
BEFORE WE START… A QUICK
SYNCHRONIZATION REVIEW!
Setting: We have some variables shared by several threads. All
of them do updates that read and then modify data.

Question: Describe our synchronization “goal” very succinctly.

Question: Which synchronization tool would you use?

CORNELL CS4414 - FALL 2020. 1

BEFORE WE START… A QUICK
SYNCHRONIZATION REVIEW!
Setting: We have some variables shared by several threads. All
of them do updates that read and then modify data.

Question: Describe our synchronization “goal” very succinctly.

Question: Which synchronization tool would you use?

CORNELL CS4414 - FALL 2020. 2

Goal: Mutual exclusion for the critical section in which the threads
access the variables.

This means only one thread can be accessing them at a time.

BEFORE WE START… A QUICK
SYNCHRONIZATION REVIEW!
Setting: We have some variables shared by several threads. All
of them do updates that read and then modify data.

Question: Describe our synchronization “goal” very succinctly.

Question: Which synchronization tool would you use?

CORNELL CS4414 - FALL 2020. 3

Tool: A mutual exclusion lock. We allocate a std::mutex object.

Code blocks that touches the shared variables will use the scoped_lock
pattern, which automatically acquires/releases the mutex.

BEFORE WE START… A QUICK
SYNCHRONIZATION REVIEW!
Setting: There is a data structure that some threads only read.
But other threads update this data.

Observation: We actually can allow multiple reads to run
concurrently. The concern would be with updates: writers. At
must one can run at a time, and no readers can run while the
writer is active.

CORNELL CS4414 - FALL 2020. 4

BEFORE WE START… A QUICK
SYNCHRONIZATION REVIEW!
Setting: There is a data structure that some threads only read.
But other threads update this data.

Observation: We actually can allow multiple reads to run
concurrently. The concern would be with updates: writers. At
must one can run at a time, and no readers can run while the
writer is active.

CORNELL CS4414 - FALL 2020. 5

Goal: This is the readers and writers pattern.

Allow multiple readers, but only a single writer.

If a writer is waiting, no new readers can access the data structure until
the writer is finished.

BEFORE WE START… A QUICK
SYNCHRONIZATION REVIEW!
Setting: There is a data structure that some threads only read.
But other threads update this data.

Observation: We actually can allow multiple reads to run
concurrently. The concern would be with updates: writers. At
must one can run at a time, and no readers can run while the
writer is active.

CORNELL CS4414 - FALL 2020. 6

Tool: We can use the readers and writers code from Lecture 16

Each reader calls startread, then accesses the structure, then endread.

Writers call startwrite, then update the data structure, then endwrite.

BEFORE WE START… A QUICK
SYNCHRONIZATION REVIEW!
Setting: There are a bunch of display icons, and threads call draw to
render them on a background.

Draw updates an internal data structure that tracks the contents of
each pixel, in layers, but doesn’t actually output to the console.

To do that, we call redisplay. Pixel by pixel, it figures out what is on
top, then outputs the resulting display image.

CORNELL CS4414 - FALL 2020. 7

Top layer

Bottom layer

NETWORKING Professor Ken Birman
CS4414 Lecture 19

CORNELL CS4414 - FALL 2020. 8

IDEA MAP FOR TODAY

CORNELL CS4414 - FALL 2020. 9

The Internet, IP addresses and port numbers.
Packets, routing, firewalls, tunnels, network address translation

TCP basics, SSL security

Socket API, Google GRPC

http versus https, VPNs, VPC

INTERNET BASICS

The internet is like a computerized postal system.

Any process can set up a “mailbox” (a socket), and post an
address on it (bind an IP address and port number).

The address can then be registered for use by programs
anywhere on the net… with limitations

CORNELL CS4414 - FALL 2020. 10

IP ADDRESSES

IPv4 is 32-bits (but only 28 are useable). IPv6 doubles this.
 There are actually several types of addresses (classes)
 In CS4414 we won’t dive into why, or what the others are for

Each address has an associated “port number” because one machine
could have many processes using the network. Like a mailbox in an
apartment building.
 The IP address is used to route to the computer. Like a street address.
 The port number is used to figure out which process gets the packet.

CORNELL CS4414 - FALL 2020. 11

Mailroom at 11 Riverside Drive, NYC

ADDRESS DIRECTORY: DNS

A service call the domain name service (DNS) tracks server
names and IP addresses.

The DNS is operated by for-profit companies. They sell domain
addresses, and server owners pay for listings.

Fancy web sites, like Netflix.com, have ways to route you to a
data center somewhere near you, for speed.

CORNELL CS4414 - FALL 2020. 12

ROUTERS AND LINKS

The Internet is composed of high-speed network links between
routers and switches.
 A router takes an incoming packet and looks up the routing rule

for sending it to the specified destination.
 Then it forwards the message out on the corresponding link.
 Switches are seen in clusters or racks of computers. Unlike a router,

which can adapt the route over time, a switch uses fixed routing.

Packets have some maximum size, like 8KB. A “message” from process to
process would often be far larger and will be sent as a series of packets.

CORNELL CS4414 - FALL 2020. 13

MAXIMUM PACKET SIZE VARIES

In the wide-area Internet, 1400 bytes for historical reasons. By
now this feels too small, but it isn’t easy to change...

In a local area network, 8KB is more typical.

In a datacenter you can switch to “fat packets” like 64KB or
sometimes, even larger.

CORNELL CS4414 - FALL 2020. 14

NETWORK ADDRESS TRANSLATION

The “space” of addresses is much too small to cover the entire
globe, so it evolved into a world of overlapping regions that use
their own addresses. Like when a wifi router uses 192.168.0.xxx

Network address translators dynamically modify the (ip-address,
port-no) information in packet headers to implement this (they
might also block some packets: “firewall”)

CORNELL CS4414 - FALL 2020. 15

NETWORK ADDRESS TRANSLATION,
FIREWALLS, ROUTERS, WIFI…

CORNELL CS4414 - FALL 2020. 16

192.168.0.3 port 7653

3752.412.88.16 port 211

WiFi + NAT box + firewall

Internet ISPs and
backbone

Fortnight Server

154.771.21.71 port 73151

192.168.364.778 port 921

NAT box + firewall

Amazon AWS Cloud (Data Center)

NETWORK ADDRESS TRANSLATION,
FIREWALLS, ROUTERS, WIFI…

CORNELL CS4414 - FALL 2020. 17

192.168.0.3 port 7653

3752.412.88.16 port 211

WiFi + NAT box + firewall

Internet ISPs and
backbone

Fortnight Server

154.771.21.71 port 73151

192.168.364.778 port 921

NAT box + firewall

Amazon AWS Cloud (Data Center)

Routes picked to be
economical, not necessarily
fast or short!

NETWORK ADDRESS TRANSLATION,
FIREWALLS, ROUTERS, WIFI…

CORNELL CS4414 - FALL 2020. 18

192.168.0.3 port 7653

3752.412.88.16 port 211

WiFi + NAT box + firewall

Internet ISPs and
backbone

Fortnight Server

154.771.21.71 port 73151

192.168.364.778 port 921

NAT box + firewall

Amazon AWS Cloud (Data Center)

Could use a
different route
for traffic
in return direction

TUNNELS

CORNELL CS4414 - FALL 2020. 19

Sometimes it is convenient to send data through some domain
without that domain “seeing” the packet headers.

A tunnel is used in such cases. A connection is made, but then
packets are sent through it as “pure data”.

On the far side, they exit the tunnel and get routed “normally”

Trainload of IP packets enters a tunnel….

A CRAZY PATCHWORK! BUT IT WORKS…

Internet routers are fast and speed of light is quite fast too.

… Should you care that your data went via Delaware?
… For the ISP, this route could be cheaper to operate, or use faster

links and routers. The physically shortest path may be slower!

At each stage, a packet is routed to whatever router is next in the
route for the particular IP address is happens to carry at that stage.

CORNELL CS4414 - FALL 2020. 20

MISTAKES DO HAPPEN, BUT RARELY

Internet routers use “routing tables” that tell them where to
send packets. They adapt to route around outages.

Sometimes, mistakes can happen, but this is rare.

Goal of routing: Pick the most cost-effective, reliable, highest
performing path available.

CORNELL CS4414 - FALL 2020. 21

MISTAKES DO HAPPEN, BUT RARELY

CORNELL CS4414 - FALL 2020. 22

An ISP operator (somewhere very remote
from China) accidentally miscoded one
digit of a “fixed” route.

This disrupted global routing.

Traffic intended for a centralized router in
Shenzhen was “redirected” to a small cafe
in Wyoming, near Yellowstone Park…

… all the traffic, for much of China

WHAT DID THE CAFE DO WITH
CHINA’S INTERNET TRAFFIC?
They were “dropped” (discarded, silently)

In fact, this is a feature of the Internet!

The Internet works like a network of highways and bridges, but
a bridge can just toss cars off if a traffic jam ever forms!

CORNELL CS4414 - FALL 2020. 23

WHY DROP PACKETS? END-TO-END PRINCIPLE

In the early days of the Internet a debate arose: should the
Internet be reliable, or is it ok to drop packets?

The “end to end” principle was this: The Internet itself doesn’t
need to be reliable, as long as it is blindingly fast and mostly
reliable. This ultimately “won” over other options.

In fact, failures are rare. But overload is common.
CORNELL CS4414 - FALL 2020. 24

TCP STREAMS EMBODY THE END-TO-END RULE

Like a pipe, TCP sends a stream of bytes from A to B, with no losses
or corruption or out-of-order data.

TCP has two “end points”. The “end to end” principle makes these
endpoints responsible for reliability and security.

TCP uses a protocol to achieve them: A scripted exchange of
messages with a format that TCP imposes.

CORNELL CS4414 - FALL 2020. 25

DATA LIVES INSIDE THESE TCP PACKETS

TCP has a header of its own, with information used by the end-
to-end protocol operated by the TCP module in the Linux kernel.

The message you send is chopped into segments and carried as
data within these TCP packets.

On arrival, TCP will deliver the data, but you won’t see the TCP
headers: it removes them in the kernel protocol stack.

CORNELL CS4414 - FALL 2020. 26

TCP STARTS WITH A SPECIAL
THREE-WAY HANDSHAKE
TCP has some very basic security built in: the initial connection
involves a “three way handshake”
1. Hello B. I am A, trying to connect to you. [SEQ=1234]
2. A, I would love to connect. [SEQ=9876]
3. B, this is A again. Success! [SEQ=1234,9876]

SSL is a standard for creating stronger security on TCP connections. It
additionally establishes a session “key” used to encrypt all data.

CORNELL CS4414 - FALL 2020. 27

TCP SLIDING WINDOW:
USED AFTER HANDSHAKE
Mile high summary:

When TCP sends data, the sender numbers the packets. The
receiver acknowledges receipt (“ack”) or if it notices a gap, asks
for a retranmission (“nack”).

This is done using a form of bounded buffer: the sliding window.

CORNELL CS4414 - FALL 2020. 28

The TCP sliding window. Animation available here

https://images.app.goo.gl/UW96kGNgEV5wgzHj8

TCP ALSO DOES RATE CONTROL

TCP has a scheme for varying the transmission rate to match the
speed of the connection.

TCP steadily speeds up until packet drops occur: some router got
overloaded. Then it slows down drastically… then speeds up.

Called an additive increase, multiplicative decrease scheme.

CORNELL CS4414 - FALL 2020. 29

LIMITATIONS

All systems have firewalls of various kinds, and some also have
additional features (such as “network address translation”, and “VPN
tunneling”).

Those are programmed to block unwanted Internet traffic.

For example, my wifi router gives computers in my home IP addreses
like 192.168.0.11. These are not visible outside my home.

CORNELL CS4414 - FALL 2020. 30

NAT box + firewall

ASYMMETRIC CONNECTIVITY!

A process on my computer, in my home, can connect to
Netflix.com or Amazon.com or Azure.com.

Once the session is established, messages can flow both ways:
the wifi router opens a “tunnel” that allows them through.

Yet that same Azure.com server wouldn’t be able to initiate a
connection to my computer: traffic would be blocked!

CORNELL CS4414 - FALL 2020. 31

HOW DO WE MAKE THESE CONNECTIONS?

Consider a client on my machine, perhaps a web browser.

The server is on some other machine, perhaps at Netflix.com
 In fact, Netflix.com is hosted by Amazon (rents machines on their cloud)
 So if you talk to a Netflix.com server, your TCP connection will actually

be to a machine in an Amazon AWS data center.
 This is an aspect of modern cloud computing: “rent don’t own”.

CORNELL CS4414 - FALL 2020. 32

SOCKET OPERATIONS: SERVER

int sockfd = socket(AF_INET, SOCK_STREAM, 0);
// logic to initialize serv_addr struct not shown!
bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr));
listen(sockfd, 5);
int connfd = accept(sockfd);
int bytesread = receive(connfd, buffer, nbytes);
send(connfd, buffer, nbytes);

CORNELL CS4414 - FALL 2020. 33

SOCKET OPERATIONS: SERVER

int sockfd = socket(AF_INET, SOCK_STREAM, 0);
// logic to initialize serv_addr struct not shown!
bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr));
listen(sockfd, 5);
int connfd = accept(sockfd);
int bytesread = receive(connfd, buffer, nbytes);
send(connfd, buffer, nbytes);

CORNELL CS4414 - FALL 2020. 34

Create a connection endpoint. This will be used for a TCP
connection, but more initialization is required.

SOCKET OPERATIONS: SERVER

int sockfd = socket(AF_INET, SOCK_STREAM, 0);
// logic to initialize serv_addr struct not shown!
bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr));
listen(sockfd, 5);
int connfd = accept(sockfd);
int bytesread = receive(connfd, buffer, nbytes);
send(connfd, buffer, nbytes);

CORNELL CS4414 - FALL 2020. 35

Associate an IP address and port number with it. These come
from “gethostbyname”

SOCKET OPERATIONS: SERVER

int sockfd = socket(AF_INET, SOCK_STREAM, 0);
// logic to initialize serv_addr struct not shown!
bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr));
listen(sockfd, 5);
connfd = accept(sockfd);
int bytesread = receive(connfd, buffer, nbytes);
send(connfd, buffer, nbytes);

CORNELL CS4414 - FALL 2020. 36

Tell Linux this server will accept up to five simultaneous client
connections via the TCP protocol.

SOCKET OPERATIONS: SERVER

int sockfd = socket(AF_INET, SOCK_STREAM, 0);
// logic to initialize serv_addr struct not shown!
bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr));
listen(sockfd, 5);
int connfd = accept(sockfd);
int bytesread = receive(connfd, buffer, nbytes);
send(connfd, buffer, nbytes);

CORNELL CS4414 - FALL 2020. 37

Accept returns the file descriptor of an established connection,
and now the server can read bytes from it

SOCKET OPERATIONS: SERVER

int sockfd = socket(AF_INET, SOCK_STREAM, 0);
// logic to initialize serv_addr struct not shown!
bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr));
listen(sockfd, 5);
int connfd = accept(sockfd);
int bytesread = receive(connfd, buffer, nbytes);
send(connfd, buffer, nbytes);

CORNELL CS4414 - FALL 2020. 38

Read some bytes

SOCKET OPERATIONS: SERVER

int sockfd = socket(AF_INET, SOCK_STREAM, 0);
// logic to initialize serv_addr struct not shown!
bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr));
listen(sockfd, 5);
int connfd = accept(sockfd);
int bytesread = receive(connfd, buffer, nbytes);
send(connfd, buffer, nbytes);

CORNELL CS4414 - FALL 2020. 39

Write some bytes

SOCKET OPERATIONS: CLIENT

int sockfd = socket(AF_INET, SOCK_STREAM, 0);

… client does not need “bind” or “listen” or “accept”!

int connfd = connect(sockfd, (struct sockaddr *) &serv_addr,
sizeof(serv_addr));

send(connfd, buffer, nbytes);

int bytesread = receive(connfd, buffer, nbytes);

CORNELL CS4414 - FALL 2020. 40

HOW DID THE CLIENT GET THE SERVER’S IP
ADDRESS?
It uses gethostbyname, then has to fill in the address struct.

It gets its own IP address by calling gethostbyname on localhost.
 The server’s port number is from a table of standard port numbers.
 Linux can also assign a port number. Your server can use this, then

check the address and port number it received, then publish it in a file
or on a web page for the client to find.

CORNELL CS4414 - FALL 2020. 41

OK… A IS NOW CONNECTED TO B!

A TCP stream is just a stream of bytes.

To make a request with arguments:
 A builds a header identifying the requested operation and serializes

the arguments into a byte array.
 B reads the header first, allowing it to learn how much data to read.
 The request-id will be used later to pair the result with a waiting thread.

CORNELL CS4414 - FALL 2020. 42

GOOGLE GRPC: A POPULAR PACKAGING OF
THESE MECHANISMS
A library that can be used from C++, Java, Python, etc. Runs
over TCP.

Fairly easy to use, but we won’t get into the details in CS4414.

GRPC allows a server to associate an object with a connection.
The client can call methods in a type-checked way.

CORNELL CS4414 - FALL 2020. 43

GRPC OVERHEADS?

GRPC has a fast serialization method, much better than CORBA (from
Lecture 18). When using a secure TCP session (with SSL), there is a small
extra encryption/decryption delay.

Network delays are the main cost:
 From Ken’s lake cottage in Trumansburg to Cornell: 1.5ms (routed via Syracuse).
 Between two machines in a data center, they are as low as 50-100us.
 On the public Internet, bandwidth of 10MB is excellent.
 But inside a data center, rates can reach 10 GB: 1000x faster!.

CORNELL CS4414 - FALL 2020. 44

GRPC EXAMPLE: HELLO WORLD

CORNELL CS4414 - FALL 2020. 45

// The greeting service definition is used by both the
// Client and the server. It contains virtual methods
service Greeter {
// Sends a greeting
rpc SayHello (HelloRequest) returns (HelloReply) {}

}

// The request message containing the user's name.
message HelloRequest {
string name = 1;

}

// The response message containing the greetings
message HelloReply {
string message = 1;

}

class GreeterServiceImpl final : public Greeter::Service {
Status SayHello(ServerContext* context, const HelloRequest*

request, HelloReply* reply) override {
std::string prefix("Hello to my favorite client!");
reply->set_message(prefix + request->name());
return Status::OK;

}
};

NOTE ABOUT THIS EXAMPLE

What I showed you is incomplete!

GRPC requires a specific installation (it isn’t hard).

Compiling a client or server also requires various include files,
and a special “initialization” must be called from main.

CORNELL CS4414 - FALL 2020. 46

WOULD A WEB BROWSER USE GRPC?

The web has its own encoding for messages.

This HTML encoding is less efficient than the one GRPC uses. It
works well and is universal but is slow to compute and “bulky”.
 Every message is encoded as a web page, and every reply
 Data is printed in ascii text format.
 Uses layers of standards: SOAP on HTML on XML… SSL would add

a layer of encryption to this.

CORNELL CS4414 - FALL 2020. 47

… SO

You launch your web browser and type in Netflix.com

The first step is to look up the IP address for Netflix.com. This is
done by calling gethostbyname, which uses the DNS service.

You get an IP address for Netflix.com (in fact, the IP address of
a nearby AWS data center: Netflix is hosted by Amazon).

CORNELL CS4414 - FALL 2020. 48

NEXT STEPS

Your browser initiates an http connection (insecure: https uses
SSL, but http isn’t encrypted in any way).

AWS selects some machine within the Amazon cloud with the
Netflix web server process already running on it.

A three-way handshake is performed.

CORNELL CS4414 - FALL 2020. 49

NEXT STEPS

Your web browser first sends Netflix a “cookie” with your user
information. It uses the old web services model, so the cookie is
actually encoded as a small web page.

Next Netflix sends back an initial welcome web page. The
browser reads this back as a byte stream, deserializes it, and
renders the page on your screen.

CORNELL CS4414 - FALL 2020. 50

Your Netflix Cookie!

YOU SELECT A MOVIE…

Netflix recommends Babylon Berlin.

You click the tile… it is associated with a URL link to the movie.

The browser sends an HTTP request to Netflix to “open” the URL.
Netflix streams the movie back.

CORNELL CS4414 - FALL 2020. 51

Babylon Berlin…
a good choice!

WOULD THE BROWSER BE FASTER ON GRPC?

HTML is not a suitable encoding for a photo or video!

But it has built-in special features for sending photos and videos.
The browser makes an extra TCP connection, and the server
streams the data in the format the client’s browser requests.

The server even resizes the images for the client’s browser size.

CORNELL CS4414 - FALL 2020. 52

OTHER OPTIONS

Client and server sound like A and B are very different kinds of
programs, but in fact any GRPC process can play both roles.

So we can build applications in which there are multiple processes
that cooperate in various ways, using message passing to share
information.

As an example, A and B could “replicate” some kind of data
captured from the real world by A: A would relay it to B.

CORNELL CS4414 - FALL 2020. 53

WHY REPLICATE?

Fault tolerance: in a cloud-scale system, we may see crashes.

Performance: A and B could share the work for some task.
Netflix serves popular movies from many servers.

Coordination: A might have some role, such as “be an air traffic
controller for flight Delta 121” and B could track the actions in
order to be smarter about ATC for other flights.

CORNELL CS4414 - FALL 2020. 54

OTHER COMMUNICATION OPTIONS

Some systems use a “message bus” or “message queue”. We
saw one in the ATC example in Lecture 18.

These use a publish-subscribe model.
 We define a set of topics, and programs can subscribe to them.
 If a publisher publishes to some topic, upcalls occur in subscribers.

CORNELL CS4414 - FALL 2020. 55

THESE WORK EVEN IN A SINGLE MACHINE!

You don’t need two computers to create a GRPC or message bus
application.

The tools work in an identical way on one computer (if the firewall is
configured to allow it)

This is popular because it makes it so much easier to develop
applications, and to port them from place to place.

CORNELL CS4414 - FALL 2020. 56

NETWORK SECURITY

We touched upon TCP security via SSL: a special version of a
handshake that assigns a cryptographic key to each session.

HTTPS uses SSL automatically.

But what other forms of security are available?

CORNELL CS4414 - FALL 2020. 57

VPN AND VPC

Many of us have access to special computers at Cornell.

These aren’t available for public use, so they live inside
cs.cornell.edu and aren’t even visible from outside Cornell.

With a “virtual private network” you can step inside the Cornell
firewall from home, as if you were in Gates Hall!

CORNELL CS4414 - FALL 2020. 58

HOW A VPN WORKS.

Cornell operates a special VPN router. You need your netid to
log into it. They use a product called Cisco AnyConnect.

Once you log in, a TTP SSL connection will exist from your
machine to the VPN router.

IP addresses in the Cornell domain, or DNS requests, are
automatically sent over this encrypted link.

CORNELL CS4414 - FALL 2020. 59

VIRTUALLY PRIVATE C LOU D

VPC is similar in concept, for people who use cloud computing.

Suppose your organization uses 10 machines on Azure or AWS.

Those 10 can be isolated from other cloud users: a VPC creates
the illusion of a network composed purely of your machines, plus
services the cloud operator provides (like the global file system)

CORNELL CS4414 - FALL 2020. 60

WITH VPC, ALL TRAFFIC IS ENCRYPTED

This way even if some intruder is watching the network, and even if
your own applications use GRPC without SSL enabled, your messages
are still encrypted.

It happens automatically. AWS and Azure both have special
hardware accelerators to do the encryption and decryption.

In fact, with VPC they even encrypt files, using the same technique!

CORNELL CS4414 - FALL 2020. 61

SUMMARY OF LECTURE 19

When applications will run on multiple machines, we use networking
to link the processes.

This occurs over TCP, often with SSL encryption. Encryption is not the
default but is very common.

Google GRPC is one common library for building networked
applications with a C++ object-oriented style of code.

CORNELL CS4414 - FALL 2020. 62

	Before we start… a quick Synchronization review!
	Before we start… a quick Synchronization review!
	Before we start… a quick Synchronization review!
	Before we start… a quick Synchronization review!
	Before we start… a quick Synchronization review!
	Before we start… a quick Synchronization review!
	Before we start… a quick Synchronization review!
	Networking
	Idea Map For Today
	Internet basics
	IP Addresses
	Address directory: DNS
	Routers and Links
	Maximum packet size varies
	Network address translation
	Network Address Translation, Firewalls, Routers, WifI…
	Network Address Translation, Firewalls, Routers, WifI…
	Network Address Translation, Firewalls, Routers, WifI…
	Tunnels
	A crazy patchwork! But it works…
	Mistakes do happen, but rarely
	Mistakes do happen, but rarely
	What did the cafE do with �china’s Internet traffic?
	Why drop packets? End-to-End principle
	TCP Streams Embody the end-to-End rule
	Data lives inside these TCP packets
	TCP starts with a special�three-way handshake
	TCP sliding window:�Used after handshake
	TCP also does rate control
	Limitations
	Asymmetric connectivity!
	How do we make these connections?
	Socket operations: Server
	Socket operations: Server
	Socket operations: Server
	Socket operations: Server
	Socket operations: server
	Socket operations: server
	Socket operations: server
	Socket operations: client
	How did the client get the server’s IP address?
	OK… A is now connected to B!
	Google GRPC: A popular packaging of these mechanisms
	GRPC Overheads?
	GRPC Example: Hello World
	Note about this example
	would a web browser use GRPC?
	… so
	Next steps
	Next steps
	You select a movie…
	Would the browser be faster on GRPC?
	Other options
	Why replicate?
	Other communication options
	these work even in a single machine!
	Network security
	VPN and VPC
	How a VPN works.
	Virtually private cloud
	With VPC, all traffic is encrypted
	Summary of Lecture 19

