
CS 4414: Recitation 9
Sagar Jha

Today: Multithreading Part II

• Surveying Linux source code

• Design of wc++

• Evaluating wc++ on my laptop and Fractus

• Identifying bottlenecks through performance statistics

• Evaluating alternate design choices

• Improving performance guided by performance characteristics

First things first: Survey
of linux-5.8-rc7

First things first: Survey
of linux-5.8-rc7

• ~21K header files (.h) and ~29K source
files (.c)

• Max header file size is 13.5MB, almost
all header files are < 30KB

• Max source file size is ~1MB, almost all
source files are < 100KB

Cumulative frequency
of .h files

Cumulative frequency
of .c files

linux-5.8-rc7: Taking a
closer look

• Nearly 25% of header files are < 900B

• ~50% and ~75% of header files are <
2.3KB and 6.25KB, resp.

• ~95.0% of header files are < 30KB

Cumulative frequency
of .h files

linux-5.8-rc7: Taking a
closer look

• Nearly 25% of source files are < 3.8KB

• ~50% and ~75% of header files are <
8.8KB and 20.4KB, resp.

• ~97.8% of header files are < 100KB

Cumulative frequency
of .c files

How did I compute the statistics?

Linux Command Line ☺

• find searches for a file inside a directory

• pipe (|) feeds the output of one command as input to the other

• wc –l counts the number of lines in the input

• xargs sends input lines to the command as arguments

• du –b outputs the size of its argument in Bytes

• awk (or gawk) does pattern scanning and processing on the input

• sort –n sorts lines numerically

• uniq –c counts the number of occurrences of repeated lines

Compute the number
of files of a given type

• find ./linux-5.8-rc7 -name *.h | wc -l

Compute the file size
frequency

• find ./linux-5.8-rc7 -name *.c | xargs du -b
| awk '{print $1}' | sort -n| uniq -c >
c_file_stats

Linux commands to compute the stats

Design of wc++

Main
thread

• Collects the
pathnames of all
header and
source files in the
given directory

• Spawns the given
number of
worker threads

Worker thread 1

•Goes through its set of files and computes results locally

•Merges local results sequentially into the global map

Worker thread 2

•Goes through its set of files and computes results locally

•Merges local results sequentially into the global map

Worker thread 3

•Goes through its set of files and computes results locally

•Merges local results sequentially into the global map

Main
thread

• Waits for all
worker threads
to exit

• Prints the results

Before measuring performance: Not printing
the results on the console
• The final result consists of more than four million words (4067253) with

their frequencies
• Specification requires us to print in the order of the most frequent words

first, breaking ties alphabetically
• We are not going to 4 million lines to the console! We are still going to

compute the results in the right sort order
• Printing has to be single-threaded to preserve the sort order, but this takes

more than 10 minutes!
• The rest of the program that computes the results takes less than a minute

in all the cases
• This defeats the purpose of multithreading
• No program focused on performance should be printing so many lines

wc++ performance
evaluation

• Initially, time reduces sharply with the number of threads, then kind of
stagnates. Amdahl’s law explains why performance does not increase
proportionally with threads

• Hyperthreading does not increase performance appreciably since threads
have to share the same cores. For more on the impact of hyperthreading,
read https://medium.com/@ITsolutions/will-hyper-threading-improve-
processing-performance-15cba11add74

• Time taken on the Fractus machine is significantly better than on my laptop

Time on my laptop (4 physical, 8 logical cores) Time on compute28 (32 physical, 64 logical cores)

https://medium.com/@ITsolutions/will-hyper-threading-improve-processing-performance-15cba11add74

Taskset: controlling thread to core assignment

• Format: taskset mask command [arg]…

• How to specify the correct mask? Suppose I have 8 (logical) CPUs. The
i^th bit of mask is 1 if I want to use CPU i

• E.g. if I want to use CPUs 0 and 4, the mask will be 0001 0001. Best
expressed as a hexadecimal number 0x11

• What happens to performance if
• 4 threads use four different physical cores?

• 4 threads use only one logical core?

• 4 threads use two logical cores, but they are on different physical cores?

• 4 threads use two logical cores on the same physical core?

Answers (with #threads = 4)

• Running on one logical core is similar to just 1 thread running

• Running on two logical cores which are on separate physical cores is
similar to just 2 threads running

• Running on two logical cores sharing the same physical core is
somewhat better than just 1 thread running

Experiment taskset mask Time taken (s)

Just one logical core 0x1 48.1

Two logical cores on separate
physical cores

0x3 26.7

Two logical cores on the same
physical core

0x11 42.1

No constraints (Linux will assign the – 16.3

What
happens if

we use even
more

threads?

Performance on my laptop. After 8 threads, performance
decreases because threads have to share the same cores

Breaking down the process

The following stats are relevant:

• t_find_all_files
Time to traverse the directory structure and collect all .h and .c files

• t_process
For each thread, time to process its share of files

• t_merge
For each thread, time to merge the local results into the global map

• n_files_processed
For each thread, number of files processed

• n_bytes_processed
For each thread, the total Bytes processed

• t_sort
Time to sort the results by frequency of occurrence, breaking ties alphabetically

Can you guess the time breakdown with a
single thread?
• Breakdown total time taken (~47s) as the sum,

47s = t_find_all_files + t_process + t_merge + t_sort

Can you guess the time breakdown with a
single thread?
• Breakdown total time taken (~47s) as the sum,

47s = t_find_all_files + t_process + t_merge + t_sort

• Solution
46.6s = 0.117s + 43.149s + 1.5s + 1.5s

This already rules out optimization ideas for steps that run sequentially:

• Time to find files is negligible. No need to worry about pipelining
finding files and processing them

• Time to sort is not that high. For small number of threads, this will
not be a worry.

Stats with 1-4 threads

#threads t_find_all_files
(s)

t_process (s) t_merge (s) t_sort (s) n_files_processed
(K)

n_bytes_processed
(MB)

1 0.1 43.2 1.5 1.5 50.1 797.4

2 0.1 23.2 23.2 1.0 1.8 1.5 25.2 24.9 402.6 394.8

3 0.1 15.9 15.9 15.9 1.9 1.3 0.7 1.5 16.8 16.6 16.6 265.5 266.7 265.3

4 0.1 13.2 13.2 0.6 2.3 1.6 12.6 12.6 196.7 201.3

13.2 13.2 1.2 1.8 12.2 12.7 200.84 198.55

Observations:
• Thanks to my dynamic thread to file assignment scheme, all threads finish processing at about the same time. The

number of files and bytes processed per thread remains about the same across threads too.
• Merging thread-local results into the global map is in a critical section. Because all threads finish at about the same time,

they contend with each other for the merge.
• Conclusion: High processing time is a bottleneck with small number of threads

What happens with 64
threads on Fractus?

• Program runs in 8.9s

• Each thread processes < 1K files on
average, time to process is only about
1.5s for every thread

• Threads still finish at about the same
time; thus they wait in a long line to get
their results in. Max wait time is 5.4s

• Conclusion: Merging results is a
bottleneck with large number of threads

Evaluating alternate design choices

• Remember this quiz
question?

• a. and e. are easy to dismiss,
b. is an obvious choice

• c. and d. are opposite.
Avoiding synchronization
overheads through c. is
crucial. Let’s evaluate d.

• f. is the worst choice you
could make! Let’s evaluate f.

Directly modifying the
global frequency map

• In process_file, we directly
modify global freq in a critical
section

• We don’t need the merge step
anymore

Program performs much
worse because of
increased contention!

• Time taken increases with
the number of threads!

• This is entirely due to the
increased processing time

Number of
threads Time (in s)

1 46.3

2 47.5

3 49.0

4 55.1

64 (Fractus) 123.1

Parsing string word
by word

• Original implementation reads an entire file
in a string

• It then tokenizes the entire string in one shot

This decision impacts
performance the most

• Time taken goes through the
roof – almost 30 minutes with
1 thread!

• Again, the processing time
increases disproportionately

• What goes wrong?
(possibly) Reading a file takes
longer and processing a single
word has constant overheads

Number of
threads

Time
(in minutes)

1 29.7

2 15.3

3 10.7

4 8.6

64 (Fractus) 12.75

Bonus: Static thread to file assignment

• Thread i processes files indexed n * t + i for all t, where n is the number of
threads

• Threads don’t need to coordinate using an std::atomic<uint64_t> to find
unique file indexes

• But the solution is less robust to delays – what if a thread runs slower than
others (artifact of scheduling decisions) or it has to process significantly
more data due to disparity in file sizes?

• For our test-case, results are marginally better for small number of threads
because of the very large number of small files and decreased
synchronization requirements

• For 64 threads, threads finishing processing at slightly different times
results in reduced contention for merging results, giving a 5% improvement

Static partitioning gives
comparable results

• The table does not account
for variance in results

• I would not trade small
performance-gains for a less
robust solution

• The original solution can be
improved to have better
characteristics

#threads Time (s)
Original
Time(s)

1 47.1 47.4

2 26.5 26.7

3 19.2 19.7

4 15.8 16.3

64 (Fractus) 8.5 8.9

How can we improve performance?

• Two of the three alternate choices are downright bad

• Static partitioning scheme is less robust to delays

Recall the bottlenecks we identified earlier:

• High processing time is a bottleneck with small number of threads

• Merging results is a bottleneck with large number of threads

How can we process
files faster?

• I profiled the file processing function in a separate
program

• Found that regex split is the most expensive step

• This may be one reason Ken’s C program is faster

gprof output supports the theory (-pg –O1,
num_threads = 1)

Idea 1: Let’s batch file processing

• Read contents from multiple files into a single string until it is large
enough (max_size). Only then tokenize.

• Regexp split is linear in the size of the string. Processing large strings
does not provide any clear improvement.

• With max_size ranging from 1KB to 50MB, performance with a single
thread remains somewhat constant at about 48-50s.

• Does not work therefore

How can we merge faster?

• Idea 2: Ken’s idea of parallel merge!

• I didn’t try it, but it should give speedups with large #threads

• If you are interested, extend my solution to support parallel merge

Summary

• Increasing the number of threads does not automatically increase
performance

• Threads can work in parallel as long as they run on separate cores

• The more the threads need to synchronize, the less they can work in
parallel

• Steps that run sequentially can bite us (sequential vs. parallel merge)

• String processing is a pain

• Measuring time/performance statistics can guide us in understanding
and improving performance

