
WHY FILE SYSTEMS AREN’T SLOW Professor Ken Birman
CS4414 Lecture 21

CORNELL CS4414 - FALL 2020. 1

IDEA MAP FOR TODAY

CORNELL CS4414 - FALL 2020. 2

We have seen that file systems come in many
shapes, sizes, and run in many places!

Yet what file systems are doing is inherently high-latency: Fetching
bytes from some random place on a storage unit that may be a

rotating physical platter accessed by moving read heads.

Caching and the “working set” Prefetching Secondary indices

PERFORMANCE OF A FILE SYSTEM

Application must open the file
 Linux will need to access the directory
 … scan it to find the name and inode number
 … load the inode into memory
 … check access permissions

So, opening a file could involve 2 or more disk reads (more if the
directory is large).

CORNELL CS4414 - FALL 2020. 3

THE FUNDAMENTAL ISSUE?

Data transfers are pretty fast

 They use a feature called direct memory access (DMA)

 DMA can match memory speeds, if the disk can send/receive
data that rapidly (some devices can, many can’t).

But the delays for accessing storage are hard to eliminate. They
come from the hardware required to talk to the disk (or network)

CORNELL CS4414 - FALL 2020. 4

THE FUNDAMENTAL ISSUE?

To read data we pay (delay to talk to the disk) + (transfer time)

Obviously, the code itself needs to be as efficient as possible,
but we won’t get rid of these hardware costs

Can we find ways to “hide” this delay from the application?

CORNELL CS4414 - FALL 2020. 5

READING THE FILE

The application might modify the seek pointer. This is free.

Then does a read of some number of bytes
 File system must look up the block “at” this offset into the file
 Could involve scanning several levels of disk-block indices if file is big
 Once it has the block number, file system reads that block
 Once the block is in the buffer pool, kernel copies the data to user

space, tells the process how many bytes were read (in case of EOF)
… could easily require 3 or 4 disk I/O operations to do all of this.

CORNELL CS4414 - FALL 2020. 6

EXAMPLE OF WORST-CASE PERFORMANCE

Many people use print statements to debug programs, and
redirect into a file if there will be a lot of lines of output.

Each line is normally “written” as it is produced.

Each write is just like a read: copy to the kernel plus (perhaps)
many disk writes to update the inode, block list and the block,
plus (perhaps) to remove a block from the free list.

CORNELL CS4414 - FALL 2020. 7

WHAT HAPPENS?

This works, but will often cause “slow motion” behavior

If you check, you’ll find that all of these I/O requests are
causing a huge bottleneck.

This is why we use “buffered” I/O solutions. They save up 4K or
8K of bytes in a buffer, they write it all at once.

CORNELL CS4414 - FALL 2020. 8

COSTS OF A KERNEL READ OR WRITE

The system call itself requires a trap, must save user context
and switch into kernel context.

The kernel may have been busy; if so, your request could easily
block waiting for locks or for a thread to service it. We need to
fetch the actual data, which might not be in the buffer pool.

Memcpy from kernel to user, or user to kernel.
CORNELL CS4414 - FALL 2020. 9

COSTS OF A KERNEL READ OR WRITE

The system call itself requires a trap, must save user context
and switch into kernel context.

The kernel may have been busy; if so, your request could easily
block waiting for locks or for a thread to service it. We need to
fetch the actual data, which might not be in the buffer pool.

Memcpy from kernel to user, or user to kernel.
CORNELL CS4414 - FALL 2020. 10

All of this could easily require several
milliseconds. Although a millisecond is a

small amount of time, you may be limited to
several hundred such requests per second.

HOW IOSTREAMS DECIDES WHEN TO ISSUE A
WRITE REQUEST
The std::endl object has two roles
 It has a “value”, which is ‘\n’ (the ASCII newline character)
 It also has a “side-effect”, which is to cause the line to be written

Effect is that every line will trigger a write if you use std::endl.

In contrast, with ‘\n’ you still get line by line printouts, but the data will be
buffered until the iostream buffer is filled.

CORNELL CS4414 - FALL 2020. 11

BUFFERED I/O IS M U C H FASTER, BUT…

Suppose your program happens to crash.

What would happen to the last 1.5K of print messages?

… they could have been in the I/O stream buffer, in memory,
and would not be printed! The file of debug output will be
missing hundreds of lines of output!

CORNELL CS4414 - FALL 2020. 12

REMINDER: ZOOKEEPER

We mentioned that Zookeeper itself is fault-tolerant, but has “issues”.

It uses checkpoints: Periodically, it saves its state to disk.

Zookeeper can have amnesia when it recovers from a shutdown.
 The most recent updates can be lost.
 Fundamental issue: If Zookeeper checkpoints every update, it runs

too slowly, so they only do it every 5 seconds!

CORNELL CS4414 - FALL 2020. 13

SO… WHY IS NORMAL FILE I/O SO FAST? WE
SAW THIS IN LECTURE 2 (A QUICK REVIEW)

Several factors come into play all at once
1. Linux retains blocks from the disk in the file system buffer pool

and can respond to reads immediately if it gets a cache hit.
2. Linux uses a “write-through” policy: Writes update the block

in the buffer pool. The program continues… the actual disk
I/O might be delayed for a while.

3. Linux anticipates likely future reads and prefetches data
4. Many modern disks have caches of their own. For these, a disk

read can be satisfied instantly if the block is in the disk cache

CORNELL CS4414 - FALL 2020. 14

CACHING: THE CORE CHALLENGE IS TO HAVE
THE WORKING SET IN THE CACHE
We use this term in several situations.

Linux sometimes does paging to reduce the pressure on memory.
A process has the working set in memory if all the instructions and
data it actually touches when running are resident.

Similarly, the disk buffer pool holds the working set if it already
has a copy of the files the application is likely to access.

CORNELL CS4414 - FALL 2020. 15

WHY WOULD THIS EVER HAPPEN?

Modern workloads often involve running some program again
and again with many inputs unchanged.

For example, when training a vision system (a type of neural
network called a CNN), we might reread the same input photos
again and again while adjusting the CNN model parameters.

CORNELL CS4414 - FALL 2020. 16

COLD START (FIRST READ) VERSUS WARM

The first time the files are accessed, Linux needs to read them.

But then they linger in cache, so the second and subsequent
reads get cache hits on the buffer pool.

This is called a “warm cache” situation.

CORNELL CS4414 - FALL 2020. 17

CACHE EVICTION ALGORITHMS

When a new block is loaded into a full cache, decides which to evict.

One option is to use Least Recently Used (LRU) caching. Evict the
block that has not been touched in the longest amount of time.

Implementation: Keep a queue. As each block is touched, move it to
the head of the queue. The LRU block is at the tail of the queue.

CORNELL CS4414 - FALL 2020. 18

CACHE EVICTION ALGORITHMS

Issue with LRU: If we run a training system, as in the example, it
may delay a long time before revisiting files.

Those blocks will often be evicted just before we finally access
them again.

Causes a form of “thrashing”: wasteful pattern of evicting
blocks, then reloading them.

CORNELL CS4414 - FALL 2020. 19

LEAST FREQUENTLY USED (LFU)

With this algorithm, we track how often each block is accessed.

Retain a block if it is accessed more frequently… evict a block
that has not been accessed as often.

Issue: If the cache is full of heavily accessed files, but now we
stop accessing them, they might never be evicted!

CORNELL CS4414 - FALL 2020. 20

LFU WITH “AGING”

This is like LFU, but as time passes, older references count less.

Implemented by periodically multiplying the count by, e.g., 9/10

Effect is a form of LFU focused on “recent” accesses.

CORNELL CS4414 - FALL 2020. 21

MULTILEVEL APPROACH

Similar to one of the thread scheduling policies we saw early in
the course.

Partition the cache. Block migrates from partition to partition
based on an access time or access frequency rule.

Now we can use a different eviction policy in each partition.

CORNELL CS4414 - FALL 2020. 22

SECOND CHANCE CACHING

With multilevel approaches, one issue is that the partition sizes
might not be ideal.

Suppose that a process would get 100% hits if 2/3rds of the
cache is devoted to frequently accessed blocks. But we limit the
process to 1/3 of the cache. We get a high miss rate.

A second-chance cache addresses this.
CORNELL CS4414 - FALL 2020. 23

WHEN A BLOCK IS EVICTED, IT MOVES TO
THE SECOND-CHANCE CACHE
We also write it to disk at this point, if the block is dirty.

The idea is that if we weren’t really using the full size of one of
the partitions, a cache-miss on the heavy-hitter partition might
be followed by a cache-hit on the second-chance cache.

CORNELL CS4414 - FALL 2020. 24

MULTIPROCESS CONSIDERATIONS

LRU and LFU are usually expressed in terms of a fixed-size cache.

But we might prefer to allocate different amounts of cache space
to different processes!

How would we estimate how much each requires?

CORNELL CS4414 - FALL 2020. 25

WORKING SET TRACKING

We use these methods when the amount of memory for each
process might be varied – some will get more, some less.

Goal: Estimate the “working set” each process is accessing.

Definition: The working set is the set of pages or files or blocks
being accessed during some window of time.

CORNELL CS4414 - FALL 2020. 26

INSIGHT

Most applications have locality, meaning they loop and repeat
the same things in time (temporal locality) and also access the
same regions of memory for a while (spatial locality).

If the resident memory includes all the pages of code that are
running, all the data this code accesses, and all the file blocks
being processed right now, the program runs without pausing.
Having the working set in memory is necessary and sufficient.

CORNELL CS4414 - FALL 2020. 27

WORKING SET TRACKING

We start by introducing a clock, and need to track reads/writes.

The clock defines epochs, usually 100ms each. If a block is
accessed, mark it as active.

If a file (or a block of a file) hasn’t been accessed in t epochs,
evict it (but in fact, use a second-chance cache). t is tunable.

CORNELL CS4414 - FALL 2020. 28

WHAT IF THE KERNEL STILL WON’T HAVE
ENOUGH SPACE?
If we are still short on space, we might evict a block some
process is going to need.

But at this point, we know that this process would not run if we
schedule it. We could actually evict its entire working set. Later,
when resuming it, we could pull its whole working set back in!

This is a strategy called “swapping”.
CORNELL CS4414 - FALL 2020. 29

WHICH POLICIES ARE FOUND IN LINUX?

The answer turns out to vary depending on which Linux.

Moreover, some allow “power users” to tune these policies.

Even so, this set of methods is part of an engineering design
pattern. Even without a std::xxx class supporting this pattern, we
often use these ideas when designing big systems!

CORNELL CS4414 - FALL 2020. 30

PREFETCHING IS ALSO A POWERFUL TOOL

When Linux sees that you have read two or more blocks in a
row, it prefetches the next blocks.

Goal is to have a steady overlap of file access with reading.

This is hugely valuable on networks, which often have very high
bandwidth but “relatively” high delays.

CORNELL CS4414 - FALL 2020. 31

SECONDARY INDICES

Systems often use some form of sort to access data. But it may not
be the “primary” sort, which is based on the primary keys.

If the same sort is used often, we precompute a “secondary index”.

We can use this to initiate prefetching. Linux has an “asynchronous
I/O” option that can start a read in advance of when data will be
needed.

CORNELL CS4414 - FALL 2020. 32

LINUX ASYNCHRONOUS FILE READS

POSIX API for the file system: AIO

When you compile, must include the aio.h header and also
provide C++ with a flag, -rt.

This flag appears at the end of the command line. It is actually
being passed to the linker, not the compiler.

CORNELL CS4414 - FALL 2020. 33

POSIX AIO OPERATIONS: KERNEL API

aio_read – like read, but returns an aio “id”
aio_write – like write, but returns an aio “id”
aio_fsync – asynchronously requests that data be flushed to disk
aio_error – error number returned by a failed aio request
aio_return – obtain the outcome (returned result) for a request
aio_suspend – wait for specified request(s) to complete
aio_cancel – cancel specified requests
lio_listio – enqueue a list of operations rather than just one

CORNELL CS4414 - FALL 2020. 34

MICROSOFT ASYNCHRONOUS I/O CLASS

Called System.IO

Has a native implementation for the Windows kernel, which
“supports” Linux, but can also be accessed directly from C++

Portable (open source) but not widely used in C++ programs.

CORNELL CS4414 - FALL 2020. 35

A PUZZLE ABOUT FAST-WC

Think back to our fast word-count program from Lecture 1 and 2

It had a thread to open files, which is good… fast-wc has many
files to open!

But then it just used Linux file I/O (POSIX read) into a character
array: read, then scan. Read, then scan. Etc.

CORNELL CS4414 - FALL 2020. 36

A PUZZLE ABOUT FAST-WC

Suppose that we instead mapped entire files with mmap?

Or used AIO: We could start the read on block k+1 as we scan
block k.

Which would be faster?

CORNELL CS4414 - FALL 2020. 37

… IT ISN’T OBVIOUS!

With mapped files, we eliminate the memcpy from the kernel to
user space that occurs with read.
With mmap, the file is directly in user space (blocks from the buffer

pool are mapped into the user memory)
 But memcpy runs at 18GB/second on compute30, and the whole Linux

source files, in total, were only 836MB. So copying takes a total of
just 0.64s. Saving this amount of time won’t help much.

 Suggests that mmap won’t be a big win for fast-wc

CORNELL CS4414 - FALL 2020. 38

WHAT ABOUT ASYNCHRONOUS I/O

Ken tried it! It has no measurable impact

What does this tell us?

CORNELL CS4414 - FALL 2020. 39

WHAT ABOUT ASYNCHRONOUS I/O

Ken tried it! It has no measurable impact

What does this tell us?

CORNELL CS4414 - FALL 2020. 40

If asynchronous file reads don’t help, this must mean that the
application isn’t pausing waiting for file reads to complete.

We know that memcpy, in total, is just 0.64s – and this cost is
spread over all 24 cores, so any single core waits roughly

0.026s.

Conclusion? Linux prefetching must be working well enough
to fetch the next block before we request it, so that read()

doesn’t really wait.

WHEN DOES ASYNCHRONOUS
I/O HELP?
Imagine a program with a very random “looking” data access
pattern, like a particle physics program doing analysis from
detector data.
 Detectors produce gigabytes of data per event – huge files
 The application focuses on the data showing actual tracks

Linux won’t anticipate this pattern of access, so asynchronous I/O could
really help a lot. It offers a way to “tell Linux what to prefetch”.

CORNELL CS4414 - FALL 2020. 41

DATABASE EXAMPLE

Many systems use big databases.

These manage data in relations, which are sorted tables. Each
row has a primary key, and this is used for sorting.

But perhaps some query accesses the data using a different key.

CORNELL CS4414 - FALL 2020. 42

SELECT Orders.OrderID, Customers.CustomerName, …
FROM Orders where

Orders.CustomerID=Customers.CustomerID;

A query such as this is fastest if both Orders and
Customers are sorted by CustomerID.

DATABASE EXAMPLE

Here, the database will construct a fast search index: a data
structure that tells it which row to access “next” (or even, which
block in the file holding the data).

Using asynchronous I/O, the database can execute the query on
the current block while having Linux prefetch the next blocks it
will need to scan.

CORNELL CS4414 - FALL 2020. 43

SELECT Orders.OrderID, Customers.CustomerName, …
FROM Orders where

Orders.CustomerID=Customers.CustomerID;

If Orders is sorted by OrderID and Customers by
LastName, a secondary index for each will help.

WHOLE-FILE PREFETCHING

With a network file system, it often makes sense to fetch the
entire file the first time it is used.

In some systems, a prediction is even made before the file is
opened and it is prefetched in anticipation.

This does use network resources, but hides the delays if the
guess was valid!

CORNELL CS4414 - FALL 2020. 44

WORKING SETS AT THE FILE LEVEL

These forms of file prefetching lead to the idea that groups of
files are often accessed together.

The file system can potentially learn the group and fetch them
all if any one is accessed.

In fact, you could imagine a helper file for each file: “if anyone
accesses me, they will probably access xxx, yyy, and zzz too”

CORNELL CS4414 - FALL 2020. 45

PRELOADING DLLS

An important case is when a process will use a collection of DLLs.

If Linux can anticipate which will be needed, it can load them all
at once when the process is launched.

Many DLLs tend to all be used together, not in isolation. Linux
has a “preload daemon” for this specific case!

CORNELL CS4414 - FALL 2020. 46

FILE COMPRESSION IDEAS

File systems store files in blocks of fixed size

But do applications really access files block by block?

Some file systems have explored a mix of compression (which
simply squeezes the file down) with variable sized blocks, aimed
at transferring the entire “useful” portion of the file

CORNELL CS4414 - FALL 2020. 47

ANTICIPATORY FILE CACHING IN THE
NETWORK
Because more and more users are mobile, ISPs are thinking
about how to improve performance and reduce load on the ISP
network by caching videos and photos.

In these systems, as you move from place to place, they transfer
“your” cache and prefetch data to the access point your device
is associated with. This masks big last-moment delays!

CORNELL CS4414 - FALL 2020. 48

IF ONE COPY IS GOOD… WHY NOT MORE?

Suppose that a storage system has huge capacity and is only
partly in use.

Why not use this space in some way that could improve
performance?

Systems based on this idea make extra copies just in case they
might be used later.

CORNELL CS4414 - FALL 2020. 49

PREDICTING POPULARITY

Facebook is an example of a company that uses machine
learning to decide
 What to cache (and where to cache it)
 When to prefetch files (photos or videos)
 Which files may become viral
 Which files have gone cold and can be evicted

CORNELL CS4414 - FALL 2020. 50

EXAMPLE: WHICH MIGHT GO VIRAL?

Photo of Megan and Harry buying ice cream for Archie.

Surveillance web cam photo that shows someone walking a dog.

Photo of your sister’s covid-safe wedding last week.

CORNELL CS4414 - FALL 2020. 51

FACTORS THEY CONSIDER

Who is in the photo? Who follows these people?

How old is the photo? How good is the photo quality?

Are there “early indicators” that people find it interesting?

CORNELL CS4414 - FALL 2020. 52

BOTTOM LINE SUMMARY?

A computer has a lot of capacity to do things concurrently.

Prefetching or preloading files is a huge win:
 The costs of data access aren’t eliminated, but are mostly hidden
 The work of prefetching/preloading is often mostly in hardware
We own the hardware… why not keep it busy?
 Tremendous variety of examples where the same basic ideas are

employed for many different purposes.

CORNELL CS4414 - FALL 2020. 53

	Why file systems aren’t slow
	Idea Map For Today
	Performance of a file system
	The fundamental issue?
	The fundamental issue?
	Reading the file
	Example of worst-case performance
	What happens?
	Costs of a Kernel read or write
	Costs of a Kernel read or write
	How IoStreams decides when to issue a write request
	buffered I/O is much faster, but…
	Reminder: Zookeeper
	So… why is normal File I/O so fast? We saw this in lecture 2 (a quick review)
	Caching: The core challenge is to have the working set in the cache
	Why would this ever happen?
	Cold start (first read) versus warm
	Cache eviction algorithms
	Cache eviction algorithms
	Least Frequently used (LFU)
	LFU with “aging”
	Multilevel approach
	Second chance caching
	When a block is evicted, it moves to the second-chance cache
	Multiprocess considerations
	Working set tracking
	Insight
	Working set tracking
	What if the kernel still won’t have enough space?
	Which policies are found in Linux?
	Prefetching is also a powerful tool
	Secondary indices
	Linux Asynchronous file reads
	POSIX AIO operations: Kernel API
	Microsoft Asynchronous I/O Class
	A puzzle about fast-wc
	A puzzle about Fast-Wc
	… it isn’t obvious!
	What about asynchronous I/O
	What about asynchronous I/O
	When does asynchronous�I/O help?
	Database example
	Database example
	Whole-file prefetching
	Working sets at the file level
	Preloading DLLs
	File compression ideas
	Anticipatory file caching in the network
	If one copy is good… why not more?
	Predicting popularity
	Example: Which might go viral?
	Factors they consider
	Bottom line summary?

