32

helloworld.cpp exampe

demo

Helloworld.cpp example

33

#include <iostream>

int main() {
std::cout << "Hello world!" << std::endl;
std::cout << "Please type in your name: " << std::endl;
std::string name;
std::getline(std::cin, name);
std::cout << "Hi " << name << std::endl;
return 0;

}

Run your C++ Code

34

• Beginner: use <run> shortcut button on VSCode

• You will be able to see the run button on the top right corner of vscode,

after installing the C/C++ Compile Run extension (refer to step 4 in

coding environment setup page)

Run your C++ Code

35

• Beginner: use <run> shortcut button on VSCode

• Install an extension called code runner

Run your C++ Code

36

• Beginner: use <run> shortcut button on VSCode

• Install an extension called code runner

Run your C++ Code

37

• Beginner: use <run> shortcut button on VSCode

• You will be able to see the run button on the top right corner of vscode,

after installing the C/C++ Compile Run extension (refer to step 4 in

coding environment setup page)

Run your C++ Code

38

• Beginner: use <run> shortcut button on VSCode

What’s under the hood when clicking run?

C++ is a compiled language.

• For a program to run, its source text has to be processed by a compiler,

producing object files

• Linker combines the object files and generate an executable program

39

Compile and Run your C++ Code

40

• Beginner: use <run> shortcut button on VSCode

• Recommended: use command line prompt to compile and run your C++ code

Compile and Run your C++ Code

41

• Beginner: use <run> shortcut button on VSCode

• Recommended: use command line prompt to compile and run your C++ code

1. From terminal login to ugclinux server, via ssh tunnel

% ssh [your netid]@ugclinux.cs.cornell.edu

Compile and Run your C++ Code

42

• Beginner: use <run> shortcut button on VSCode

• Recommended: use command line prompt to compile and run your C++ code

1. From terminal login to ugclinux server

2. Compile your C++ program with simple line below

% g++ -std=c++2a -Wall helloworld.cpp -o helloworld

Compile and Run your C++ Code

43

• Beginner: use <run> shortcut button on VSCode

• Recommended: use command line prompt to compile and run your C++ code

1. From terminal login to ugclinux server

2. Compile your C++ program with simple line below

% g++ -std=c++2a -Wall helloworld.cpp -o helloworld
• Flags:
• -std=c++2a: specify the compiler version to use C++20
• -Wall: allow all compiler warnings to be printed out
• -o: specify the name of the output executable

Compile and Run your C++ Code

44

• Beginner: use <run> shortcut button on VSCode

• Recommended: use command line prompt to compile and run your C++ code

1. From terminal login to ugclinux server

2. Compile your C++ program with simple line below

3. Run the compiled executable program

% ./helloworld

How to debug my code? --- GDB and example

Gdb is a debugger tool, that allows us to

• See what is going on `inside’ the program while it executes

• Checks what program was doing at the moment it crashed.

45

demo

How to debug my code? --- GDB and example

1. Compile with –g flag:

% g++ -std=c++2a -Wall helloworld.cpp -o helloworld

2. Run with gdb

% gdb ./helloworld

3. Debug with gdb

46

How to debug my code? --- GDB and example

Useful commands in gbd

• run or r à execute the program from start to the end

• break or br à sets breakpoint
• break function à stop at a particular function
• break linenum à stop at a particular line

• next or n à execute next line of code

• step à go to next line of instruction

• print or p [variable] à print the stored value

• quit or q à exits out of gdb
47

More about GDB

Why I observe segmentation fault in execution but not in GDB?

• gdb default Disabling Address Space Layout Randomization. This can be solved by

turn off this feature before run gdb

(gdb) set disable-randomization off

• Optimization level inconsistency between runtime program, and debugging program

compile the code with same level of optimization –O_ , more explanation (link)

• gdb set LINES and COLUMNS in program’s environment, which will alter the size of

environment, such as the stack size.

(gdb) unset environment COLUMNS and (gdb) unset environment LINES
48

https://stackoverflow.com/questions/7493947/whats-the-best-g-optimization-level-when-building-a-debug-target

System Performance
will be a mainstay of this
course!

What do we mean by performance?

• Latency: time taken to compute

• Throughput: number of operations per

second

50

Reasoning about system performance

• Theoretical improvements don’t always translate to better runtimes

Insertion sort outperforms quick sort in some cases
Why?
1. Insertion sort is iterative – no overhead from recursive calls (good for sorting

a small set)
2. Insertion sort is fast when data is nearly sorted

51

Reasoning about system performance

• Theoretical improvements don’t always translate to better runtimes

• Which algorithm? A system can be very complex with many features

• A = processing files, B = printing 1 million lines of output
52

BA
Fairly optimized code

Sequential program with 2 steps

Highly inefficient code

Reasoning about system performance

• Theoretical improvements don’t always translate to better runtimes

• Which algorithm? A system can be very complex with many features

• What if step A takes about 99% of the total time? We need to profile and
understand performance characteristics of code we write 53

BA
Fairly optimized code

Sequential program with 2 steps

Highly inefficient code

Reasoning about system performance

• Theoretical improvements don’t always translate to better runtimes

• Which algorithm? A system can be very complex with many features

• What if the code that implements the algorithm is inefficient?

• Sometimes heuristics work better

54

Reference

• Effective C++: 55 specific ways to improve your programs and designs, Scott Meyers, 3rd edition

• A Tour of C++, Bjarne Stroustrup

• Large Scale C++, Process and Architecture, John Lakos, Volume 1

• GDB documentation: https://www.sourceware.org/gdb/

• https://www.geeksforgeeks.org/gdb-step-by-step-introduction/

• GDB quickstart tutorial: https://web.eecs.umich.edu/~sugih/pointers/gdbQS.html

• How does gbd work? https://www.aosabook.org/en/gdb.html

• CS4414 recitation slides, from Sagar Jha, TA for this course in 2020, 2021

55

https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://web.eecs.umich.edu/~sugih/pointers/gdbQS.html
https://www.aosabook.org/en/gdb.html

