
CS4414 Recitation 1
Course Introduction and C++ Setup

08/27/2021

Sagar Jha, Alicia Yang

About TA --- Sagar

• Senior PhD student in CS

• Advised by Prof. Birman on distributed systems (with a focus on RDMA networks)

• TA experience at Cornell

• Practicum in Database Systems (Fall ‘16)

• Cloud Computing (Spring ‘18, Spring ‘20)

• Systems Programming (Fall ‘20, Fall ‘21)

• Office Hours

• Thursday and Friday 5-7 pm (starting next week)

• At https://cornell.zoom.us/j/99522656755?pwd=WTdzV1hFSzVIM1BLR0Q3TDZsRHdKdz09

https://cornell.zoom.us/j/99522656755?pwd=WTdzV1hFSzVIM1BLR0Q3TDZsRHdKdz09

Goals

Develop systems in C++ that perform well

Goals

For the recitation:

• Basic C++ proficiency: Read, write, and debug C++ code

• Working knowledge of Linux: The Linux command line and the filesystem

Develop systems in C++ that perform well

Goals for the recitation

• Basic C++ proficiency: Read, write, and debug C++ code

• Standard containers – std::vector<T>, std::map<K, V>

• pointers, iterators, templates, classes…

• gdb for debugging, gprof for profiling

• multi-threading, synchronization

• Working knowledge of Linux: The Linux command line and the filesystem

Secondary goals

• Learn to characterize code performance

• Make efficient use of hardware – learn to exploit CPU cores with threads

• Understand solutions to assignments/exams

System Performance
will be a mainstay of
this course!

What do we mean by
performance?

• Latency: Time taken to
compute

• Throughput: Number of
operations per second

Focus on system performance

It’s not just about

algorithm complexity. Why?

Reasoning about system performance

• Theoretical improvements don’t always translate to better application
runtimes

Insertion sort outperforms quick sort in some cases

Why?

1. Insertion sort is iterative – no overhead from recursive function
calls (good for sorting a small set)

2. Insertion sort is fast when data is nearly sorted

Reasoning about system performance

• Theoretical improvements don’t always translate to better application
runtimes

• Which algorithm? A system can be very complex with many features

• A = processing files, B = printing 1 million lines of output

A B

Fairly optimized code Highly inefficient code

Sequential program with 2 steps

Reasoning about system performance

• Theoretical improvements don’t always translate to better application
runtimes

• Which algorithm? A system can be very complex with many features

What if step A takes about 99% of the total time? We need to profile
and understand performance characteristics of code we write!

A B

Fairly optimized code Highly inefficient code

Sequential program with 2 steps

Reasoning about system performance

• Theoretical improvements don’t always translate to better application
runtimes

• Which algorithm? A system can be very complex with many features

• What if the code that implements the algorithm is inefficient?

• Sometimes heuristics work better

C++ Environment Setup

Name Offfice Hour 1 Office Hour 2 Zoom Link

Alicia Yang Saturday 5-7PM Sunday 6-7PM https://cornell.zoom.us/j/93560684279?pwd=S1c0NjF5Y1ZLNnpVVU0xQll5K2tRUT09

Andrew D. Tuesday 9-11AM Thursday 10-11AM https://cornell.zoom.us/j/91466505032?pwd=U01wTEQvTEx0T3NWcDdMeWMrdW1Zdz09

Zheng Wang Monday 1-3PM Wednesday 10-11AM https://cornell.zoom.us/j/8812491232?pwd=VUtRWndqR2lvMjU1S1VZVkY5VkRxdz09

Sagar Jha Thursday 5-7PM Friday 5-7PM
https://cornell.zoom.us/j/99522656755?pwd=WTdzV1hFSzVIM1BLR0Q3TDZsRHdKdz09

Aahli Awatramani Wednesday 9-10AM Wednesday 2-4PM
https://cornell.zoom.us/j/92630999231?pwd=b0RkeVQ5TWczcWd1WGdLbXNpT21MQT09

Arthur Tanjaya Tuesday 5-7PM Thursday 5-6PM https://cornell.zoom.us/j/3877784348?pwd=dkVwcFBwS1RDSHh2SXBhRXZVaVdtdz09

Muhammad Moughal Monday 6-7PM Tuesday 4-6PM https://cornell.zoom.us/j/4905170673?pwd=V3dXS00wbEFleC9YSDBGS3Z4UTR5Zz09

TA and Office Hours

https://cornell.zoom.us/j/93560684279?pwd=S1c0NjF5Y1ZLNnpVVU0xQll5K2tRUT09
https://cornell.zoom.us/j/91466505032?pwd=U01wTEQvTEx0T3NWcDdMeWMrdW1Zdz09
https://cornell.zoom.us/j/8812491232?pwd=VUtRWndqR2lvMjU1S1VZVkY5VkRxdz09
https://cornell.zoom.us/j/99522656755?pwd=WTdzV1hFSzVIM1BLR0Q3TDZsRHdKdz09
https://cornell.zoom.us/j/92630999231?pwd=b0RkeVQ5TWczcWd1WGdLbXNpT21MQT09
https://cornell.zoom.us/j/3877784348?pwd=dkVwcFBwS1RDSHh2SXBhRXZVaVdtdz09
https://cornell.zoom.us/j/4905170673?pwd=V3dXS00wbEFleC9YSDBGS3Z4UTR5Zz09

About TA --- Alicia

• 1st year PhD student in CS, TAed this course Fall 2020

• Working with Prof. Birman in the area of distributed system

• Interested in scheduling and cluster management in machine learning system

• Office Hours : Thursdays 6PM – 7PM, Saturdays 6PM - 7PM

• Meeting by appointment for questions or assignment discussion

C++ Coding Environment

• C++ 20

• gcc-8 or recent

• To check your gcc compiler version: $ g++ -v

C++ Coding Environment

• Editing Tools:

• Visual Studio Code (link)

• Emacs

• Vi, …

• Compilation Tools: GNU Compiler Collection (GCC)

• Cornell Engineering linux server remote access

• Virtual Box

• Most linux distributions have GCC

• MacOS user has Clang compiler (not recommended for this course, since Clang and GCC are two different

compiler and sometimes have different compilation results. The submitted assignments are run via GCC)

https://code.visualstudio.com/docs/languages/cpp

C++ Coding Environment

• C++ 20

• gcc-8 or recent

• To check your gcc compiler version: $ g++ -v

• We will introduce three main ways of setting up the coding environment

https://visualstudio.microsoft.com

https://visualstudio.microsoft.com/

C++ Coding Environment

• C++ 20

• gcc-8 or recent

• To check your gcc compiler version: $ g++ -v

• We will introduce three main ways of setting up the coding environment

• Install Visual Studio Code

• Install C/C++ extension in VSCode

C++ Environment Setup

method1: compile&run on cornell engineering linux server from terminal

• Install VSCode and C++ extension on VSCode

• Login to Cornell VPN

C++ Environment Setup

method1: compile&run on cornell engineering linux server from terminal

• Install VSCode and C++ extension on VSCode

• Login to Cornell VPN

• ssh to your cornell student account on VSCode through

• View -> Command Palette -> Remote SSH: Connect to host

• In command type:

% ssh [your netid]@ugclinux.cs.cornell.edu

C++ Environment Setup

method1: compile & run on cornell engineering linux server from terminal

• Install VSCode and C++ extension on VSCode

• Login to Cornell VPN

• ssh to your cornell student account on VSCode through

• All set! Start coding (Demo)

• Helloworld simple program

• Compile: g++ -std=c++20 –Wall –o helloworld helloworld.cpp

• Run: ./helloworld

• If there are multiple files, compile with: g++ -std=c++20 main.cpp other.cpp etc.cpp

C++ Environment Setup

method1: compile & run on cornell engineering linux server from terminal

demo

1. Install IDE (VSCode in this example) , and extensions: C/C++, Code Runner

• Specify C++ standard version on Code runner extension

C++ Environment Setup

method2 : VSCode Edit, compile/run locally

1. Install IDE (VSCode in this example) , and extensions: C/C++, Code Runner

• Add –std=c++17 to the json file:

• "cpp": "cd $dir && g++ -std=c++17 $fileName -o $fileNameWithoutExt && dirfileNameWithoutExt"

C++ Environment Setup

method2 : VSCode Edit, compile/run locally

1. Install IDE (VSCode in this example) , and extensions: C/C++, Code Runner

2. Install Compiler

• Why install gcc? mac default C++ compiler is Clang

C++ Environment Setup

method2: VSCode Edit, compile/run locally

1. Install IDE (VSCode in this example), and extensions: C/C++, Code Runner

2. Install GCC Compiler with following command

% brew update

% brew upgrade

% brew info gcc

% brew install gcc

% brew cleanup

C++ Environment Setup

method2 : VSCode Edit, compile/run locally

• Install IDE (VSCode in this example), and extensions: C/C++, Code Runner

• Install GCC Compiler with following command

• Run and debug locally:

• Control + shift + D

C++ Environment Setup

method2 : VSCode Edit, compile/run locally

1. Install IDE (VSCode in this example), and extensions: C/C++, Code Runner

2. Install GCC Compiler with following command

3. Run and debug locally

4. Configure compiled file

• .vscode/tasks.json

C++ Environment Setup

method2 : VSCode Edit, compile/run locally

demo

• Download Visual Studio

• Configure GCC property on Visual Studio

C++ Environment Setup

- method3 (windows): Visual Studio Edit, compile/run locally

• Download Visual Studio

• Configure GCC property on Visual Studio

• Create C++ Project, right click project -> build

C++ Environment Setup

- method3 (windows): Visual Studio Edit, compile/run locally

• Download Visual Studio

• Configure GCC property on Visual Studio

• Create C++ Project, right click project -> build

C++ Environment Setup

- method3 (windows): Visual Studio Edit, compile/run locally

• Download Visual Studio

• Configure GCC property on Visual Studio

• Create C++ Project, right click project -> build

• Run the executable

• Click the .exe

• Click on localWindowDebugger on Visual Studio

C++ Environment Setup

- method3 (windows): Visual Studio Edit, compile/run locally

• Download Visual Studio

• Configure GCC property on Visual Studio

• Create C++ Project, right click project -> build

• Run the executable

• Click the .exe

• Click on localWindowDebugger on Visual Studio

C++ Environment Setup

- method3 (windows): Visual Studio Edit, compile/run locally

