CS441 4 Recitation 2

C++ Types and Containers

09/03/2021
Sagar Jha

C++ is strongly typed!

* A C++ variable has a name, a type, a value and an address in memory

Int x =5;
initial
type
YP value

Name

C++ is strongly typed!

* A C++ variable has a name, a type, a value and an address in memory

int x=5; // declaration + initialization

 Later, you can use variable x in expressions such as,

inty=x+1; // initialization of y using x
X=7; // reassignment

Address and initial value

e Can obtain the address (represented in hex) with the & operator

std::cout << &x << std::endl;
// prints 0x7ffd55bdaa4

* What happens if you use an uninitialized variable?

Int X;
std::cout << x << std::endl;

Address and initial value

e Can obtain the address (represented in hex) with the & operator

std::cout << &x << std::endl;
// prints 0x7ffd55bdaa4

 What happens if you use an uninitialized variable?

int x; // undefined value
std::cout << x << std::endl;
// prints 0 on my machine

Types

* Primitive data types * Derived data types
e bool * pointer
* char ® array
e int * function
* float * User-defined data types
* double * struct

e class

Primitive data types

* bool: Represents two values — true and false

e char: a-z, A-Z, 0-9, special characters such as space, newline etc.
* int: Represents integer values

* unsigned int: Represents integer values >=0

* float, double: Represents floating point numbers

Each C++ type has a fixed size, but...

* the size is implementation defined in general

* Lots of integer types
* int, short, unsigned int, long, long long, unsigned long...
* even more: int8_t, intl6_t, int32_t, int64 t,...

* Use sizeof(<type>) to find the size
long long int x = 0;
std::cout << sizeof(x) << std::endl; // prints 8
std::cout << sizeof(long long int) << std::endl;
// prints 8

Question: What'’s the largest value that a 4-
byte integer can represent?

Question: What's the largest value that a 4-
byte integer can represent?

e 4 bytes = 32 bits
A 32-bit datatype can represent 232 distinct values

* A signed 4-byte integer can represent numbers from -231 (-2, 147,
483, 648) to 231 -1 (2, 147, 483, 647)

* An unsigned 4-byte integer can represent numbers from 0 to 232 -1
(4, 294, 967, 295)

* Tip: Use fixed-width integer types defined in cstdint. 4-byte integers
for normal use (int32_t, uint32_t) and 8-byte integers (int64 t,
uint64 _t) for representing larger values

Operators

* Arithmetic:a+b,a—-b,a*b, ... int X int -> int

* Logical: 13, a &&b,a || b bool X bool -> bool
e Relational:a==b,a<b,a>b,a<=b, .. int X int -> bool

e Assignment:a=b,a+=b,a/=b, .. int X int -> int

* Increment: ++a, --a, a++, a-- int -> int

if(x+y<7&&!(z>10)) {
// do something

*X +=V is equivalent to writing x = x +y
can also use for bools: bl |=b2

More on increment and decrement

* Pre-increment (++a) and post-increment (a++) behave differently

X = y++;

3 ?
X Y X Y

More on increment and decrement

* Pre-increment (++a) and post-increment (a++) behave differently

Implicit conversions

e false is O, true is 1. Any non-zero int is true, int O is false

if (my int){} //equivalenttoif (my int!=0)

* Implicit conversion from char to int (using ASCII codes)

isdigit(ch): ch >= 48 && ch <= 57

Implicit conversions

 false is O, true is 1. Any non-zero int is true, int O is false

if (my int){} //equivalenttoif (my int !=0)

* Implicit conversion from char to int (using ASCII codes)

isdigit(ch): ch >= 48 && ch <= 57

written better as,

isdigit(ch): ch >= ‘0" && ch <=9’

C++ auto keyword and const qualifier

* Compiler infers type of variable defined with the auto keyword

int max (int x, inty); //function declaration
auto m=max(x,y); // misanint,
// the return type of max

 const keyword before a variable declaration fixes its value to the
initial value

const double pi = 3.14; // good for readability

More in future recitations

POINTERS CLASSES

Exercise: Explain the error!

#include <iostream>

class myClass {
public:

: ~ 3
void print () { ~ § g++ program.cpp -o program
std::cout << "My integer is: " << myInt << std::endl; program.cpp: In function “int main()’:
} program.cpp:16:15: error: passing ‘const myClass’ as ‘this’ argument discards =
iqualifiers [-fpermissive]
. 16 myOobj.print();
private: I yobi-p (2
int myInt = 10; program.cpp:5:8: note: 1in call to ‘void myClass::print()’
}; 5 | void print () {
| Anronn
~ 3

int main() {
const myClass myObj;
myobj.print();

Exercise: Explain the error!

#include <iostream>

class myClass {
public:

~ 3
void print () { ~ § g++ program.cpp -o program
std::cout << "My integer is: " << myInt << std::endl; program.cpp: In function “int main()’:
} program.cpp:16:15: error: passing ‘const myClass’ as ‘this’ argument discards =
iqualifiers [-fpermissive]
. 16 | myObj.print();
private: | A
int myInt = 10; program.cpp:5:8: note: 1in call to ‘void myClass::print()’
}; 5 | void print () {
| Anronn
~ 3

int main() {
const myClass myObj;
myobj.print();

 print function can potentially change the state of a myClass object, so it cannot be
called on a const object

* To assert that print cannot change object state, change it to void print () const{ ... }

Follow up: What happens when mylnt is

incremented in the const print function?

~ 9
~ $ g++ program.cpp -0 program
program.cpp: In member function ‘voild myClass::print() const’:

program.cpp:7:5: error: increment of member ‘myClass::myInt’ in read-only obje 2
ct

7 | myInt++;

| HMMMM

~ 9

Part Il : Containers

Standard Template Library
* Collection of classes and functions for general-purpose use

* Provides container types (list, vector, map, ...), pair, tuple, string,
thread and many other functionalities

* Available in the std namespace

std::vector<T> and std::array<T, N>

* T is a template parameter

e std::vector<int> is a vector of integers, std::vector<char> is a vector of
characters

* T can be a class or other C++ container.
E.g., std::vector<std::vector<int>>,
std::vector<std::map<int, std::string>...

Array —a fundamental datatype

Elament
First index (at index 8)

I '.
0 1 2 3 4 5 6 7 |8 9 — Indices

Array length is 10

* O(1) access given the index (or position) of the element

* Stores elements contiguously (in continuous memory locations)

* Elements are accessed starting with position 0 (0-based indexing)
* How to access the element at a given position in O(1) time?

The size of an array is constant in C++

e std::array<int, 10> ={1, 2, 3};
defines an integer array of size 10

* The size must be fixed at compile-time
* Elements accessed using the [] operator. For e.g., my_array[2] is 3
* Note: No bounds checking!

* Question: What happens if you do my_array[20] with only 3
elements?

std::vector<T> - A dynamic-sized array

* Main problem: How to support inserting elements efficiently?
e Concept of size vs. capacity

std::vector<T> - A dynamic-sized array

* Main problem: How to support inserting elements efficiently?
e Concept of size vs. capacity
* Reallocates elements when capacity is exceeded

v.capacity()

ﬂ after v.push_back(100)

/ v.capacity()

1 2 3 4 100 |

Complexity of std::vector<T>::push back

* Most push_backs will be O(1) (when size < capacity)
* Some will have linear complexity (when the vector is reallocated)
* Amortized O(1) complexity with exponential growth in capacity

 What about the complexity of inserting at a random position in the
vector?

Complexity of std::vector<T>::push back

* Most push_backs will be O(1) (when size < capacity)
* Some will have linear complexity (when the vector is reallocated)
* Amortized O(1) complexity with exponential growth in capacity

 What about the complexity of inserting at a random position in the
vector?

std::vector<T>::insert (iterator pos, const T&)

Must shift elements to the right! Linear complexity

Exercise

* Pick a large N (> 1 million)

* Program A: Creates a vector of N elements and assigns vec|i] =i for
eachiin a for-loop

* Program B: Creates an empty vector and calls vec.push_back(i) N
times in a for-loop

* Program C: Creates an empty vector and calls vec.insert(vec.begin(),
N -i-1) N times in a for-loop

* Measure the time taken by A, B, and C

