
CS4414 Recitation 2
C++ Types and Containers

09/03/2021

Sagar Jha

C++ is strongly typed!

• A C++ variable has a name, a type, a value and an address in memory

int x = 5;

type

name

initial
value

C++ is strongly typed!

• A C++ variable has a name, a type, a value and an address in memory

int x = 5; // declaration + initialization
• Later, you can use variable x in expressions such as,

int y = x + 1; // initialization of y using x
x = 7; // reassignment

Address and initial value

• Can obtain the address (represented in hex) with the & operator

std::cout << &x << std::endl;
// prints 0x7ffd55bdaa4

• What happens if you use an uninitialized variable?

int x;
std::cout << x << std::endl;

Address and initial value

• Can obtain the address (represented in hex) with the & operator

std::cout << &x << std::endl;
// prints 0x7ffd55bdaa4

• What happens if you use an uninitialized variable?

int x; // undefined value
std::cout << x << std::endl;

// prints 0 on my machine

Types

• Primitive data types

• bool

• char

• int

• float

• double

• Derived data types

• pointer

• array

• function

• User-defined data types

• struct

• class

Primitive data types

• bool: Represents two values – true and false

• char: a-z, A-Z, 0-9, special characters such as space, newline etc.

• int: Represents integer values

• unsigned int: Represents integer values >= 0

• float, double: Represents floating point numbers

Each C++ type has a fixed size, but…

• the size is implementation defined in general

• Lots of integer types
• int, short, unsigned int, long, long long, unsigned long…
• even more: int8_t, int16_t, int32_t, int64_t,…

• Use sizeof(<type>) to find the size

long long int x = 0;
std::cout << sizeof(x) << std::endl; // prints 8
std::cout << sizeof(long long int) << std::endl;

// prints 8

Question: What’s the largest value that a 4-
byte integer can represent?

Question: What’s the largest value that a 4-
byte integer can represent?
• 4 bytes = 32 bits

A 32-bit datatype can represent 232 distinct values

• A signed 4-byte integer can represent numbers from -231 (-2, 147,
483, 648) to 231 – 1 (2, 147, 483, 647)

• An unsigned 4-byte integer can represent numbers from 0 to 232 – 1
(4, 294, 967, 295)

• Tip: Use fixed-width integer types defined in cstdint. 4-byte integers
for normal use (int32_t, uint32_t) and 8-byte integers (int64_t,
uint64_t) for representing larger values

Operators

• Arithmetic: a + b, a – b, a * b, … int X int -> int
• Logical: !a, a && b, a || b bool X bool -> bool
• Relational: a == b, a < b, a > b, a <= b, … int X int -> bool
• Assignment: a = b, a += b, a /= b, … int X int -> int
• Increment: ++a, --a, a++, a-- int -> int

if (x + y < 7 && !(z > 10)) {
// do something

}

+=, -=, *=, /=, …

•x += y is equivalent to writing x = x +y

•can also use for bools: b1 |= b2

More on increment and decrement

• Pre-increment (++a) and post-increment (a++) behave differently

2 3

x y

x = ++y; or
x = y++;

? ?

x y

More on increment and decrement

• Pre-increment (++a) and post-increment (a++) behave differently

2 3

x y

4 4

x y

3 4

x y

Implicit conversions

• false is 0, true is 1. Any non-zero int is true, int 0 is false

if (my_int) {} // equivalent to if (my_int != 0)

• Implicit conversion from char to int (using ASCII codes)

isdigit(ch): ch >= 48 && ch <= 57

Implicit conversions

• false is 0, true is 1. Any non-zero int is true, int 0 is false

if (my_int) {} // equivalent to if (my_int != 0)

• Implicit conversion from char to int (using ASCII codes)

isdigit(ch): ch >= 48 && ch <= 57

written better as,

isdigit(ch): ch >= ‘0’ && ch <= ‘9’

C++ auto keyword and const qualifier

• Compiler infers type of variable defined with the auto keyword

int max (int x, int y); // function declaration
auto m = max (x, y); // m is an int,

// the return type of max
• const keyword before a variable declaration fixes its value to the

initial value

const double pi = 3.14; // good for readability

More in future recitations

POINTERS CLASSES

Exercise: Explain the error!

Exercise: Explain the error!

• print function can potentially change the state of a myClass object, so it cannot be
called on a const object

• To assert that print cannot change object state, change it to void print () const { … }

Follow up: What happens when myInt is
incremented in the const print function?

Part II : Containers

Standard Template Library

• Collection of classes and functions for general-purpose use

• Provides container types (list, vector, map, …), pair, tuple, string,
thread and many other functionalities

• Available in the std namespace

std::vector<T> and std::array<T, N>

• T is a template parameter

• std::vector<int> is a vector of integers, std::vector<char> is a vector of
characters

• T can be a class or other C++ container.
E.g., std::vector<std::vector<int>>,
std::vector<std::map<int, std::string>…

Array – a fundamental datatype

• O(1) access given the index (or position) of the element

• Stores elements contiguously (in continuous memory locations)

• Elements are accessed starting with position 0 (0-based indexing)

• How to access the element at a given position in O(1) time?

The size of an array is constant in C++

• std::array<int, 10> my_array = {1, 2, 3};
defines an integer array of size 10

• The size must be fixed at compile-time

• Elements accessed using the [] operator. For e.g., my_array[2] is 3

• Note: No bounds checking!

• Question: What happens if you do my_array[20] with only 3
elements?

std::vector<T> - A dynamic-sized array

• Main problem: How to support inserting elements efficiently?

• Concept of size vs. capacity

std::vector<T> - A dynamic-sized array

• Main problem: How to support inserting elements efficiently?

• Concept of size vs. capacity

• Reallocates elements when capacity is exceeded

Complexity of std::vector<T>::push_back

• Most push_backs will be O(1) (when size < capacity)

• Some will have linear complexity (when the vector is reallocated)

• Amortized O(1) complexity with exponential growth in capacity

• What about the complexity of inserting at a random position in the
vector?

Complexity of std::vector<T>::push_back

• Most push_backs will be O(1) (when size < capacity)

• Some will have linear complexity (when the vector is reallocated)

• Amortized O(1) complexity with exponential growth in capacity

• What about the complexity of inserting at a random position in the
vector?

std::vector<T>::insert (iterator pos, const T& value)

Must shift elements to the right! Linear complexity

Exercise

• Pick a large N (> 1 million)

• Program A: Creates a vector of N elements and assigns vec[i] = i for
each i in a for-loop

• Program B: Creates an empty vector and calls vec.push_back(i) N
times in a for-loop

• Program C: Creates an empty vector and calls vec.insert(vec.begin(),
N – i -1) N times in a for-loop

• Measure the time taken by A, B, and C

