
CS4414: RECITATION 13 –
TRANSACTIONS

Ricky Takkar
Friday, April 28, 2023

PRELIM 2 (== FINAL) NEXT WEEK!

Ø Day: May 2 (Tuesday). Time: 7:30pm -> 10:00pm. Location:
Room KG70, Klarman Hall
Ø Exam will be just like prelim1 in terms of format and length
Ø Coverage will be up through and including the lecture on April
26
Ø Just like for prelim1 it will be a closed book exam, but we will
allow you to bring a page of your own notes (on paper, standard
sized, both sides allowed, typed or handwritten) if you wish

CORNELL CS4414 - SPRING 2023 2

TRANSACTIONS 101

CORNELL CS4414 - SPRING 2023 3https://en.wikipedia.org/wiki/Memcached

Ø Transaction model: a way to describe correct, consistent
behavior when distributed programs concurrently access storage
that could be spread over many machines.

Ø Two-Phase commit: a central building block for a solution.
Ensures that if any process commits, all do; otherwise it aborts.

Ø Two-phase locking (similar name, totally different meaning!): A
way to do read and write locking that, when combined with two-
phase commit, ensures transactional serializability

ROLE OF BEGIN AND COMMIT/ABORT?
(REVIEW L24)
Begin is a kind of a “curly brace”. But in fact it denotes the
place where the transactional system initializes itself.

Commit is the way a successful transaction tells the runtime
environment to save (make permanent) all its changes.

Abort tells the system to back the changes out.

CORNELL CS4414 - SPRING 2023 4

DATA AND PROCESSES (REVIEW L24)

We model data as a set of variables, usually with alphabetical
names such as X, Y, Z…

A transaction models an executing program that has
begin/commit/abort blocks, inside of which it issues reads and
writes to the variables.

CORNELL CS4414 - SPRING 2023 5

SYNCHRONIZATION (REVIEW L24)

We expect to have lots of concurrent processes running, so we
need a way to avoid concurrency issues.

For this a transactional model introduces read locks and write
locks. If you hold a read lock on X, you can only do reads.
With a write lock, you can do both reads and writes.

CORNELL CS4414 - SPRING 2023 6

BASIC PHILOSOPHY (REVIEW L24)

Our concurrent system should behave just like it ran one
transaction at a time, to completion, then started the other.

But the order in which they run isn’t predictable. Any permuted
order is considered to be a correct run of the system.

This property is called serializability.

CORNELL CS4414 - SPRING 2023 7

EXECUTION TRACE: T1 RUNS FIRST, THEN T2

(REVIEW L24)
Transaction 1:

Begin;
ReadLock X;
ReadLock Y;
WriteLock Z;
Z = X+Y;

Commit;

Transaction 2:
Begin;

ReadLock Z;
WriteLock X;
WriteLock Y;
X = Y-Z;
Y = X+Z;

Commit;

CORNELL CS4414 - SPRING 2023 8

R1 X R1 Y W1 Z R2 Z W2 X W2 YR2 X R2 Y

In this trace, time goes from left to right

SECOND EXAMPLE: T2 RUNS FIRST, THEN T1

(REVIEW L24)
Transaction 1:

Begin;
ReadLock X;
ReadLock Y;
WriteLock Z;
Z = X+Y;

Commit;

Transaction 2:
Begin;

ReadLock Z;
WriteLock X;
WriteLock Y;
X = Y-Z;
Y = X+Z;

Commit;

CORNELL CS4414 - SPRING 2023 9

R2 Z W2 X W2 YR2 X R2 Y

In this trace, time goes from left to right

R1 X R1 Y W1 Z

THIRD TRACE: INTERLEAVED. IS THIS A
SERIALIZABLE EVENT ORDERING?
(REVIEW L24)
Transaction 1:

Begin;
ReadLock X;
ReadLock Y;
WriteLock Z;
Z = X+Y;

Commit;

Transaction 2:
Begin;

ReadLock Z;
WriteLock X;
WriteLock Y;
X = Y-Z;
Y = X+Z;

Commit;

CORNELL CS4414 - SPRING 2023 10

R1 X R1 Y W1 ZR2 Z W2 X W2 YR2 X R2 Y

WAS THE THIRD TRACE SERIALIZABLE?
(REVIEW L24)
Suppose initially X=1, Y=2, Z=9

First trace:

T1 leaves X=1, Y=2, Z=3

… then T2 leaves X=-1, Y=2, Z=3

CORNELL CS4414 - SPRING 2023 11

DO THESE TRACES GIVE CORRECT RESULTS?
(REVIEW L24)
Suppose initially X=1, Y=2, Z=9

First trace:

T1 leaves X=1, Y=2, Z=3

… then T2 leaves X=-1, Y=2, Z=3

Now consider trace 2 for X=1, Y=2, Z=9

Here, T2 ran first, then T1
T2 leaves X=-7, Y=2, Z=9

… then T1 leaves X=-7, Y=2, Z=-5

CORNELL CS4414 - SPRING 2023 12

Bold: these outcomes reflect the two possible orderings

HAND-COMPUTING THE INTERLEAVED OUTCOME
(REVIEW L24)
Transaction 1:

Begin;
ReadLock X;
ReadLock Y;
WriteLock Z;
Z = X+Y;

Commit;

Transaction 2:
Begin;

ReadLock Z;
WriteLock X;
WriteLock Y;
X = Y-Z;
Y = X+Z;

Commit;

CORNELL CS4414 - SPRING 2023 13

R1 X = 1 R1 Y = 2
W1 Z = 3

R2 Z = 9 W2 X = -7
W2 Y = 2R2 X = 1 R2 Y = 2

Start X = 1
Y = 2
Z = 9

End X = -7
Y = 2
Z = 3

DO THESE TRACES GIVE CORRECT RESULTS?
(REVIEW L24)
We started with X=1, Y=2, Z=9

The T1T2 serialization order results in:

X=-1, Y=2, Z=3

The T2T1 serialization order results in:

X=-7, Y=2, Z=-5

… But the interleaved execution results in:

X=-7, Y=2, Z=3

CORNELL CS4414 - SPRING 2023 14

This can’t happen with the ordering T1 T2 or T2 T1

A FAMILIAR SITUATION! JUST LIKE CRITICAL
SECTIONS WITH INTERFERENCE! (REVIEW L24)

… It turns out that serialized orderings make sense, but non-
serialized execution orderings are almost always nonsense.

We need to allow concurrency (for speedup) but prevent
disordered/scrambled outcomes.

Idea: we need a way to enforce serializability

CORNELL CS4414 - SPRING 2023 15

ACID MODEL, SERIALIZABILITY
(REVIEW L24)
Jim Gray and others proposed a simple set of rules to describe how
transactions should behave: ACID
Ø Atomic: All or nothing.
Ø Consistent: A correct transaction takes the data from one

consistent state to another consistent state.
Ø Isolation: If two transactions run at the same time, they should

see one-another’s pending (uncommitted) updates.
Ø Durability: Once committed, updates won’t get lost.

CORNELL CS4414 - SPRING 2023 16

TWO-PHASE COMMIT (REVIEW L24)

A “distributed protocol” aimed at solving a practical issue seen
with transactions when data is spread over multiple servers.

Suppose that X and Y and Z are each held by different servers.
When a transaction runs, it creates pending updates, X’, Y’, Z’.
Commit makes these permanent… Abort would roll them back.

But how do we ensure “all or nothing” commit (or abort)?
CORNELL CS4414 - SPRING 2023 17

TWO-PHASE COMMIT (REVIEW L24)

1. T says to X, Y and Z: are you able to commit?
2. X and Y and Z must first log X’ and Y’ and Z’ on disk. This is to

ensure that even with a crash, they are still prepared to commit.
3. Then each replies: “I’m prepared to commit!”
4. T can commit if all three are prepared… but should abort if any doesn’t

respond or replies that it “must abort”.
5. T also logs its decision, so if Y is down when T commits, later Y can find

out what it should do. We call this an outcomes log.

6. Step 5 assumes the log is highly available, but there are ways to ensure this.

CORNELL CS4414 - SPRING 2023 18

PROBLEM SOLVED! (REVIEW L24)

With two-phase commit, either all of the servers (eventually)
commit and install the update, or all of them abort.

A crashed server will reboot with the update still pending, but
won’t have lost it. So by checking the outcomes log, it learns that
the transaction committed, and then it finalizes the outcome
before resuming participation in the system. “Automatic repair”!

CORNELL CS4414 - SPRING 2023 19

CORNELL CS4414 - SPRING 2023 20

See L24: slide 27 onward for
more on how to deal with
locking…

https://www.cs.cornell.edu/courses/cs4414/2023sp/Slides/24-Transactions.pdf

PRELIM 2 PREP

Shared Google doc

Ø Doc

Ø 10-15 mins for coming up with questions

Ø 10-15 mins for coming up with answers

Practice Final

Ø 2021 Exam

Ø 2021 Solution

CORNELL CS4414 - SPRING 2023 21

https://docs.google.com/document/d/1YGimTA4KYZBph3-aaf8qV3V8St5yLrXfwrIeyKJxMD0/edit
https://www.cs.cornell.edu/courses/cs4414/2023sp/Practice%20exams/2021%20Final.pdf
https://www.cs.cornell.edu/courses/cs4414/2023sp/Practice%20exams/2021%20Final%20Solns.pdf

