
CS4414 Recitation 5
Pointers and Functions C++

09/24/2021

Alicia Yang, Sagar Jha

Pointers

• Memory, Pointers and References
• Types of pointers
• ownership

Memory --- stack and heap allocation

• Memory for C/C++/Java program: stack
and heap

• Stack Allocation (Temporary memory
allocation):
• Allocate on contiguous blocks of memory, in a

fixed size
• Allocation happens in function call stack

Application’s memory

Heap

Stack

Static/global

Code(Text)

Stack

Memory --- stack and heap allocation

• Memory for C/C++/Java program: stack
and heap

• Stack Allocation (Temporary memory
allocation):
• Allocate on contiguous blocks of memory, in a

fixed size
• Allocation happens in function call stack
• When a function called, its variables got

allocated on stack; when the function call is
over, the memory for the variables is
deallocated. (scope)

• Faster to allocate memory on stack(1CPU
operation) than heap

Application’s memory

Heap

Stack

Static/global

Code(Text)

Stack

• Stack Allocation (Temporary memory
allocation):

Application’s memory

Heap

Stack

Static/global

Code(Text)

int computeA(int a){ return a*a; }

int computeFinal(int a, int b){
int c = computeA(a) + b;
return c;

}

int main()
{

int a = 1, int b = 2;
total = computeFinal(a, b);
return toal;

}

main()
a, b

computeFinal()
a, b, c

computeA()
a

Stack

Memory --- stack and heap allocation

• Stack Allocation (Temporary memory
allocation):

Application’s memory

Heap

Stack

Static/global

Code(Text)

int computeA(int a){ return a*a; }

int computeFinal(int a, int b){
int c = computeA(a) + b;
return c;

}

int main()
{

int a = 1, int b = 2;
total = computeFinal(a, b);
return total;

}

main()
a, b

computeFinal()
a, b,c

Stack

Memory --- stack and heap allocation

• Stack Allocation (Temporary memory
allocation):

Stack free memory via stack pointer

Application’s memory

Heap

Stack

Static/global

Code(Text)

int computeA(int a){ return a*a; }

int computeFinal(int a, int b){
int c = computeA(a) + b;
return c;

}

int main()
{

int a = 1, int b = 2;
total = computeFinal(a, b);
return total;

}

main()
a, b

Stack

Memory --- stack and heap allocation

• Heap Allocation
• Allocated during the execution of instructions

written by programmers. (Variables allocated by
heap could last longer than the span of the
function)

• no automatic de-allocation feature is provided.
Need to use a Garbage collector to remove the
old unused objects

• Larger memory size compared to stack memory

Application’s memory

Heap

Stack

Static/global

Code(Text)

Memory --- stack and heap allocation

int *ptr = new int[10]; // This memory for 10 integers is
allocated on heap

// new key word calls malloc()

Pointers

• A pointer is a variable that stores the memory address of an object.

• Why use pointers?
• to allocate new objects on the heap
• to pass functions to other functions
• to iterate over elements in arrays or other data structures

……. 1775 1776 1777 1778 1779 1780 1781

Pointers --- Address-of(&) and Dereference(*__) operators

• A pointer is a variable that stores the memory address of an object.

• Example:

int num = 10;

int* bar = #

int num2 = (* bar);

……. 1775 1776 1777 1778 1779 1780 1781

num

10 1778
bar

Hey, what IS your
memory address?

Hey, what IS stored IN
your memory address?

num2

10

…….

References

• Reference, is an alias, is another name for an already existing variable. It only exist
in source code

int num = 10;

int* bar = #

int& ref = num;

ref = 2;

……. 1776
1777 1778 1779 1780 1781

num

10 1778
bar

ref

2

I’m a
reference

Types of Pointers

• C-style raw pointers

• Smart pointers

• unique_ptr : prefer, low overhead

• shared_ptr

• Iterators

Types of Pointers -- raw pointers

Example* example = new Example();

Example example2 = *example;

Example* ecopy = &example2;

ecopy->print();

delete example;

// Use the * operator to declare a pointer type
// Use new to allocate and initialize memory

// Copy the pointed-to object, by dereferencing the pointer
access the contents of the memory location.

// Declare a pointer that points to example using the
address of operator

// Accessing filed/function of an object’s pointer using ->

// release memory back to OS, delete ecopy is dangerous
// anything allocate with new, should delete the memory to
prevent memory leak

Types of Pointers

• C-style raw pointers

• Smart pointers: wrapper of a raw pointer and make sure the object is deleted if

it is no longer used

• unique_ptr : prefer, low overhead

• shared_ptr

• Iterators

• For C++ ownership is the responsibility for cleanup.

• The three types of pointers:

• int * : does not represents ownership — can do anything you want with it, and

you can happily use it in ways which lead to memory leaks or double-frees.

• std::unique_ptr<int>: represents the simplest form of ownership (sole owner of

resource and will get destroyed and cleaned up correctly)

• std::shared_ptr<int> : one of a group of friends who are collectively responsible

for the resource. The last of them to get destroyed will clean it up.

Ownership of Pointers

Types of Pointers --- smart pointer: unique_ptr

• a smart pointer that owns and manages another object through a pointer and
disposes of that object when the unique_ptr goes out of scope.

std::unique_ptr<Example> example = new Example();

std::unique_ptr<Example> example(new Example());
std::unique_ptr<Example> example = std::make_unique<Example>();

std::unique_ptr<Example> example2 = example;

std::unique_ptr<Example> example2 = std::move(example1);

Demo: https://github.com/aliciayuting/CS4414Demo.git

Unique_ptr needs to call the constructor explicitly

unique_ptr class doesn’t allow copy of unique_ptr

https://github.com/aliciayuting/CS4414Demo.git

• Allow several shared_ptr objects own the same object.

• The object is destroyed and its memory deallocated, when the last shared_ptr
owning the object is destroyed or is assigned to another pointer. (when Reference
counting==0)

std::shared_ptr<Example> example = std::make_shared<Example>();

std::shared_ptr<Example> example(new Example());

std::shared_ptr<Example> example2 = example;

Less efficient, two allocations:
construct example, then construct control block

Types of Pointers --- smart pointer: shared_ptr

Types of Pointers

• C-style raw pointers

• Smart pointers: wrapper of a raw pointer and make sure the object is deleted if

it is no longer used

• unique_ptr : prefer, low overhead

• shared_ptr

• Array Pointer, Iterators

• An array name is a pointer to the first element of the array

• *(array + ind) is equivalent to array[ind]

int array[5] = {1, 2, 3, 4, 5};

int* ptr;
ptr = array;

cout << *(array + 3) << endl;

cout << *(ptr + 3) << endl;

Types of Pointers --- array pointer

What are the print outs?

array

ptr

1137

• Vector pointer: a direct pointer to the memory array by the vector to store its
elements.

• Buggy code example:

std::vector<int> intVector;

intVector.push_back(1);

int* pointerToInt = &intVector[0];

Types of Pointers --- vector pointer

// We get the pointer to the first element from our vector.

?

• Vector pointer: a direct pointer to the memory array by the vector to store its
elements.

• Buggy code example:

std::vector<int> intVector;

intVector.push_back(1);

int* pointerToInt = &intVector[0];

intVector.push_back(2);

intVector.push_back(3);

std::cout << "The value of our int is: " << *pointerToInt << std::endl;

Types of Pointers --- vector pointer

// Add two more elements to trigger vector resize. During
// resize the internal array is deleted causing our pointer
// to point to an invalid location.

// We get the pointer to the first element from our vector.

?

• Iterator: An iterator is an object (like a pointer) that points to an element inside the
container.

• Container: A container is a holder object that stores a collection of other objects (its
elements). Like array, vector, dequeue, list …

• Difference between pointer and iterator:
• An iterator may hold a pointer, but it may be something much more complex. (e.g.

iterator can iterate over data that’s on file system, spread across many machines.)
• An iterator is more restricted, can only refer to object inside a container (e.g. vector,

array) . A pointer of type T* can point to any type T object.

Types of Pointers --- vector pointer and iterator

• vector<T>::iterator i: create an iterator for a vector of type T

• begin() : return the beginning position of the container
• end() : return the after end position of the container
• To access the elements in the sequence container by i++

Types of Pointers --- vector pointer and iterator

std::vector<int> myvector;

For(int i=1; i<5 ; i ==) myvect.push_back(i) ;

for (std::vector<int>::iterator it = myvector.begin() ; it != myvector.end(); ++it)

std::cout << ' ' << *it << std::endl;

Functions

Function Parameter

• Pass by value : passing the copy of the value

void fun(X x) { std::cout << x << std::endl; }; // declare a function

X x; // create a variable

fun(x); // call the function

• Pass by pointer : passing the copy of the value’s pointer

void fun(X *x);

X x;

fun(&x); // & means get the address_of

• Pass by reference : passing a reference

void fun(X &x); // & means the parameter type is reference

X x;

fun(x);

Function Parameter --- Passing vector

• When a vector value is passed to a function, a copy of the vector is created.

void func(vector<int> vect)
{

vect.push_back(30);
}

int main()
{

vector<int> vect;
vect.push_back(10);
vect.push_back(20);

func(vect);
}

ß Passing a vector value to a function:

- changes made inside the function are not reflected

outside because function has a copy.

- it might also take a lot of time in cases of large vectors.

• Pass by reference

(preferred to pass by reference than pass by pointer: References cannot be null.)

void func(vector<int>& vect)
{

vect.push_back(30);
}

int main()
{

vector<int> vect;
vect.push_back(10);
vect.push_back(20);

func(vect);
}

Function Parameter --- Passing vector

Function Parameter --- const

• Const keyword in parameter of reference: a promise that the variable being
referenced to be changed through the reference.

void foo(const std::string& x) // x is a const reference

{

x = "hello"; // compile error: a const reference cannot have its value changed!

}

• Const keyword in parameter of pointer: declares the identifier as a pointer whose
pointed at value is constant. This construct is used when pointer arguments to
functions will not have their contents modified.

const type * identifier;

void fcn(const int* p){

*p = expression;

}

Function Parameter --- const

// compiler complain: here it is illegal to have
a const pointer’s content change

• Return by value : returning a copy of the value

• Return by reference

Function Returns

double& getValue(int i) {
return vals[i]; // return a reference to the ith element

}

int value(int a) {
int b = a * a;
return b; // return a copy of b

}

• Return by value

• Return by reference

• Return a pointer :
• Generally not a good idea to return a pointer to a local variable

Function Returns

int* test () {
int c[5];
for (int i = 0; i < 5; i++)

c[i] = i;
return c;

}

int main(){
int * result = test();
std::cout << ”First Value is " << result[0] << std::endl;;

…
}

• Why this code doesn’t work? Application’s memory

Heap

Stack

Static/global

Code(Text)

main()
result, …

test()
c

Stack

Memory

int* test () {
int c[5];
for (int i = 0; i < 5; i++)

c[i] = i;
return c;

}

int main(){
int * result = test();
std::cout << ”First Value is " << result[0] << std::endl;;

…
}

• Why this code doesn’t work? Application’s memory

Heap

Stack

Static/global

Code(Text)

Stack

Memory

int* test () {
int c[5];
for (int i = 0; i < 5; i++)

c[i] = i;
return c;

}

int main(){
int * result = test();
std::cout << ”First Value is " << result[0] << std::endl;;

…
}

😢

main()
result, …

• Return by value

• Return by reference

• Return a pointer
• Generally not a good idea to return a pointer to a local variable

Function Returns --- array

Demo: https://github.com/aliciayuting/CS4414Demo.git

Fix1. std::array (better)
std::array<int,5> test () {

std::array<int,5> c;
for (int i = 0; i < 5; i++)

c[i] = i;
return c;

}

Fix2. use heap
int* test (void) {

int* out = new int[5];

return out;

}
(need to release the memory of the returned pointer)

https://github.com/aliciayuting/CS4414Demo.git

• Example:

Does this program work as intended?

Function Returns --- vector

class CS4414{
private:

std::vector<Student> students;
public:

std::vector<Student> get_students(){
return students;

}
};

class Student{
private:

std::string name;
public:

Student(const std::string& name) :
name(name){}

std::string get_name() {
return name;

}
};

Demo: https://github.com/aliciayuting/CS4414Demo.git

https://github.com/aliciayuting/CS4414Demo.git

Where to find the resources?

• Memory Heap and Stack: https://www.geeksforgeeks.org/stack-vs-heap-
memory-allocation/

• Pointers: https://docs.microsoft.com/en-us/cpp/cpp/pointers-cpp?view=msvc-
160 , https://www.cplusplus.com/doc/tutorial/pointers/

• Move semantics: https://www.cprogramming.com/c++11/rvalue-references-
and-move-semantics-in-c++11.html

• Iterators: https://www.geeksforgeeks.org/introduction-iterators-c/

• difference between pointers: https://www.geeksforgeeks.org/difference-
between-iterators-and-pointers-in-c-c-with-examples/

• Passing arguments by reference: https://www.learncpp.com/cpp-
tutorial/passing-arguments-by-reference/

https://www.geeksforgeeks.org/stack-vs-heap-memory-allocation/
https://docs.microsoft.com/en-us/cpp/cpp/pointers-cpp?view=msvc-160
https://www.cplusplus.com/doc/tutorial/pointers/
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.geeksforgeeks.org/introduction-iterators-c/
https://www.geeksforgeeks.org/difference-between-iterators-and-pointers-in-c-c-with-examples/
https://www.learncpp.com/cpp-tutorial/passing-arguments-by-reference/

