
CS4414 Recitation 8
Debugging with gdb

10/15/2021

Sagar Jha

Every programmer’s fantasy
If only my code would work on the first try…

In reality

• You don’t know where to start

• Your code does not compile

• Your code does not run correctly
• Keeps running forever

• Segfaults

• Does not produce the right output

gdb can help debug runtime issues

What is a debugger? A program that helps debug the
behavior of other programs.

Allows you to pause program execution at any point
and examine program state

Produces a trace in case of segfault

gdb or the GNU debugger itself is written in C

Works on Unix and Windows alike

Introduction to the gdb command

• Run gdb <executable> from the directory of the executable. This will
open the gdb shell. Run run <args> to run it.

• To be able to debug properly, you need to supply the “-g” option with
g++: E.g.,

g++ -g hello_world.cpp –o hello_world

• “-g” produces debugging information with the binary. For example, it
maps the lines in the machine code binary to lines in the source code

Introduction to the gdb command

• Do not optimize code that is meant for debugging, that is, don’t use -
O1, -O2, or –O3 flags

• Optimization strips quite a lot of the program skeleton, even the
variable names

• Thought question: What if the bug only shows up with optimized
code?

gdb/optimization + cmake

• In my CMakeLists.txt file in the project root, I define

• Aside: The different debug flags for g++ have been listed with some
explanation at https://gcc.gnu.org/onlinedocs/gcc/Debugging-
Options.html.

https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html

gdb/optimization + cmake

• When I run the cmake command to generate the Makefiles, I can
specify the variable CMAKE_BUILD_TYPE to be either Release or
Debug (Release is the default)

• Replace “Release” by “Debug” throughout build.sh and then work
with the binary in Debug/bin for debugging

How to debug with gdb?

Let’s start with an example

• Suppose your simulator code for HW 2 is running forever

• What’s the most likely cause?

Let’s start with an example

• Suppose your simulator code for HW 2 is running forever

• What’s the most likely cause? The simulation itself is running forever.

• First step
• Verify that this is the case

First step: Verifying the problem

• Test with the smallest possible time (-t=1)

• After you pop an event, print its time

• If you see a diverging sequence of non-decreasing numbers, for
example, values much greater than 10K, you know this is a problem

First step: Verifying the problem

• Test with the smallest possible time (-t=1)

• After you pop an event, print its time

• If you see a diverging sequence of non-decreasing numbers, for
example, values much greater than 10K, you know this is a problem

• An alternative method - add the following to the code:

We confirmed the problem. What’s next?

• Pause the program execution when it’s in a bad state

• Examine the program state

• Take it from there

• We already know the bad state: a value of time > 10K

How to pause execution in a bad state?

• Code breakpoints

• Suppose the body of the if-condition that checks if time > 0 starts at
line 108 (that prints “Problem!”).

• To add a breakpoint at this line, run (inside the gdb shell) breakpoint
simulator.cpp:108. Then, run the executable with run –t=1

• The executable will keep running until time is <= 10000, then enter
the if-condition and stop

How do breakpoints work?

• By modifying the binary to call into gdb when the execution reaches a
breakpoint

• You can set multiple breakpoints at the same time

• For more on breakpoints, read
https://interrupt.memfault.com/blog/cortex-m-breakpoints

• Okay, we are at that line in the execution. What next?

https://interrupt.memfault.com/blog/cortex-m-breakpoints

A discussion of termination condition

• For HW 1, it was: when the simulation time is about to exceed the
given total time

A discussion of termination condition

• For HW 1, it was: when the simulation time is about to exceed the
given total time

• We will process events for as long as the cars have not reached their
destination

• Suppose you have a single priority queue, events, that stores both car
events and intersection events. A car is not reinserted into the queue
if it reaches its destination

• In other words, the termination condition is when the queue only has
intersection events: events.size() == controllers.size()

How do we print the queue size?

• To print anything that is in present in the local frame, you can type
print <variable-name> in the gdb shell

• When the program stops at the breakpoint, the frame is
simulator.cpp, function main. You can just run print events.size()

• Let’s say we find the queue size is 1470. If there are 1462
intersections, this means 8 cars haven’t reached the destination. 15 –
8 = 7 cars (since, t = 1) have reached their destination

• If instead, we had found the queue size to 5000, that would indicate a
different issue!

Let’s see where we stand

• Which event should we examine more carefully?

Next steps

• Suppose you also print out current when stopped at the breakpoint

• current happens to be an intersection event

• It is most productive to examine a car event and see why the car
doesn’t travel to the next intersection

• We can clear the breakpoint when we are stopped at it by clear

• Then we can set a new breakpoint by breakpoint simulator.cpp:120

• To make the program begin execution again, we run continue

Examining execution line by line

• When we continue from the former breakpoint, the code processes a
few intersection events. Then it looks at a car event and stops at the
new breakpoint.

• We want to see what’s wrong with the car event
• Is the street light it’s at RED?

• Is the next street full of cars (0 leftover capacity)?

• To execute one line and stop again, run next

• This will finish any function calls in the previous line before stopping

• Note: When it’s stopped at a line, it hasn’t executed that line yet!

Stepping into another function

• Suppose you reach a line that calls a function in car.cpp:
cur_car.move();

• If you want to step into this function, you can run the command step
when you reach this line

• Note that if that line was written as,
allCars[car_index].move();

then step will first take you to the std::vector::[] operator

• You can examine whether the street light is red or the capacity is full
by the print command. Or by checking which if or else block the code
goes to

Suppose we find that the capacity is 0

• We are testing with heavy traffic, so initial capacity is 2

• This is also a problem, since the capacity shouldn’t be 0 this late

• We keep debugging like this and find that our logic for incrementing
capacity of the next street is flawed

• We fix the bug and move on to the next

Moral of the story

• Always have a mental image of
what the program state is and
how it is executing

• Fill gaps in understanding with
the help of gdb. Otherwise, you
will be lost!

• Add print statements for
auxiliary information. Add extra
conditions so that the program
stops at just the right place

Segmentation faults

• When your program accesses an illegal memory address, you get a
segmentation fault

• Two common reasons in this course so far
• You access an illegal index of a vector

• You dereference a pointer that does not point to a valid object

• A lot of these issues fall into the undefined behavior category

The curse of undefined behavior

• I was debugging a student code for HW 1 that segfaulted in some
default object destructor

• All tracing using gdb just proved misleading

• Later, using valgrind, I found that there was a memory corruption
because a vector was being accessed with index -1

• In a chess program I was writing, two consecutive calls to the same
deterministic function produced different results before the program
crashed. The cause was the same illegal array access

• valgrind is a tool that can help with memory corruption issues

Debugging normal segfault

• Run the program using gdb

• It will stop when segfault occurs

• Then you can investigate which program line caused it

• The frame of the execution will be inside C++ library for handling
segfault. You will need to look at the program trace

Printing program trace with backtrace

Maneuvering between frames

• The backtrace command prints the program callstack

• Each function on the stack is labeled with a number starting from 0

• Run frame <frame-num> to jump to the context of a specific function
on the stack. Then you can print local variables of that function

