
CS4414 Recitation 14
Final review

12/03/2021

Sagar Jha

What does it mean to write optimal systems
code?
• Designing for the hardware

• Picking the right language. Understanding it deeply.

• Profiling code to understand program performance characteristics

• Software multithreading and efficient synchronization

What does it mean to write optimal systems
code?
• Designing for the hardware

• Understanding multicore parallelism
• Understanding NUMA architecture
• Understanding any other relevant aspects e.g., disk/memory characteristics, network

performance

• Picking the right language. Understanding it deeply.
• Use containers efficiently – std::vector<T>, std::map<K, V>, std::unordered_map<K,V>
• Learn C++ idioms: reference vs object vs pointer, copying costs, memory behavior, ownership

issues

• Profiling code to understand program performance characteristics
• Using gprof to understand program time distribution

• Learning software multithreading and efficient synchronization
• Learning how to parallelize your code and coordinate efficiently among threads

I. Designing for the
hardware

Non-uniform memory access (NUMA)

• In multi-core processor architectures, a processor can access local
memory faster than non-local memory (shared memory or memory
local to other processors)

• In uniform memory architectures, the cost of accessing memory is
higher, and increases with the number of processors

How can you find the CPU architecture
information on Linux?
• Command lscpu gives you the information

• lscpu output on compute16 on Fractus

field value

Architecture x86_64

CPU(s), On-line CPU(s) list 32, 0-31

Thread(s) per core
Core(s) per socket

2
8

Socket(s)
NUMA node(s)

2
2

NUMA node0 CPU(s)
NUMA node1 CPU(s)

0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30
1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31

How does NUMA affect performance?

Assignment of threads to cores Total time taken (avg. over 10 runs)

taskset 0x3 9.04s

taskset 0x5 5.63s

Question 1: Why such a big discrepancy in performance?

int counter = 0; std::function<void()>

repeated_increment = [&counter]() {

for(uint32_t i = 0; i < one_billion; ++i) {

counter++; } };

std::thread t1(repeated_increment);

std::thread t2(repeated_increment);

t1.join(); t2.join();

How does NUMA affect performance?

• We know accessing remote memory is slower. In what cases, will our
program be forced into doing that?

How does NUMA affect performance?

• We know accessing remote memory is slower. In what cases, will our
program be forced into doing that?

• If we run out of memory on the same NUMA node, the OS will
allocate more memory on a remote node

• Two threads running on different NUMA nodes sharing data

• Modern systems have caches, but the behavior remains the same
• need to access remote memory on a cache miss
• overhead of cache coherence with memory on the remote node

• NUMA-aware design: Designing applications to take full advantage of
the NUMA architecture

II. Picking the right language.
Understanding it deeply.

Why use C++ for systems programming?

Why use C++ for systems programming?

• C++ is designed for systems programming

• Static type checking – memory layout of each object is known
beforehand

• Code compiles down to the architecture

• C++ compilers spend significant time during compilation to improve
performance at runtime. g++ is the best compiler at optimizing code

• Reduced runtime checking for maximum performance

• C++ gives you many options for each programming feature – pick and
choose based on the exact need and performance requirements

• Punishes you every time you make a mistake – develops good
programming habits in the long run

Learn effective usage of C++ containers

• When to use a vector, when to use a list, when to use a map…

• std::vector is the most important C++ data structure
• It’s heavily optimized for good performance

• Learning the emplace commands in order to avoid copying

Using std::vector<T> effectively

Question 2: What’s wrong with the code above?

std::vector<uint32_t> random_elements;

uint64_t running_sum = 0;

for(uint32_t i = 0; i < one_million; ++i) {

random_elements.emplace(random_elements.begin(),

(running_sum + get_random_number()) % 1000);

running_sum += random_elements.front();

}

std::vector<T>::emplace is expensive

Two improvements:

• Using push_back to insert elements

• Reversing the vector at the end

Question 3: Can we do even better?

for(uint32_t i = 0; i < one_million; ++i) {

random_elements.push_back(

(running_sum + get_random_number()) % 1000);

running_sum += random_elements.back();

}

std::reverse(random_elements.begin(), random_elements.end());

Resize the vector with the known size upfront

std::vector<uint32_t> random_elements(one_million);

for(int32_t i = one_million - 1; i >= 0; --i) {

random_elements[i] = (running_sum +

get_random_number()) % 1000;

running_sum += random_elements[i];

}

Looking at the numbers

Approach Runtime

emplace 55 seconds

push_back and reverse 60 milliseconds

resize upfront 30 milliseconds

Theory: How does std::vector<T> work?

• std::vector is a collection of elements stored contiguously in memory

• Contiguous storage provides random access in O(1) time

• emplace is linear because elements after the inserted position need to be moved
right

• push_back is amortized O(1)

• when size equals capacity and a new element is inserted at the end, the vector
needs to be reallocated and moved to a new memory location

When to use other containers?

• Use std::list<T> if you need to insert in the middle given an iterator

• Traversing an std::list<T> is costlier because non-contiguous storage
of elements leads to worse cache behavior

• std::map<K, V> vs. std::unordered_map<K, V>
• std::map<K, V> provides deterministic log n insert and find, while

std::unordered_map<K, V> provides amortized O(1)

• std::map<K, V> provides additional features such as traversing in sorted key
order, finding upper/lower bounds, etc.

• What happens when the key type is std::string?

What’s wrong with the following code?

Question 4: Can you guess which optimization brought the runtime
from 5 seconds down to 2?

std::vector<double> recursively_process(

std::vector<double>& numbers, uint32_t num_times = hundred_thousand) {

if(num_times == 0) {

return numbers;

}

// modify the numbers using some math operations... finally

return recursively_process(numbers, num_times - 1);

}

int main() {

std::vector<double> numbers(ten_thousand);

// initialize the elements somehow...

recursively_process(numbers);

}

Pass arguments by reference when possible

• Not applicable for very small data types (int, double, bool etc.)

• Fun fact: In my undergrad, I helped a friend in ECE with this exact
problem

• What’s the larger idea with passing arguments by reference?

Larger idea: Avoid copying objects

• Pass arguments by reference

• Share an object across multiple entities using std::shared_ptr

• Pass ownership of an object using std::move

• C++ incorporates RVO (return value optimization)

• Disable copying explicitly in the class definition. E.g.,
myClass(const myClass&) = delete;

myClass& operator=(const myClass&) = delete;

Learn to use lambda functions

Question 5: Partition students based on their score – Below 75 and on
or above 75

Given

• template< class ForwardIt, class UnaryPredicate >
ForwardIt partition(ForwardIt first, ForwardIt last, UnaryPredicate p);
• Reorders elements between first and last such that elements for which p is

true are to the left of the elements for which p is false

• Returns iterator to the first element of the second partition

• std::vector<Student> students;

• int Student::get_score() const;

• returns a number between 0 and 100

Solution: encode the partition condition into
a lambda function
std::partition(students.begin(), students.end(),

[] (const Student& s) {

return s.get_score() < 75;

});

Metaprogramming using templates

• Generic programming: How can we write code that works with
different types?

• We write a template for the code. The compiler generates the code
based on the template. All types are completely defined at compile-
time!

• Variadic templates: Using this, a function or class that can take
variable number of template arguments

Variadic templates question

Question 6: Define a class print_all that takes any number of
arguments of a type and calls print on each one of those arguments

• For example,

print_all (student1, ta1);

should work as well as

print_all (student1, ta1, student2, ta2);

assuming void Student::print() const and TA::print() const is defined

Solution: Use recursion!

void print_all() {

}

template <typename T, typename... Ts>

void print_all(const T& t, const Ts&... ts) {

t.print();

print_all(ts...);

}

C++’s RAII technique

Question 7: Function process is supposed to be called from different
threads in different parts of the code. It calls std::mutex::lock and
std::mutex::unlock explicitly. In testing, it is found that the code
deadlocks. What could possibly be happening in somefunction?

std::mutex m;

std::function<void()> process =

[&m]() {

m.lock();

somefunction();

m.unlock();

};

C++’s RAII technique

• Tie resource allocation and release to the lifetime of an object

• Works because C++ destroys an object right when it goes out of scope

• Use std::unique_ptr instead of raw pointers

• Use std::unique_lock (or variants) to lock or unlock mutexes

std::scoped_lock<std::mutex> lock(m);

somefunction();

III: Profiling code to
understand performance
characteristics

Bottleneck analysis: Targeted algorithmic
improvements
• Profiling with gprof or by performance tests can guide the optimization

process

• We made several informed decisions about what to optimize:
• We found that calls to std::stoi and std::stod were expensive. We tried to

optimize by caching the results
• We implemented a vector-based event processing system to get rid of possible

inefficiencies of the priority_queue-based approach
• I decided to not worry about pipelining opening files and processing them in my

word count program since opening files took an insignificant amount of time.

• Understanding the workload can similarly provide great insight into
systems design
• There are entire systems dedicated to optimizing read throughput since read

requests can make up to 95% of application workloads

To optimize, or not to optimize, that is the question

Question 8: A multithreaded program consists of a sequential step S
followed by a perfectly parallel step P. Step S takes 5% and P takes
95% of the total runtime when the program is run with a single
thread. There is an option to optimize either of the two steps by 25%.
Under what conditions (number of parallel threads) would it be more
beneficial to optimize S than P?

IV. Learning
software
multithreading
and efficient
synchronization

This Photo by Unknown Author is licensed under CC BY-SA

https://commons.wikimedia.org/wiki/File:Colorful_Threads_(3965274345).jpg
https://creativecommons.org/licenses/by-sa/3.0/

Amdahl’s law

• Infinite parallelism will not give infinite speedup

• Performance is limited by the cost of the sequential parts

• We saw it firsthand in word count: While the parallel file processing
was dominating runtime for smaller #threads, the sequential merge
step became a bottleneck with large #threads (~64)

Main takeaway

• It helps to make your program more parallel (get rid of the
sequential steps) than to optimize the parallel steps

• That’s why efficient thread synchronization is a big deal – whenever a
thread holds a lock that prevents other threads from progressing,
your program loses performance

Race conditions and deadlocks

• Race condition occurs when two threads access a critical section
simultaneously.

• A critical section is part of the code that must be run exclusively at a
given time by a single thread. It is the part where variables shared
across threads are accessed safely. An std::mutex can be used to
implement mutual exclustion.

• Deadlock occurs when the system cannot make progress.

• What is the most salient feature of a deadlock?
• Threads (or processes in a distributed system) are waiting on each other

std::atomic vs std::mutex

Question 9: Which of the following is definitely going to be more
efficient in the word-count program:

1. We maintain an std::set of unprocessed files. Each thread acquires
a mutex and removes an element from the set. That is the next
file it processes.

2. We maintain a vector of all files to process. Files are processed
from left to right, thus we maintain an atomic integer that stores
the position of the first unprocessed file. Each thread atomically
reads and increments the integer and process the file
corresponding to the position read.

When to use an std::atomic?

• std::mutex is general purpose. It provides a lot more features than an
std::atomic. E.g., std::lock can lock multiple mutexes simultaneously
atomically. When the mutex is already locked, the thread will be
blocked instead of hogging the CPU.

• When they both meet the synchronization requirements, std::atomic
is going to be much more efficient.

• std::atomic only wraps a single variable, which is often a primitive
type. Must use mutex if atomicity is needed over multiple state
variables.

Purpose of a condition variable

• When a thread needs to wait for a condition that can only be enabled
by another thread, we use an std::condition_variable. This is
combined with acquiring/releasing the mutex to guarantee mutual
exclusion.

• Synchronization is on the condition, not on just waking up from the
wait. There are spurious wake-ups, there may be multiple threads
waiting when only few of them can proceed.

• A condition variable works only with a mutex. Use an
std::condition_variable_any object to work with a shared mutex

std::promise<T> and std::future<T>

• A mechanism by which a thread can pass the result of a computation
on to another thread

• The thread holding the future object simply needs to call the get
function

• The thread that produces the result satisfies the promise by calling
set_value on the promise object

Example scenario for using promise and future

• Suppose I implement a thread pool class

• The user submits tasks in the form of lambda functions along with
arguments that are stored in an object of the class and
asynchronously executed

• Whenever a thread from the pool becomes available, it processes the
next task that is on the list

• The user is returned a future object upon a successful submission of a
task. The thread that completes the task satisfies the promise object
with the result of the function call

ThreadPool: Public functions
(ref: https://github.com/progschj/ThreadPool)
• ThreadPool::ThreadPool(size_t threads);

• Create a thread pool with threads number of threads

• template<class F, class... Args>

auto ThreadPool::enqueue(F&& f, Args&&... args)

-> std::future<typename std::result_of<F(Args...)>::type>
• Add a new task to the pool

• ThreadPool::~ThreadPool()
• Non-trivial destructor since we are working with threads

https://github.com/progschj/ThreadPool

ThreadPool: Data members
(ref: https://github.com/progschj/ThreadPool)
• std::vector< std::thread > workers;

• collection of threads in the pool

• std::queue< std::function<void()> > tasks;
• collection of tasks that need to be completed

• std::mutex queue_mutex;

std::condition_variable condition;

bool stop;
• For synchronization

https://github.com/progschj/ThreadPool

Solve the C++ puzzle I posted on Ed discussions

Thanks for taking the course!

