
CS4414 Recitation 9
Cmake, Perfermance (gprof)

10/22/2021

Alicia Yang

Cmake

• What is Cmake
• Simple Cmake
• Cmake with linked libraries
• Cmake with subdirectories

Code source:
https://github.com/aliciayuting/CS4414Demo.git

https://github.com/aliciayuting/CS4414Demo.git

Build Files & Generate Executables --- MakeFile

• Makefile is just a text file that is used or referenced by the ‘make’ command to build
the targets.

MakeFile

output
(executable)

CC = g++
CFLAGS = -g -Wall
TARGET = output
all: $(TARGET)
$(TARGET): main.o hello.o

$(CC) $(CFLAGS) -o $(TARGET) main.o hello.o
main.o: main.cpp hello.hpp

$(CC) $(CFLAGS) -c main.cpp
hello.o: hello.hpp hello.cpp

$(CC) $(CFLAGS) -c hello.cpp

Hello.hpp

Hello.cpp

main.cpp

Run “make” in the shell

main.o

hello.o

CMake

• Why CMake?
• Makefiles are low-level, clunky creatures
• CMake is a higher level language to automatically generate Makefiles
• CMake contains more features, such as finding library, files, header files; it makes the linking process easier,

and gives readable errors

• What is CMake?
• CMake is an extensible, open-source system that manages the build process in an operating system and in

a compiler-independent manner.

• CMakeLists.txt files in each source directory are used to generate Makefiles

MakefileRun cmake in shellCMakeLists.txt

Cmake
1.simple CMake

• Helloworld demo example

• Build and Run
• Navigate to the source directory, and create a build directory

$ cd ./myproject & $ mkdir build
• Navigate to the build directory, and run Cmake to configure the project and generate a build system

$ cd build &. $ cmake ..
• Call build system to compile/link the project

either run. $ make
or run. $ cmake –build .

cmake_minimum_required(VERSION 3.10) # set the project
name project(MyProject) # add the executable
add_executable(output main.cpp)

cmakelists.txt

Cmake
2. Cmake with libraries

• Demo: main.cpp with hello library

• Declare a new library
• Library name : say-hello
• Source files: hello.hpp, hello.cpp
• Can add library type: STATIC (default), SHARED

• Tell cmake to link the library to the
executable(output)
• Private link
• Public link
• interface

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

add_library{
say-hello [library type](optional)
hello.hpp
hello.cpp

}

add_executable(output main.cpp)

target_link_libraries(output PRIVATE say-hello)

cmakelists.txt

Library Types in C++

• Static-linked library:
• contains code that is linked to users’ programs at compile time.
• The executable produced is standalone and you don’t access to the library file at runtime
• Suppose building 100 executables, each one of them will contain the whole library code, which

increases the code size overall
• Longer to execute, because loading into the memory happens every time while executing.

• Shared library:
• contains code designed to be shared by multiple programs. (.so in linux, or .dll in wondows, .dylib

in OS X files)
• The executable produced is not standalone and you need access to the library file at runtime
• All the functions are in a certain place in memory space, and every program can access them,

without having multiple copies of them.
• Faster to execute, because shared library code is already in the memory; and don’t need to be

loaded if not required

Library Types in C++ --- compile time

Library Types in C++ --- run time

Cmake
2. Cmake with libraries

• Demo: main.cpp with hello library

• Declare a new library
• Library name : say-hello
• Source files: hello.hpp, hello.cpp
• Can add library type: STATIC (default), SHARED

• Tell cmake to link the library to the
executable(output)
• Private link
• Public link
• interface

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

add_library{
say-hello [library type](optional)
hello.hpp
hello.cpp

}

add_executable(output main.cpp)

target_link_libraries(output PRIVATE say-hello)

cmakelists.txt

Cmake --- Target_link_libraries

• target_link_libraries(<target>

<PRIVATE|PUBLIC|INTERFACE> <lib> ...])

• <target> is the name of generated executable/library

• Each <lib> may be:
• a library target name (The named target must be created by add_library() or as an IMPORTED

library.)
• a full path to a library file (e.g. /usr/lib/libfoo.so)
• a plain library name (e.g. foo becomes -lfoo or foo.lib)

Cmake --- Target_link_libraries/Target_include_directories

• target_link_libraries(<target>

<PRIVATE|PUBLIC|INTERFACE> <lib> ...])

• The PUBLIC, PRIVATE and INTERFACE keywords can be used to specify both the link
dependencies and the link interface in one command.
• PUBLIC: Libraries and targets following PUBLIC are linked to, and are made part of the link

interface.
• PRIVATE: Libraries and targets following PRIVATE are linked to, but are not made part of the link

interface.
• INTERFACE: Libraries following INTERFACE are appended to the link interface and are not used for

linking <target>.

• CMakeLists.txt files placed in each source directory are used to generate standard build
files (e.g., makefiles on Unix and projects/workspaces in Windows MSVC).

• CMake supports in-place and out-of-place builds, and can therefore support multiple
builds from a single source tree.

Cmake
3. Cmake with subdirectory

say-hellohello-exe

hello-exe say-hello

Root
(source directory)

hello-exesay-hello

CMakeLists.txt

CMakeLists.txtCMakeLists.txt

Demo

Root_directory

Cmake
3. Cmake with subdirectory

Demo

Say-hello
Hello-exe

Hello-exe
Say-hello

Root_directory

add_executable(hell
o_exe main.cpp)

target_link_librari
es(hello_exe
PRIVATE say-hello)

add_library(
say-hello
hello.hpp
hello.cpp

)

target_include_directories
(say-hello PUBLIC
"${CMAKE_CURRENT_SOURCE_DI
R}")

target_compile_definitions
(say-hello PUBLIC
SAY_HELLO_NUM=5)

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

add_subdirectory(say-hello)
add_subdirectory(hello-exe)

Cmake ---add_subdirectory

• add_subdirectory(source_dir [binary_dir] [EXCLUDE_FROM_ALL])

• Adds a subdirectory to the build. The source_dir specifies the directory in which the
source CMakeLists.txt and code files are located.

Cmake

• target_include_directories(<target> [SYSTEM] [AFTER|BEFORE]

<INTERFACE|PUBLIC|PRIVATE> [items1...])

• Set include directory properly

• The PUBLIC, PRIVATE and INTERFACE keywords can be used to specify both the link
dependencies and the link interface in one command.
• PUBLIC(default): All the directories following PUBLIC will be used for the current target and the

other targets that have dependencies on the current target
• PRIVATE: All the include directories following PRIVATE will be used for the current target only
• INTERFACE: All the include directories following INTERFACE will NOT be used for the current target

but will be accessible for the other targets that have dependencies on the current target

• Demo of Traffic Controller Simulator in Sagar’s HW1 solution

Root
(source directory)

controller

application
pngwriter

Cmake
3. Cmake with subdirectory

controller applicationpngwriter

pngwriter application

controller

png

Performance Optimization

• 5 steps to improve runtime efficiency
• Time study
• How to use gprof
• Demo

Improve Execution Time Efficiency

1. Do timing studies

2. Identify hot spots

3. Use a better algorithm or data structure

4. Enable compiler speed optimization

5. Tune the code

Time the program --- Unix ‘time’ command

• Run $ time ./output
real 0m12.977s
user 0m12.860s
sys 0m0.010s

• Real: Wall-clock time between program invocation and termination

• User: CPU time spent executing the program

• System: CPU time spent within the OS on the program’s behalf

Identify hot spots

• Gather statistics about your program’s execution

• Runtime profiler: gprof (GNU Performance Profiler)

• How does gprof work?

• By randomly sampling the code as it runs, gprof check what line is running, and what function it’s

in

Gprof

• Compile the code with flag –pg

• g++ –pg helloworld.cpp –o output

• Run the program

• $./output

• Running the application produce a profiling result called gmon.out

• Create the report file

• gprof output > myreport

• Read the report

• vim myreport

Flat Profile

• name: name of the function

• %time: percentage of time spent executing this function

• cumulative seconds: [skipping, as this isn’t all that useful

• self seconds: time spent executing this function

• calls: number of times function was called (excluding recursive)

• self s/call: average time per execution (excluding descendents)

• total s/call: average time per execution (including descendents)

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls us/call us/call name
13.22 0.28 0.28 50045000 0.01 0.01 void std::__cxx11::basic_string<char, std::char_traits<char>, …
10.39 0.50 0.22 100000000 0.00 0.00 std::vector<Entity, std::allocator<Entity> >::operator[](unsigned long)
6.85 0.65 0.15 50005000 0.00 0.00 __gnu_cxx::__normal_iterator<Entity const*,std::vector<Entity,…
5.67 0.77 0.12 100030000 0.00 0.00 __gnu_cxx::__normal_iterator<Entity const*, std::vector<Entity, …
5.67 0.89 0.12 50045000 0.00 0.01 std::iterator_traits<char*>::difference_type std::distance<char*>(char*,…
5.43 1.00 0.12 50005000 0.00 0.00 __gnu_cxx::__normal_iterator<Entity const*,std::vector<Entity, …

…
…

Improve Execution Time Efficiency

1. Do timing studies

2. Identify hot spots

3. Use a better algorithm or data structure

4. Enable compiler speed optimization. (compile flag with -O3)

5. Tune the code

Where to find the resources?

• CMake tutorials:

• https://www.youtube.com/watch?v=LMP_sxOaz6g

• https://subscription.packtpub.com/book/programming/9781786465184/1/ch01lvl1sec6/creating-type-

aliases-and-alias-templates

• https://cmake.org/cmake/help/latest/guide/tutorial/A%20Basic%20Starting%20Point.html#build-and-run

• Library Linking:

• https://domiyanyue.medium.com/c-development-tutorial-4-static-and-dynamic-libraries-7b537656163e

• https://leimao.github.io/blog/CMake-Public-Private-Interface/

• Code:

• https://github.com/aliciayuting/CS4414Demo.git

• Gprof:

• https://www.cs.princeton.edu/courses/archive/fall13/cos217/lectures/07Performance.pdf

https://www.youtube.com/watch?v=LMP_sxOaz6g
https://subscription.packtpub.com/book/programming/9781786465184/1/ch01lvl1sec6/creating-type-aliases-and-alias-templates
https://cmake.org/cmake/help/latest/guide/tutorial/A%20Basic%20Starting%20Point.html
https://domiyanyue.medium.com/c-development-tutorial-4-static-and-dynamic-libraries-7b537656163e
https://leimao.github.io/blog/CMake-Public-Private-Interface/
https://github.com/aliciayuting/CS4414Demo.git
https://www.cs.princeton.edu/courses/archive/fall13/cos217/lectures/07Performance.pdf

