
LINUX / C++ PROTECTION FEATURES Professor Ken Birman
CS4414 Lecture 26

CORNELL CS4414 - FALL 2020. 1

IDEA MAP FOR TODAY

CORNELL CS4414 - FALL 2020. 2

It’s a (cyber)war out there!

Firewalls and Memory Protection

Type Checking as a Protection Tool Concept of Defense in Depth We actually can protect valuable
systems!

HACKING: WHAT HAVE WE LEARNED?

… by 1988, Unix was a terrible mess riddled with holes! Linux
emerged in 1991 but inherited many of the same issues.

In fact in the subsequent 12 years, many have been fixed. But
nobody doubts that many remain!

Today, there is far more emphasis on hardening these platforms
against exploits of all kinds.

CORNELL CS4414 - FALL 2020. 3

CODE AND PLATFORM REVIEWS

Companies like the one we touched on in Lecture 24 are getting
contracts to review the code for Unix, Linux and major applications.

Many work with their own tools, and apply them to the code base to
search for risky business. Then they report the issues as potential bugs.

There are companies that maintain Linux, and they fix the bugs. Unix
is a legacy system and no longer maintained, or in wide use.

CORNELL CS4414 - FALL 2020. 4

MODERN LINUX

Every single use of memcpy and strcpy and similar functions has
been extensively checked.

This should have reduced the risk of buffer overrun attacks
substantially.

Tools (similar to Valgrind) exist that do automated checks for
unsafe copying, and have been used on Linux by professionals.

CORNELL CS4414 - FALL 2020. 5

MODERN LINUX

All APIs have been scrutinized too, by red teams
 These are groups funded to try and find a flaw
 Often they include people who were previously black-hat hackers

but were caught, or perhaps switched to the good side.

This includes every single “privileged” application, within the standard
Linux distributions.

CORNELL CS4414 - FALL 2020. 6

EVERYONE IS SURE THAT BUGS REMAIN

It is particularly hard to check Linux for bugs.

One concrete issue is that Linux is coded in C, which has pointers,
threads, shared memory, interrupts, etc. These features leave many
opportunities for subtle race conditions and other errors.

Sophisticated hackers sometimes find such issues, then find exploits
that somehow target them.

CORNELL CS4414 - FALL 2020. 7

IDEAL WORLD?

In languages that enable very rich specifications for modules
and code, we can use “formal prover” tools to go much further

For each method, we arrive at invariants about the situations in
which it would run, and that it must “reestablish” after executing.

Then the developer works to prove that the methods satisfy
these properties, using the theorem provers.

CORNELL CS4414 - FALL 2020. 8

BUT…

The languages in which proving is most successful are often very
heavily type-checked in ways that preclude the kinds of high-
efficiency logic we’ve explored in CS4414.

… it would be nice if this could change, and over time, it will.

But C and C++ are very far from being verifiable in this sense.

CORNELL CS4414 - FALL 2020. 9

C-CURED, RUST

There are C-like languages that are much more strongly checkable.
C-Cured and Rust are famous examples. They bring significant costs
both at compile time and runtime.

People have created versions of Linux using these languages, and
even proved properties (most of “correctness”) for compilers

But Linux is used in a million ways and is huge and complex. Many
features are omitted in these proved-correct Linux systems.

CORNELL CS4414 - FALL 2020. 10

TYPE CHECKING, MEMORY PROTECTION

Modern systems deal with a tradeoff

We can harden them by doing aggressive type checking and
using restrictions on what individual segments of memory can
contain and how they can be used.

But these steps harm performance

CORNELL CS4414 - FALL 2020. 11

IS THERE HOPE? DEFINITELY!!!

If you find yourself working on a safety-critical application, you can
and should consider these proved correct packages.

For general purposes, progress has been slower. Over the span of
years we are definitely seeing coverage expand (not quickly).

Key insight? Your system will be under attack. No program is
bullet-proof. So, anticipate issues and build in self-checks that can
detect and repair compromised elements. Like fault-tolerance.

CORNELL CS4414 - FALL 2020. 12

IS THERE HOPE? DEFINITELY!!!

If you find yourself working on a safety-critical application, you can
and should consider these proved correct packages.

For general purposes, progress has been slower. Over the span of
years we are definitely seeing coverage expand (not quickly).

Key insight? Your system will be under attack. No program is
bullet-proof. So, anticipate issues and build in self-checks that can

detect and repair compromised elements. Like fault-tolerance.

CORNELL CS4414 - FALL 2020. 13

YOU NEED TO PROTECT THE HARDWARE, THE
PLATFORM AND THE APPLICATIONS
Imagine that you have been hired to
look into a rash of burglaries.

You visit and discover that none of the
homes had locks on the doors. You recommend locks.

The next year you visit again… the problem is just as bad! Now
the crooks are climbing up to the second floor windows.

CORNELL CS4414 - FALL 2020. 14

THEY ADDED BARS TO WINDOWS…

A year later, the windows are all locked.

But they need more help! Auto-installed malware has infected all
the smart refrigerators, which have Linux-based controllers.

But now you have a problem: disabling updates seems risky too!

CORNELL CS4414 - FALL 2020. 15

IN MODERN SYSTEMS, UPDATES AND
APPLICATIONS ARE INCREASINGLY THE ISSUE!

We take Linux, but then we install applications on them, and give
these permission to accept and send requests.

Many employ components from open-source suppliers that don’t
necessarily use the best practices.

If an application is insecure, it won’t matter if Linux itself is secure:
anything that application can read or update can be compromised.

CORNELL CS4414 - FALL 2020. 16

SOME PROTECTIONS ARE BUILT IN

For example, you can tell C++ to compile with address space
randomization automatically performed.

You can also take compiler warnings seriously and can even use
“proof tools” for ultra-sensitive portions of your code, like the
algorithms used to decide which data to trust during self-repair

None of this will compensate for bugs… and you can’t avoid bugs!

CORNELL CS4414 - FALL 2020. 17

EXAMPLE: LET’S REVISIT THE ISSUE OF BOTS
THAT TRY TO DISRUPT A DATA CENTER
TCP SYN Attack (DDoS) protection is important. This is a common
attack on Linux servers in big datacenter settings, like Amazon

In these attacks, bots initiate connections but don’t complete the
3-way handshake. This leaves a “pending connection” object in
the server. Eventually the server runs out of memory and crashes.

CORNELL CS4414 - FALL 2020. 18

PROTECTION AGAINST THESE ATTACKS?

To protect against a SYN attack, Linux dynamically slows the
rate at which new TCP connections can be made.

The usual policy is an exponentially increasing delay: the first
connection is accepted instantly, but the second only after a
delay of 1ms, the next after 4ms, etc.

Delay grows as 2k after k connection attempts.
CORNELL CS4414 - FALL 2020. 19

CONSEQUENCE

On a server that isn’t under attack, connections are very fast.

But if a server is attacked by bots, it only allows a smaller
number of connections per second (the bot gets a timeout and
must retry).

Harder to make a connection, but once you succeed, the server
itself won’t be ground to a halt by bot activity

CORNELL CS4414 - FALL 2020. 20

UNDESIRED CONSEQUENCES?

It definitely is slower to make a connection. Moreover, some systems
need a lot of TCP connections, and Linux forces them to occur slowly.

This is leading to a split between a style of system used in settings
where we want SYN-attack protections and systems used inside data
centers that want super-fast connection logic.

It forces a greater level of sophistication on the developers.

CORNELL CS4414 - FALL 2020. 21

DDOS VIA REPLAY

Blocked from doing a TCP SYN attack, the attacker could just
“tape record” network traffic for a few days and then replay
the same packets at very high rates.

These will be ignored by TCP (they are old duplicates)

… but are not likely to be blocked by the firewall. It let them in
the first time!

CORNELL CS4414 - FALL 2020. 22

FIREWALLS

Firewalls are a powerful feature for protection.

Early firewalls simply blocked ports that aren’t legitimately in
use, but modern ones also have the ability to scan packets for
payloads that match problematic signatures.

Hackers have fought back by designing attacks designed to look
as legitimate as possible. This makes them harder to block.

CORNELL CS4414 - FALL 2020. 23

THEY COME IN LAYERS

In a typical home or workplace, the Internet arrives at some
form of “ingress box”.
 This will be a powerful firewall that may even be able to examine

packet contents at full line rates
 It will also do network address translation (NAT)
 It won’t even expose computer names from inside the network unless

the application explicitly publishes them via DNS.

This first barrier will stop many attacks
CORNELL CS4414 - FALL 2020. 24

YOUR LINUX MACHINE
A LSO HAS A FIREWALL
Different vendors have different names for this component. It
can configure Linux as a router (!) and also is a firewall.

In Ubuntu, the “iptable” command controls the internal router
and firewall capability.

Controlled by “firewall rules” that you can configure/override.

CORNELL CS4414 - FALL 2020. 25

EXAMPLES OF RULES

My MemCacheD servers are allowed to talk to one-another on
port 9543, but only within IP domain 192.68.41.xxx

Block all incoming email connections to this machine.

Allow routing from subnet A to subnet B.

CORNELL CS4414 - FALL 2020. 26

CORNELL CS4414 - FALL 2020. 27

WHAT IF SOMEHOW A VIRUS SLIPS IN?

The next stage of defense is concerned with limiting damage
and discovering the virus to clean it up.

A big barrier is the Linux concept of user id’s and “group” ids
(like a project team).

Each file has separate permissions for user, group and world.

CORNELL CS4414 - FALL 2020. 28

HOW VIRUSES “SUBVERT” THE RULES

Some viruses try to trick the Linux system into giving the process
they infect superuser privileges.

One old but still common trick: take over a console and display
a mimic of the login screen. Save anything they type.

If someone does try to log in, print “User name / password
combination unknown” and let the normal login run.

CORNELL CS4414 - FALL 2020. 29

A VIRUS MIGHT ALSO TRY AND TRICK SOME
PROGRAM WITH PRIVILEGES INTO “HELPING”

We saw this with the viruses that put their own files in special
places.

The idea is to pick some task the elevated privilege programs
do periodically and try and subvert that normal behavior to
actually run the virus script with superuser permissions.

CORNELL CS4414 - FALL 2020. 30

VIRUS SCANNERS

Most worms and viruses and bot-kits have recognizable “signatures”.

Companies have created honeypot systems just to see how attacks
work and how infected systems “look”. From this they can construct
patterns to recognize those signatures.

This enables them to scan both periodically and even block attacks in
real-time by intercepting the incoming bootstrap logic.

CORNELL CS4414 - FALL 2020. 31

BIG IDEA?

Instead of one firewall policy that is cast in stone, the policy can
dynamically be configured.

In effect, understand how this virus attacks, then craft an anti-
viral solution that watches for a “signature” of the attack and
disrupts key steps

CORNELL CS4414 - FALL 2020. 32

WHAT’S IN A SIGNATURE?

In fact these are really scripts.

“Look for files named … in folder …, quarantine them.”

“Check the binary of program /bin/…, see if it has changed”

Etc.

CORNELL CS4414 - FALL 2020. 33

FEATURES LIKE SYMBOLIC LINKS, DLL
INTERPOSITION CAN BE MISUSED!
Linux symbolic links are files that “redirect” to some other file.
We use them as a convenience, but a virus might exploit them!

DLL interposition is useful for extending or debugging a
program, but a virus might try to use them to hijack your code.

/dev/proc is used for debugging. A virus might try to misuse it
to see a remote login and password in memory

CORNELL CS4414 - FALL 2020. 34

… THESE ARE HARD FOR VIRUS SCANNERS!

If a virus scanner blocks legitimate Linux functionality, many
applications will break.

Yet many of these features are rarely used in real applications.

CORNELL CS4414 - FALL 2020. 35

MILITARY-GRADE SOLUTIONS?

Some military systems are preconfigured in a menu of specific
versions.

The user is authorized to use a specific system configuration.

The virus scanner simply checks that the system is exactly the
same as the original menu option, except for application data

CORNELL CS4414 - FALL 2020. 36

CLEAN ROOM CODING APPROACHES

Companies adopt coding standards: Not just “use C++” but
“document your code this way.” “Solve this kind of problem
using this specific library”.

Code is carefully specified, designed, reviewed.

Every element is subject to compliance testing and acceptance
testing. Many eyes on each line.

CORNELL CS4414 - FALL 2020. 37

TYPE CHECKING HELPS A LOT!

Type checking is never the whole story. But stronger checking
reduces the rate of bugs and flaws by orders of magnitude.

In the limit (languages like Daffny, Rust) “types” can even include
assertions, proofs, invariants. At Cornell we are big fans of this!

Techniques like these lead to hardened, much safer solutions!

CORNELL CS4414 - FALL 2020. 38

CAN SYSTEMS REALLY BE PROTECTED?

Recall that article from Lecture 7!

Intruders left really appealing “new” USB drives with huge
capacity in places like a men’s room shelf.

Foolishly, others saw these and took them and plugged them in.
Hidden virus software was able to break into their machines!

CORNELL CS4414 - FALL 2020. 39

THE CORE PROBLEM IS A MIX OF
COMPLEXITY AND HUMAN ERROR
The platforms we use are huge and complex and even the
hardware is quite hard to configure properly.

The resulting code is much harder to verify than code to build a
B+ tree or sort a list. We can only harden some parts.

Meanwhile, humans have limitations, and make mistakes

CORNELL CS4414 - FALL 2020. 41

VIRTUALIZATION ATTACKS ARE TOUGHEST

In these attacks, the virus controls the hardware, but then creates
a virtual environment that looks identical to the hardware.

User code and virus scanners run inside Linux… in the virtual
environment. They just won’t see the virus… they can’t!

The virus is in control, yet totally invisible.

CORNELL CS4414 - FALL 2020. 42

EXAMPLE: INFORMATION FLOW REFERENCE
MONITORS
Idea here is to abstractly model applications and data

Design a flow graph that represents permitted and non-
permitted data flows. For example, a smart home might be
permitted to use cameras and microphones yet only allowed
“share” anonymous summary data of energy use.

Then build a monitor to enforce these restrictions.
CORNELL CS4414 - FALL 2020. 43

VIRTUALIZED NETWORK & SYSTEM

Aggressive virtualization (installed by the attacker) is probably the
hardest thing to protect against.

The watcher components won’t realize they aren’t seeing the true
system, or the true network. So they don’t trigger even though an
exploit is actively occurring!

Kind of like the Matrix: Inside the matrix you don’t see the truth

CORNELL CS4414 - FALL 2020. 44

VIRTUALIZED NETWORK & SYSTEM

Professor Weatherspoon and his students had programmable
high-speed NICs for a modern network.

Original idea: use the NIC to monitor network traffic.

Actual outcome? A bit more “ambiguous”

CORNELL CS4414 - FALL 2020. 45

VIRTUALIZED NETWORK & SYSTEM

Professor Weatherspoon and his students had programmable
high-speed NICs for a modern network.

He showed that he could virtualize the network itself. His
NICs are able to subvert most forms of monitoring.

Issue? The network monitor doesn’t see the deepest level of
the network itself!

CORNELL CS4414 - FALL 2020. 46

CORNELL CS4414 - FALL 2020. 47

UNDER THE SURFACE

In fact, Hakim’s programmable NICs were encoding information into
the spacing between packets.

For example, if the “space” was of length 0.5us, this is a 0 bit. If the
space has length 1us, this is a 1 bit. Monitors can’t see this spacing:
only the NIC itself had access to this form of information.

Modern networks have continuous “no-op” traffic…. Lots of packets.

CORNELL CS4414 - FALL 2020. 48

1 0 0 1

Looks normal up here!

Covert signal down below

SUPPOSE THE NETWORK CAN SEND 75M
PACKETS PER SECOND ON EACH LINK
This is about 10MB/second, per link.

As fast as an internet into a normal home!

His network could quietly copy data day and night for months
and even a high-quality network monitor wouldn’t see a thing!

CORNELL CS4414 - FALL 2020. 49

CAN YOU PROTECT AGAINST THIS?

Easily, if you know this is happening.

A store and forward router (that uses NICs lacking
programmable functionality!) can randomize the spacing.

So Hakim’s network-on-a-network is an example of a subtle
hack, yet one you could easily defend against if you knew!

CORNELL CS4414 - FALL 2020. 50

BROADER REMEDY? DEFENSE “IN DEPTH”

Many sensitive systems, like hospitals, are isolated behind
multiple levels of firewalls, gateways and “air gaps”.

They may use multiple forms of protection internally, too.

And there are sometimes even “honeypot” traps designed to
lure intruders as a way of tricking them into revealing themselves

CORNELL CS4414 - FALL 2020. 51

DEFENSE IN DEPTH VISUALIZED AS “SWISS
CHEESE” (FROM A NYT COVID ARTICLE)

CORNELL CS4414 - FALL 2020. 52
https://tomaspueyo.medium.com/coronavirus-the-swiss-cheese-strategy-d6332b5939de

A MULTI-LAYERED DEFENSE REALLY WORKS!

Each layer uses different techniques

Some might be like firewalls, others like reference monitors,
others could do things like address space randomization. Throw
in some honeypot systems and monitor them continuously!

Add them together… and a hacker has a very high risk of
being caught in the act.

CORNELL CS4414 - FALL 2020. 53

IT’S A JUNGLE OUT THERE!

Linux and C++ seem pretty innocent

Yet serious systems run in a very hostile world!

Using the tools carefully is the best defense. Build every
program as if it might be used for decades!

CORNELL CS4414 - FALL 2020. 54

	Linux / C++ Protection Features
	Idea Map For Today
	Hacking: What have we learned?
	Code and platform reviews
	Modern Linux
	Modern Linux
	Everyone is sure that bugs remain
	Ideal world?
	But…
	C-Cured, RUST
	Type checking, memory protection
	Is there hope? Definitely!!!�
	Is there hope? Definitely!!!�
	You need to protect the hardware, the platform and the applications
	They added bars to windows…
	In modern systems, Updates and applications are increasingly the issue!
	Some protections are built in
	Example: Let’s revisit the issue of bots that try to disrupt a data center
	Protection against these attacks?
	Consequence
	Undesired Consequences?
	DDoS via replay
	Firewalls
	They come in layers
	Your Linux machine �also has a firewall
	Examples of rules
	Slide Number 27
	What if somehow a virus slips in?
	How viruses “subvert” the rules
	A virus might also try and trick some program with privileges into “helping”
	Virus Scanners
	Big idea?
	What’s in a signature?
	Features like symbolic links, DLL interposition can be misused!
	… these are hard for virus scanners!
	Military-grade solutions?
	Clean room coding approaches
	Type checking helps a lot!
	Can systems really be protected?
	Slide Number 40
	The core problem is a mix of complexity and human error
	Virtualization attacks are toughest
	Example: Information Flow Reference monitors
	Virtualized network & System
	Virtualized network & System
	Virtualized network & System
	Slide Number 47
	Under the surface
	Suppose the network can send 75M packets per second on each link
	Can you protect against this?
	Broader Remedy? Defense “in depth”
	Defense in depth visualized as “swiss cheese” (From a NYT Covid article)
	A multi-layered defense really works!
	It’s a Jungle out there!

