CS4414 Recitation 9

Cmake, Perfermance (gprof)

10/22/2021
Alicia Yang

Cmake

What is Cmake
Simple Cmake
Cmake with linked libraries

Cmake with subdirectories

Code source:
httos://esithub.com/aliciavutine/CS4414Demo.git

https://github.com/aliciayuting/CS4414Demo.git

Build Files & Generate Executables --- MakeFile

* Makefile is just a text file that is used or referenced by the ‘make’ command to build

the targets. .
main.o A
_G hello.o
— output
, Run “make” in the shell (executable)
MakeFile
CC = g++

CFLAGS = -g -Wall
TARGET = output
all: $(TARGET)
$(TARGET): main.o hello.o
$(CO) $(CFLAGS) -o $(TARGET) main.o hello.o
main.o: main.cpp hello.hpp
$(CC) $(CFLAGS) -c main.cpp
hello.o: hello.hpp hello.cpp
$(CC) $(CFLAGS) -c hello.cpp

CMake

* Why CMake?
* Makefiles are low-level, clunky creatures
 CMake is a higher level language to automatically generate Makefiles

* CMake contains more features, such as finding library, files, header files; it makes the linking process easier,
and gives readable errors

e What is CMake?

 CMake is an extensible, open-source system that manages the build process in an operating system and in
a compiler-independent manner.

* CMakelists.txt files in each source directory are used to generate Makefiles

———————

CMakeLists.txt Run cmake in shell Makefile

Cmake
1.simple CMake

* Helloworld demo example cmakelists.txt

cmake_minimum_required(VERSION 3.10) # set the project
name project(MyProject) # add the executable
add_executable(output main.cpp)

e Build and Run
* Navigate to the source directory, and create a build directory

S cd ./myproject & S mkdir build
* Navigate to the build directory, and run Cmake to configure the project and generate a build system
S cd build &. S cmake ..

 Call build system to compile/link the project
either run. S make
or run. Scmake—build.

Cmake
2. Cmake with libraries

 Demo: main.cpp with hello library cmakelists.txt

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

e Declare a new library

e Library name : say-hello add_library{ . _
- say-hello [library type](optional)
* Source files: hello.hpp, hello.cpp hello.hpp
e Can add library type: STATIC (default), SHARED hello.cpp
}

_ _ add_executable(output main.cpp)
* Tell cmake to link the library to the

executable(output) target link libraries(output PRIVATE say-hello)

* Private link
e Public link

* interface

‘Librqry Types in C++

* Static-linked library:

contains code that is linked to users’ programs at compile time.
The executable produced is standalone and you don’t access to the library file at runtime

Suppose building 100 executables, each one of them will contain the whole library code, which
increases the code size overall

Longer to execute, because loading into the memory happens every time while executing.

e Shared library:

contains code designed to be shared by multiple programs. (.so in linux, or .dll in wondows, .dylib
in OS X files)

The executable produced is not standalone and you need access to the library file at runtime

All the functions are in a certain place in memory space, and every program can access them,
without having multiple copies of them.

Faster to execute, because shared library code is already in the memory; and don’t need to be
loaded if not required

Librc:ry Types in C++ --- compile time

Dynamic Library:
function foo() {

Static Library:
function foo() {

User Application

User Application

Code }
function bar() {

Code }
function bar() {

} }
Compiler Compiler
Executable Executable

Library Code:

Symbol Table:
function foo() {

function foo()
function bar()

}

function bar() {

}

Using Static Library Using Dynamic Library

Library Types in C++ --- run time

Executable B’s
memory

Executable A’s
memory

Executable B’s
memory

Executable A’s
memory

Library Code:
function foo() {

Library Code:
function foo() {

Symbol Table:
function foo()
function bar()

Symbol Table:
function foo()
function bar()

} }

function bar() {

function bar() {

}

}

Dynamic Library:

function foo() { Shared memory

} address space

function bar() {

}

Using Static Library at runtime Using Dynamic Library at runtime

Cmake
2. Cmake with libraries

 Demo: main.cpp with hello library

e Declare a new library
* Library name : say-hello

* Source files: hello.hpp, hello.cpp
e Can add library type: STATIC (default), SHARED

* Tell cmake to link the library to the
executable(output)
* Private link
e Public link

* interface

cmakelists.txt

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

add_library{
say-hello
hello.hpp
hello.cpp
}

add_executable(output main.cpp)

target_link_libraries(output PRIVATE say-hello)

CmCIke --- Target_link_libraries

 target_link_libraries(<target>
<PRIVATE | PUBLIC|INTERFACE> <lib> ...])
e <target>is the name of generated executable/library

e Each <lib> may be:

 alibrary target name (The named target must be created by add_library() or as an IMPORTED
library.)

* a full path to a library file (e.g. /usr/lib/libfoo.so)
e aplain library name (e.g. foo becomes -Ifoo or foo.lib)

C md ke --- Target_link_libraries /Target_include_directories

 target_link_libraries(<target>
<PRIVATE | PUBLIC|INTERFACE> <lib> ...])

* The PUBLIC, PRIVATE and INTERFACE keywords can be used to specify both the link
dependencies and the link interface in one command.
e PUBLIC: Libraries and targets following PUBLIC are linked to, and are made part of the link
interface.

e PRIVATE: Libraries and targets following PRIVATE are linked to, but are not made part of the link
interface.

e INTERFACE: Libraries following INTERFACE are appended to the link interface and are not used for
linking <target>.

Cmake
3. Cmake with subdirectory

* CMakelists.txt files placed in each source directory are used to generate standard build
files (e.g., makefiles on Unix and projects/workspaces in Windows MSVC).

* CMake supports in-place and out-of-place builds, and can therefore support multiple
builds from a single source tree.

\ CMakelists.txt

Root

(source directory)

N AN
CMgpkellists.txt z keLists.txt

say-hello hello-exe

hello-exe

Demo

Cmake

3. Cmake with subdirectory

e

cmake_minimum_required (VERSION 3.12)
project(MyProject VERSION 1.0.0)

add_subdirectory(say-hello)
add_subdirectory(hello-exe)

add_executable(hell
o_exe main.cpp)

target_link_librari
es(hello_exe
PRIVATE say-hello)

Hello-exe

Demo

add_library (
say—-hello
hello.hpp
hello.cpp

)

target_include_directories
(say-hello PUBLIC
"'${CMAKE_CURRENT_SOURCE_DI

R}ll)

target_compile_definitions
(say—hello PUBLIC
SAY_HELLO_NUM=5)

CmCIke ---add_subdirectory

* add subdirectory(source dir [binary_dir] [EXCLUDE_FROM_ALL])

* Adds a subdirectory to the build. The source_dir specifies the directory in which the
source CMakelists.txt and code files are located.

Cmake

 target_include directories(<target> [SYSTEM] [AFTER | BEFORE]
<INTERFACE |PUBLIC|PRIVATE> [items1...])

* Set include directory properly

* The PUBLIC, PRIVATE and INTERFACE keywords can be used to specify both the link
dependencies and the link interface in one command.

e PUBLIC(default): All the directories following PUBLIC will be used for the current target and the
other targets that have dependencies on the current target

* PRIVATE: All the include directories following PRIVATE will be used for the current target only

e INTERFACE: All the include directories following INTERFACE will NOT be used for the current target
but will be accessible for the other targets that have dependencies on the current target

Cmake
3. Cmake with subdirectory

* Demo of Traffic Controller Simulator in Sagar’s HW1 solution

Root

(source directory) ~

controller L

——

N ————

application

pngwriter

ngwriter

application

Performance Optimization

* 5 steps to improve runtime efficiency
* Time study
* How to use gprof

* Demo

Improve Execution Time Efficiency

1. Do timing studies

2. ldentify hot spots

3. Use a better algorithm or data structure
4. Enable compiler speed optimization

5. Tune the code

Time the program --- Unix ‘time’ command

Run $ time ./output
real Om12.977s
user Om12.860s
Sys OmO0.010s

Real: Wall-clock time between program invocation and termination

User: CPU time spent executing the program

System: CPU time spent within the OS on the program’s behalf

ldentify hot spots

* Gather statistics about your program’s execution
* Runtime profiler: gprof (GNU Performance Profiler)

* How does gprof work?

* By randomly sampling the code as it runs, gprof check what line is running, and what function it’s

in

Gprof

* Compile the code with flag —pg

* gt+ —pg helloworld.cpp —o output

* Run the program
* $./output

* Running the application produce a profiling result called gmon.out

* Create the report file

* gprof output > myreport

* Read the report

° vim myreport

IFIc:’r Profile

Each sample counts as 0.01 seconds.

time
13.22
10.39
6.85
5.67
5.67
5.43

cumulative
seconds

.28
.50
.65
77
.89
. 00

SIS IS RS RS

(SIS I SRS]

self
seconds
.28
.22
.15
.12
.12
.12

calls
50045000
100000000
50005000
100030000
50045000
50005000

self

us/call
0.
0.00
0.00
0.
0
0

01

00

.00
.00

total

us/call

(SIS ISR OS]

.01
.00
.00
.00
.01
.00

name
void std::__cxx1ll::basic_string<char, std::char_traits<char>, ..
std::vector<Entity, std::allocator<Entity> >::operator[](unsigned long)
_gnu_cxx::__normal_iterator<Entity const*,std::vector<Entity,..
_gnu_cxx::__normal_iterator<Entity const*, std::vector<Entity, ..
std::iterator_traits<charx>::difference_type std::distance<charx>(charx,..
_gnu_cxx::__normal_iterator<Entity const*,std::vector<Entity, ..

°* name: name of the function

* %time: percentage of time spent executing this function

* cumulative seconds: [skipping, as this isn’t all that useful

* self seconds: time spent executing this function

* calls: number of times function was called (excluding recursive)

* self s/call: average time per execution (excluding descendents)

* total s/call: average time per execution (including descendents)

Improve Execution Time Efficiency

1. Do timing studies
2. ldentify hot spots
3. Use a better algorithm or data structure

4. Enable compiler speed optimization. (compile flag with -O3)

5. Tune the code

IWhere to find the resources?

e CMake tutorials:

* https://www.youtube.com/watch?2v=LMP_sxOazbg

* https://subscription.packtpub.com /book /programming /9781786465184 /1 /chO1Ivl1secé /creating-type-

aliases-and-alias-templates

* https://cmake.org/cmake /help /latest /guide /tutorial /A%20Basic%20Starting%20Point.html#build-and-run

* Library Linking:

* https://domiyanyue.medium.com/c-development-tutorial-4-static-and-dynamic-libraries-7b537656163e

e https://leimao.qgithub.io /blog /CMake-Public-Private-Interface /

e Code:

* https://qgithub.com/aliciayuting/CS4414Demo.qgit

* Gprof:

e https://www.cs.princeton.edu/courses/archive /fall13 /cos217 /lectures /07 Performance.pdf

https://www.youtube.com/watch?v=LMP_sxOaz6g
https://subscription.packtpub.com/book/programming/9781786465184/1/ch01lvl1sec6/creating-type-aliases-and-alias-templates
https://cmake.org/cmake/help/latest/guide/tutorial/A%20Basic%20Starting%20Point.html
https://domiyanyue.medium.com/c-development-tutorial-4-static-and-dynamic-libraries-7b537656163e
https://leimao.github.io/blog/CMake-Public-Private-Interface/
https://github.com/aliciayuting/CS4414Demo.git
https://www.cs.princeton.edu/courses/archive/fall13/cos217/lectures/07Performance.pdf

