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IDEA MAP FOR TODAY
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We have seen that file systems come in many 
shapes, sizes, and run in many places!

Yet what file systems are doing is inherently high-latency: Fetching 
bytes from some random place on a storage unit that may be a 

rotating physical platter accessed by moving read heads.

Caching and the “working set” Prefetching Secondary indices



PERFORMANCE OF A FILE SYSTEM

Application must open the file
 Linux will need to access the directory
 … scan it to find the name and inode number
 … load the inode into memory
 … check access permissions

So, opening a file could involve 2 or more disk reads (more if the 
directory is large).
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THE FUNDAMENTAL ISSUE?

Data transfers are pretty fast

 They use a feature called direct memory access (DMA) 

 DMA can match memory speeds, if the disk can send/receive
data that rapidly (some devices can, many can’t).

But the delays for accessing storage are hard to eliminate.  They 
come from the hardware required to talk to the disk (or network)
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THE FUNDAMENTAL ISSUE?

To read data we pay (delay to talk to the disk) + (transfer time)

Obviously, the code itself needs to be as efficient as possible, 
but we won’t get rid of these hardware costs

Can we find ways to “hide” this delay from the application?
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READING THE FILE

The application might modify the seek pointer.  This is free.

Then does a read of some number of bytes
 File system must look up the block “at” this offset into the file
 Could involve scanning several levels of disk-block indices if file is big
 Once it has the block number, file system reads that block
 Once the block is in the buffer pool, kernel copies the data to user

space, tells the process how many bytes were read (in case of EOF)
… could easily require 3 or 4 disk I/O operations to do all of this.
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EXAMPLE OF WORST-CASE PERFORMANCE

Many people use print statements to debug programs, and 
redirect into a file if there will be a lot of lines of output.

Each line is normally “written” as it is produced.

Each write is just like a read: copy to the kernel plus (perhaps) 
many disk writes to update the inode, block list and the block, 
plus (perhaps) to remove a block from the free list.
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WHAT HAPPENS?

This works, but will often cause “slow motion” behavior

If you check, you’ll find that all of these I/O requests are 
causing a huge bottleneck.

This is why we use “buffered” I/O solutions.  They save up 4K or 
8K of bytes in a buffer, they write it all at once.
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COSTS OF A KERNEL READ OR WRITE

The system call itself requires a trap,  must save user context 
and switch into kernel context.

The kernel may have been busy; if so, your request could easily 
block waiting for locks or for a thread to service it.  We need to 
fetch the actual data, which might not be in the buffer pool.

Memcpy from kernel to user, or user to kernel.
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All of this could easily require several 
milliseconds.  Although a millisecond is a 

small amount of time,  you may be limited to 
several hundred such requests per second.



HOW IOSTREAMS DECIDES WHEN TO ISSUE A 
WRITE REQUEST
The std::endl object has two roles
 It has a “value”, which is ‘\n’  (the ASCII newline character)
 It also has a “side-effect”, which is to cause the line to be written

Effect is that every line will trigger a write if you use std::endl.

In contrast, with ‘\n’ you still get line by line printouts, but the data will be 
buffered until the iostream buffer is filled.
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BUFFERED I/O IS M U C H FASTER, BUT… 

Suppose your program happens to crash.

What would happen to the last 1.5K of print messages?

… they could have been in the I/O stream buffer, in memory, 
and would not be printed!  The file of debug output will be 
missing hundreds of lines of output!
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REMINDER: ZOOKEEPER

We mentioned that Zookeeper itself is fault-tolerant, but has “issues”.

It uses checkpoints: Periodically, it saves its state to disk.

Zookeeper can have amnesia when it recovers from a shutdown.    
 The most recent updates can be lost.
 Fundamental issue: If Zookeeper checkpoints every update, it runs

too slowly, so they only do it every 5 seconds!
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SO… WHY IS NORMAL FILE I/O SO FAST?  WE 
SAW THIS IN LECTURE 2 (A QUICK REVIEW)

Several factors come into play all at once
1. Linux retains blocks from the disk in the file system buffer pool

and can respond to reads immediately if it gets a cache hit.
2. Linux uses a “write-through” policy: Writes update the block

in the buffer pool.  The program continues… the actual disk
I/O might be delayed for a while.

3. Linux anticipates likely future reads and prefetches data
4. Many modern disks have caches of their own.  For these, a disk 

read can be satisfied instantly if the block is in the disk cache
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CACHING: THE CORE CHALLENGE IS TO HAVE 
THE WORKING SET IN THE CACHE
We use this term in several situations.

Linux sometimes does paging to reduce the pressure on memory.  
A process has the working set in memory if all the instructions and 
data it actually touches when running are resident.

Similarly, the disk buffer pool holds the working set if it already 
has a copy of the files the application is likely to access.
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WHY WOULD THIS EVER HAPPEN?

Modern workloads often involve running some program again 
and again with many inputs unchanged.

For example, when training a vision system (a type of neural 
network called a CNN), we might reread the same input photos 
again and again while adjusting the CNN model parameters.
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COLD START (FIRST READ) VERSUS WARM

The first time the files are accessed, Linux needs to read them.

But then they linger in cache, so the second and subsequent 
reads get cache hits on the buffer pool.

This is called a “warm cache” situation.
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CACHE EVICTION ALGORITHMS

When a new block is loaded into a full cache, decides which to evict.

One option is to use Least Recently Used (LRU) caching.  Evict the 
block that has not been touched in the longest amount of time.

Implementation:  Keep a queue.  As each block is touched, move it to 
the head of the queue.  The LRU block is at the tail of the queue.
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CACHE EVICTION ALGORITHMS

Issue with LRU: If we run a training system, as in the example, it 
may delay a long time before revisiting files.

Those blocks will often be evicted just before we finally access 
them again.

Causes a form of “thrashing”: wasteful pattern of evicting 
blocks, then reloading them.
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LEAST FREQUENTLY USED (LFU)

With this algorithm, we track how often each block is accessed.

Retain a block if it is accessed more frequently… evict a block 
that has not been accessed as often.

Issue: If the cache is full of heavily accessed files, but now we 
stop accessing them, they might never be evicted!
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LFU WITH “AGING”

This is like LFU, but as time passes, older references count less.

Implemented by periodically multiplying the count by, e.g., 9/10

Effect is a form of LFU focused on “recent” accesses.

CORNELL CS4414 - FALL 2020. 21



MULTILEVEL APPROACH

Similar to one of the thread scheduling policies we saw early in 
the course.

Partition the cache.  Block migrates from partition to partition 
based on an access time or access frequency rule.

Now we can use a different eviction policy in each partition.
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SECOND CHANCE CACHING

With multilevel approaches, one issue is that the partition sizes 
might not be ideal.

Suppose that a process would get 100% hits if 2/3rds of the 
cache is devoted to frequently accessed blocks.  But we limit the 
process to 1/3 of the cache.  We get a high miss rate.

A second-chance cache addresses this.
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WHEN A BLOCK IS EVICTED, IT MOVES TO 
THE SECOND-CHANCE CACHE
We also write it to disk at this point, if the block is dirty.

The idea is that if we weren’t really using the full size of one of 
the partitions, a cache-miss on the heavy-hitter partition might 
be followed by a cache-hit on the second-chance cache.
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MULTIPROCESS CONSIDERATIONS

LRU and LFU are usually expressed in terms of a fixed-size cache.

But we might prefer to allocate different amounts of cache space 
to different processes!

How would we estimate how much each requires?
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WORKING SET TRACKING

We use these methods when the amount of memory for each 
process might be varied – some will get more, some less.

Goal: Estimate the “working set” each process is accessing.

Definition: The working set is the set of pages or files or blocks 
being accessed during some window of time.
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INSIGHT

Most applications have locality, meaning they loop and repeat 
the same things in time (temporal locality) and also access the 
same regions of memory for a while (spatial locality).

If the resident memory includes all the pages of code that are 
running, all the data this code accesses, and all the file blocks 
being processed right now, the program runs without pausing.  
Having the working set in memory is necessary and sufficient.
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WORKING SET TRACKING

We start by introducing a clock, and need to track reads/writes.

The clock defines epochs, usually 100ms each.  If a block is 
accessed, mark it as active.

If a file (or a block of a file) hasn’t been accessed in t epochs, 
evict it (but in fact, use a second-chance cache).  t is tunable.
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WHAT IF THE KERNEL STILL WON’T HAVE 
ENOUGH SPACE?
If we are still short on space, we might evict a block some 
process is going to need.

But at this point, we know that this process would not run if we 
schedule it.  We could actually evict its entire working set.  Later, 
when resuming it, we could pull its whole working set back in!

This is a strategy called “swapping”.
CORNELL CS4414 - FALL 2020. 29



WHICH POLICIES ARE FOUND IN LINUX?

The answer turns out to vary depending on which Linux.

Moreover, some allow “power users” to tune these policies.

Even so, this set of methods is part of an engineering design 
pattern.  Even without a std::xxx class supporting this pattern, we 
often use these ideas when designing big systems!
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PREFETCHING IS ALSO A POWERFUL TOOL

When Linux sees that you have read two or more blocks in a 
row, it prefetches the next blocks.

Goal is to have a steady overlap of file access with reading.

This is hugely valuable on networks, which often have very high 
bandwidth but “relatively” high delays.
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SECONDARY INDICES

Systems often use some form of sort to access data.  But it may not 
be the “primary” sort, which is based on the primary keys.

If the same sort is used often, we precompute a “secondary index”.

We can use this to initiate prefetching.   Linux has an “asynchronous 
I/O” option that can start a read in advance of when data will be 
needed.
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LINUX ASYNCHRONOUS FILE READS

POSIX API for the file system: AIO

When you compile, must include the aio.h header and also 
provide C++ with a flag, -rt.

This flag appears at the end of the command line.  It is actually 
being passed to the linker, not the compiler.
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POSIX AIO OPERATIONS: KERNEL API

aio_read – like read, but returns an aio “id”
aio_write – like write, but returns an aio “id”
aio_fsync – asynchronously requests that data be flushed to disk
aio_error – error number returned by a failed aio request
aio_return – obtain the outcome (returned result) for a request
aio_suspend – wait for specified request(s) to complete
aio_cancel – cancel specified requests
lio_listio – enqueue a list of operations rather than just one
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MICROSOFT ASYNCHRONOUS I/O CLASS

Called System.IO

Has a native implementation for the Windows kernel, which 
“supports” Linux, but can also be accessed directly from C++

Portable (open source) but not widely used in C++ programs.
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A PUZZLE ABOUT FAST-WC

Think back to our fast word-count program from Lecture 1 and 2

It had a thread to open files, which is good…  fast-wc has many 
files to open!

But then it just used Linux file I/O (POSIX read) into a character 
array: read, then scan.  Read, then scan.  Etc.
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A PUZZLE ABOUT FAST-WC

Suppose that we instead mapped entire files with mmap?

Or used AIO: We could start the read on block k+1 as we scan 
block k.

Which would be faster?
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… IT ISN’T OBVIOUS!

With mapped files, we eliminate the memcpy from the kernel to 
user space that occurs with read.  
With mmap, the file is directly in user space (blocks from the buffer

pool are mapped into the user memory)
 But memcpy runs at 18GB/second on compute30, and the whole Linux

source files, in total, were only 836MB.  So copying takes a total of 
just 0.64s.  Saving this amount of time won’t help much.

 Suggests that mmap won’t be a big win for fast-wc
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WHAT ABOUT ASYNCHRONOUS I/O

Ken tried it!  It has no measurable impact

What does this tell us?
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If asynchronous file reads don’t help, this must mean that the 
application isn’t pausing waiting for file reads to complete.

We know that memcpy, in total, is just 0.64s – and this cost is 
spread over all 24 cores, so any single core waits roughly 

0.026s.

Conclusion?  Linux prefetching must be working well enough 
to fetch the next block before we request it, so that read() 

doesn’t really wait.



WHEN DOES ASYNCHRONOUS
I/O HELP?
Imagine a program with a very random “looking” data access 
pattern, like a particle physics program doing analysis from 
detector data.
 Detectors produce gigabytes of data per event – huge files
 The application focuses on the data showing actual tracks

Linux won’t anticipate this pattern of access, so asynchronous I/O could 
really help a lot.  It offers a way to “tell Linux what to prefetch”.
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DATABASE EXAMPLE

Many systems use big databases.

These manage data in relations, which are sorted tables.  Each 
row has a primary key, and this is used for sorting.

But perhaps some query accesses the data using a different key.
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SELECT Orders.OrderID, Customers.CustomerName, …
FROM Orders where        

Orders.CustomerID=Customers.CustomerID;

A query such as this is fastest if both Orders and 
Customers are sorted by CustomerID.   



DATABASE EXAMPLE

Here, the database will construct a fast search index: a data 
structure that tells it which row to access “next” (or even, which 
block in the file holding the data).

Using asynchronous I/O, the database can execute the query on 
the current block while having Linux prefetch the next blocks it 
will need to scan.
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SELECT Orders.OrderID, Customers.CustomerName, …
FROM Orders where        

Orders.CustomerID=Customers.CustomerID;

If Orders is sorted by OrderID and Customers by 
LastName, a secondary index for each will help.



WHOLE-FILE PREFETCHING

With a network file system, it often makes sense to fetch the 
entire file the first time it is used.

In some systems, a prediction is even made before the file is 
opened and it is prefetched in anticipation.

This does use network resources, but hides the delays if the 
guess was valid!
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WORKING SETS AT THE FILE LEVEL

These forms of file prefetching lead to the idea that groups of 
files are often accessed together.

The file system can potentially learn the group and fetch them 
all if any one is accessed.

In fact, you could imagine a helper file for each file: “if anyone 
accesses me, they will probably access xxx, yyy, and zzz too”
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PRELOADING DLLS

An important case is when a process will use a collection of DLLs.

If Linux can anticipate which will be needed, it can load them all 
at once when the process is launched.

Many DLLs tend to all be used together, not in isolation.  Linux 
has a “preload daemon” for this specific case!
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FILE COMPRESSION IDEAS

File systems store files in blocks of fixed size

But do applications really access files block by block?

Some file systems have explored a mix of compression (which 
simply squeezes the file down) with variable sized blocks, aimed 
at transferring the entire “useful” portion of the file
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ANTICIPATORY FILE CACHING IN THE 
NETWORK
Because more and more users are mobile, ISPs are thinking 
about how to improve performance and reduce load on the ISP 
network by caching videos and photos.

In these systems, as you move from place to place, they transfer 
“your” cache and prefetch data to the access point your device 
is associated with.  This masks big last-moment delays!
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IF ONE COPY IS GOOD… WHY NOT MORE?

Suppose that a storage system has huge capacity and is only 
partly in use.

Why not use this space in some way that could improve 
performance?

Systems based on this idea make extra copies just in case they 
might be used later.
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PREDICTING POPULARITY

Facebook is an example of a company that uses machine 
learning to decide
 What to cache (and where to cache it)
 When to prefetch files (photos or videos)
 Which files may become viral 
 Which files have gone cold and can be evicted
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EXAMPLE: WHICH MIGHT GO VIRAL?

Photo of Megan and Harry buying ice cream for Archie.

Surveillance web cam photo that shows someone walking a dog.

Photo of your sister’s covid-safe wedding last week.
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FACTORS THEY CONSIDER

Who is in the photo?  Who follows these people?

How old is the photo?  How good is the photo quality?

Are there “early indicators” that people find it interesting?
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BOTTOM LINE SUMMARY?

A computer has a lot of capacity to do things concurrently.

Prefetching or preloading files is a huge win:
 The costs of data access aren’t eliminated, but are mostly hidden
 The work of prefetching/preloading is often mostly in hardware
We own the hardware… why not keep it busy?
 Tremendous variety of examples where the same basic ideas are

employed for many different purposes.
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