
COORDINATION Professor Ken Birman
CS4414 Lecture 17

CORNELL CS4414 - FALL 2020. 1

IDEA MAP FOR TODAY

Today we focus on other patterns for coordinating threads or
entire processes.

CORNELL CS4414 - FALL 2020. 2

Lightweight vs. Heavyweight

Thread “context”

C++ mutex objects. Atomic data types.

Reminder: Thread Concept

Deadlocks and Livelocks

The monitor pattern in C++

Problems monitors solve (and problems they don’t solve)

Additional Coordination Patterns

WITHOUT COORDINATION, MANY SYSTEMS
MALFUNCTION
Performance can drop unexpectedly

Overheads may soar

A coordination pattern is a visual or intellectual tool that we use
when designing concurrent code, whether using threads or
processes. It “inspires” a design that works well.

CORNELL CS4414 - FALL 2020. 3

WHAT IS A COORDINATION PATTERN?

Think about producer-consumer (cupcakes and kids).
 The producer pauses if the display case is full
 The consumers wait if we run out while a batch is baking

This is an example of a coordination pattern.

CORNELL CS4414 - FALL 2020. 4

Producers

Bounded buffer

Consumers

PRODUCER – CONSUMER PATTERN

CORNELL CS4414 - FALL 2020. 5

Producer thread(s) Consumer thread(s)

Bounded Buffer

ANALOGY: SOFTWARE DESIGN PATTERNS

Motivation: Early object-oriented programming approaches had a
very flat perspective on programs:

We had objects, including data structures.
Threads operated on those objects.

Developers felt that it was hard to capture higher-level system
structures and behaviors by just designing some class.

CORNELL CS4414 - FALL 2020. 6

MODULARITY FOR COMPLEX, THREADED
PROGRAMS
With larger programs, we invariably need to break the overall
system up and think of it in terms of subsystems.

Each of these may have its own classes, its own threads, and its
own internal patterns of coordination and behavior.

When a single system has many such “modules” side by side, the
patterns used shape the quality of the resulting application

CORNELL CS4414 - FALL 2020. 7

SOME EXAMPLES.

Fast-wc had a main thread, a thread for opening files (a form
of module), a set of concurrent word counters, logic to merge the
resulting std::map trees, and finally logic for sorting and printing
the output.

We can think of this structure in a modular way. In fact, weneed
to think of it in a modular way to understand it!

CORNELL CS4414 - FALL 2020. 8

Main thread File opener Word-count
workers

WHAT EXACTLY DOES “MODULAR” MEAN?

A modular way of describing a system breaks it down into large
chunks that may have complex implementations, but that offer
simple abstraction barriers to one-another.

The operating system has many modules: the file system, the
device drivers, the process management system, the clock system

Each involves a substantial but “separate” chunk of code.
CORNELL CS4414 - FALL 2020. 9

MORE EXAMPLES

We touched on databases in Lecture 16

Databases often have a subsystem for file I/O, a subsystem to
create quick index structures for fast item retrieval, subsystems
to interact with users, subsystems to compile and execute queries

Each of these is like a module within a shared address space

CORNELL CS4414 - FALL 2020. 10

MORE EXAMPLES

Web servers at companies like Amazon, Facebook, Netflix

The Linux kernel

The C++ compiler

CORNELL CS4414 - FALL 2020. 11

C++ MODULARITY FEATURES

In fact, C++ has features to help with designing modular systems.
C++ namespaces allow you to avoid accidental naming conflicts if
two modular components happen to reuse names.

A C++ application can manage the mapping of threads to NUMA
cores, and a parent thread can track or manage its children.

std::thread scheduling can be configured for these thread groups.
CORNELL CS4414 - FALL 2020. 12

WHAT ABOUT MODULARITY FOR COORDINATION,
LIKE IN HOMEWORK 3 PART II?

At present, these are not “baked into” std libraries, but you can
easily implement your own classes using them.

Some are starting to show up in the boost:: libraries, which are
“future ideas for C++ xx.” Not all will make it!

Many companies are nervous about Boost (open source)

CORNELL CS4414 - FALL 2020. 13

INSPIRATION: SOFTWARE ENGINEERING

There is some similarity between “synchronization” patterns and
“software design patterns”

We learn about those in CS2110

Basic idea: Problems that often arise in object oriented programs,
and effective, standard ways of solving them.

CORNELL CS4414 - FALL 2020. 14

EXAMPLE: THE OBJECT VISITOR PATTERN

The visitor design pattern associates virtual functions with existing
classes.

The class offers a static method that permits the caller to provide an
object (a “functor”) that implements this function interface. The base
class keeps a list of visitors, and will call those functions when objects
of the base-class type are created or modified.

With this you can build new logic that takes some action that was not
already part of the design when the base class was created!

CORNELL CS4414 - FALL 2020. 15

REMINDER: INTERFACES

In a C++ .hpp file, one normally puts the declarations of classes
and templates, but the bodies are often in a .cpp file.

A “virtual” class is one that has a .hpp file defining it, but no
implementations. An interface is a standardized virtual class.

A C++ class can “implement” an interface, and then you can
pass class objects to any method that accepts the interface type.

CORNELL CS4414 - FALL 2020. 16

EXAMPLE OF HOW YOU MIGHT USE VISITOR

Suppose that you wanted to “monitor” a collection of files.

We could build a base class that understands the file system and watches
for changes. But we built that in 2020, and you might plan to use this logic
as a library in 2025. In 2020 we can’t guess at what you will be coding 5
years from now.

So our monitor class uses “visitor”. In 2025 you will register a functor and it
will receive “upcall events” each time a file of interest changes. And this
works even if you have multiple visitors all using the file watcher class.

CORNELL CS4414 - FALL 2020. 17

HOW TO THINK ABOUT THE VISITOR IDEA

When the binoculars were created, the company creating them
didn’t know who would use them and how.

This observer is a visitor. She knows how to use
binoculars. The binoculars pass images to her.
They “do upcalls to a virtual interface function”.

The main difference is that with visitors several observers could share
the one pair of binoculars. They get called one by one.

CORNELL CS4414 - FALL 2020. 18

VISITOR PATTERN USE CASES

The visitor pattern is common with file systems: if an application
is interested in a file or folder, this pattern allows one module to
“refresh” when some other module makes a change.

It is also useful with GUI displays. If something changes, the GUI
can refresh or even recompute its layout.

CORNELL CS4414 - FALL 2020. 19

WHY IS IT HELPFUL TO GIVE THIS PATTERN A
SPECIAL NAME AND A STANDARD API?
Visitor is a well known pattern and even taught in courses on
software engineering.

So anyone who sees a comment about it, and then sees the
Watch method, knows immediately what this is and how to use it.

In effect, it is a standard way to do “refresh notifications”

CORNELL CS4414 - FALL 2020. 20

WHY IS THIS SUCH A BIG DEAL?

With patterns, we often find that we build one module now, and
then some other module later (or separately), and eventually
they need to be connected.

By agreeing on interfaces, a module is free to use any classes it
needs and yet its objects can still “talk” to methods in the other
modules. Those methods specify the interface it uses, and any
object supporting the interface can be passed in.

CORNELL CS4414 - FALL 2020. 21

FACTORY PATTERN

Another example from software engineering.

A “factory” is a method that will create some class of objects on
behalf of a caller that doesn’t know anything about the class.

Basically, it does an allocation and calls a constructor, and then
returns a pointer to the new object.

CORNELL CS4414 - FALL 2020. 22

WHY A FACTORY IS USEFUL

If module A has code that explicitly creates an object of type
Foo, C++ can type check the code at compile time.

But if module B wants to “register” class Foo so that A can
create Foo objects, A might be compiled separately from B.

The factory pattern enables B to do this. A requires a factory
interface (for any kind of object), and B registers a Foo factory

CORNELL CS4414 - FALL 2020. 23

TEMPLATES ARE OFTEN USED TO IMPLEMENT
MODERN C++ DESIGN PATTERNS
A template can instantiate standard logic using some new type that
the user supplies. So this is a second and powerful option that
doesn’t require virtual functions and upcalls.

For example, we could do this for our bounded buffer. It would
allow you to create a bounded buffer for any kind of object.

The bounded buffer pattern is valid no matter what objects it holds.

CORNELL CS4414 - FALL 2020. 24

SUMMARY: WHY STANDARD SOFTWARE
ENGINEERING PATTERNS HELP
They address the needs of larger, more modular systems

They are familiar and have standard structures. Developers
who have never met still can quickly understand them.

They express functionality we often find valuable. If many
systems use similar techniques to solve similar problems, we can
create best-practice standards.

CORNELL CS4414 - FALL 2020. 25

SYNCHRONIZATION PATTERNS

These are patterns that stretch across threads or even between
processes. They can even be used in computer networks, where
the processes are on different machines!

Producer consumer is a synchronization pattern.

CORNELL CS4414 - FALL 2020. 26

SYNCHRONIZATION PATTERNS

Leader / workers is a second widely valuable synchronization
pattern.

In this pattern, some thread is created to play the leader role.
A set of workers will perform tasks on its behalf.

CORNELL CS4414 - FALL 2020. 27

LEADER / WORKERS PATTERN

CORNELL CS4414 - FALL 2020. 28

Leader thread Worker threads

Tasks to be performed
(“peel these potatoes”)

LEADER / WORKERS PATTERN

CORNELL CS4414 - FALL 2020. 29

Leader thread Worker threads

Tasks to be performed
(“peel these potatoes”)

LEADER / WORKERS PATTERN

CORNELL CS4414 - FALL 2020. 30

Leader thread Worker threads

Bag is empty? Workers
terminate (threads exit)

LEADER / WORKERS PATTERN

We need a way to implement the bag of work.

One can pass arguments to the threads, but this is very rigid. If
we have lots of tasks, it may be better to be flexible.

So the bag of work will be some form of queue. You’ll need to
protect it with locking! (Why?)

CORNELL CS4414 - FALL 2020. 31

Word-to-do queue

POOL OF TASKS

One option is to just fill a std::list with tasks to be performed,
using a “task description object”. Then launch threads.

The list has a front and a back, which can be useful if the task
order matters. Some versions support priorities (a “priority
queue”).

It is easy to test to see if the list is empty.
CORNELL CS4414 - FALL 2020. 32

A std::list!

DYNAMIC TASK POOLS

Permits the leader to add tasks while the workers are running.
 The workers each remove a task from the pool, execute it, and then

when finished, loop back and remove the next task.
 They may even use a second std::list to send results back to the leader!

C++ calls this a promise pattern, supported by a std::promise library!
 But we can’t use “empty” to signal that we are finished (why?). So,

the leader explicitly pushes some form of special objects that say “job
done” at the end of the task pool. As workers see these, they exit.

CORNELL CS4414 - FALL 2020. 33

EXAMPLE: LOGISTIC REGRESSION

In AI, it is common to have a parameter server that creates a
model, and a set of workers that work to train the model from
examples. Later we will use the model as a classifer.
 Worker takes the current model plus some data files, computes a

gradient, and passes this to the parameter server (the leader)
 Parameter server consumes the gradients, improves the model, then

assigns a new task to the worker.
 Terminates when the model has converged.

CORNELL CS4414 - FALL 2020. 34

BARRIER SYNCHRONIZATION

In this pattern, we have a set of threads (perhaps, the workers
from our logistic regression example).

We use this pattern if we want all our threads to finish task A
before any starts on task B.

For this, we use a barrier.

CORNELL CS4414 - FALL 2020. 35

BUILDING A BARRIER

We normally use the monitor pattern.

The threads all call “barrier_wait”. This method uses a bool array
to track which threads are ready, initialized to all false.

When all are ready, the thread that notices this issues notify_all to
wake the others up. They wake up nearly simultaneously.

CORNELL CS4414 - FALL 2020. 36

BUILDING A BARRIER

Example: A computation with
distinct phases or epochs.

After phase one, all workers
must wait until phase two starts.

CORNELL CS4414 - FALL 2020. 37

Worker threads

Time
Phase one

BUILDING A BARRIER

Example: A computation with
distinct phases or epochs.

After phase one, all workers
must wait until phase two starts.

CORNELL CS4414 - FALL 2020. 38

Worker threads

Time

Phase one

Barrier
1 Done 3 Done

2 Done

All are done! Phase two can start

BUILDING A BARRIER

Example: A computation with
distinct phases or epochs.

After phase one, all workers
must wait until phase two starts.

CORNELL CS4414 - FALL 2020. 39

Worker threads

Time

Phase one

Barrier

Phase two

ORDERED MULTICAST PATTERN

This is a one-to-many pattern. Suppose some event occurs.

A sender thread needs every worker to see an object describing the
event, so it puts that object on every worker’s work queue.

The pattern permits multiple senders: A sender locks all of the work
queues, then emplaces the request, then unlocks. Thus all workers see
the same ordering of requests.

CORNELL CS4414 - FALL 2020. 40

ORDERED MULTICAST PATTERN

CORNELL CS4414 - FALL 2020. 41

Sender thread(s) Worker threads

Event A

ORDERED MULTICAST PATTERN

CORNELL CS4414 - FALL 2020. 42

Sender thread(s) Worker threads

Event A

Event B

Race condition: Danger is that
one thread could see B before
A, but others see A before B.

ORDERED MULTICAST PATTERN

CORNELL CS4414 - FALL 2020. 43

Sender thread(s) Worker threads

Event A

Event B

Race condition: Danger is that
one thread could see B before
A, but others see A before B.

ORDERED MULTICAST PATTERN

CORNELL CS4414 - FALL 2020. 44

Sender thread(s) Worker threads

Event A

Event B

An ordered multicast pattern implements a barrier that protects us
against ordering inconsistencies. There are many ways to build the
barrier. The pattern focuses on the behavior, not the implementation.

ORDERED MULTICAST WITH REPLIES

In this model, we start with an ordered multicast, but then the leader
for a given request awaits replies by supplying a reply queue.

Often, this uses a std::future in C++: a kind of object that will have
its value filled in “later”.

The leader makes n requests, then collects n corresponding replies.

CORNELL CS4414 - FALL 2020. 45

ORDERED MULTICAST PATTERN

CORNELL CS4414 - FALL 2020. 46

Sender thread(s) Worker threads

Event A

Event B

With replies, workers can send results back to the sender threads.

ALL-REDUCE PATTERN: IMPORTANT IN ML.

This pattern focuses on (key,value) pairs.

It assumes that there is a large (key,value) data set divided so
that worker k has the k’th shard of the data set.
 For example, with integer keys, perhaps (key % n) == k
With arbitrary objects, you can use the built-in C++ “hash” method.

CORNELL CS4414 - FALL 2020. 47

ALL-REDUCE PATTERN: SHARDED DATA SET

CORNELL CS4414 - FALL 2020. 48

Leader Worker threads

Shard A Shard B Shard C

ALL-REDUCE: MAP STEP

The leader maps some task over the n workers. This can be
done in any way that makes sense for the application.

Each worker performs its share of the work by applying the
requested function to the data in its shard.

When finished, each worker will have a list of new (key,value)
pairs as its share of the result.

CORNELL CS4414 - FALL 2020. 49

ALL-REDUCE PATTERN: MAP (FIRST STEP)

CORNELL CS4414 - FALL 2020. 50

Leader Worker threads

Shard A Shard B Shard C

ALL-REDUCE PATTERN: MAP (FIRST STEP)

CORNELL CS4414 - FALL 2020. 51

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

ALL-REDUCE: SHUFFLE EXCHANGE

Each worker breaks its key-value result set into n parts by
applying the sharding rule to the keys.
 Now it has one subset (perhaps empty) for each other worker.
 It hands that subset to corresponding worker.

Every worker waits until it has n subset, one from each worker.

CORNELL CS4414 - FALL 2020. 52

ALL-REDUCE PATTERN: MAP (FIRST STEP)

CORNELL CS4414 - FALL 2020. 53

Leader Worker threads

Shard A Shard B Shard C

ALL-REDUCE PATTERN: MAP (FIRST STEP)

CORNELL CS4414 - FALL 2020. 54

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

ALL-REDUCE PATTERN: MAP (FIRST STEP)

CORNELL CS4414 - FALL 2020. 55

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3
Subset 2

Subset 1

ALL-REDUCE PATTERN: SHUFFLE

CORNELL CS4414 - FALL 2020. 56

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3
Subset 2

Subset 1

Subset 3
Subset 2

Subset 1

Subset 3
Subset 2

Subset 1

ALL-REDUCE PATTERN: SORT

CORNELL CS4414 - FALL 2020. 57

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3Subset 2Subset 1
Subset 3Subset 2Subset 1

Subset 3Subset 2Subset 1

Not shown: There are messages being sent from A to B and C, from B to A and C, and from C
to A and B. These “shuffle” the data

AFTER THE SHUFFLE STEP, WORKERS APPLY A
REDUCE FUNCTION
Each worker combines the incoming data, then sorts by key.

If it has multiple items with the same key, a reducing function is
used to combine them. For example, sum might sum the values.

The new (key,value) pairs are the result of the all-reduce
computation.

CORNELL CS4414 - FALL 2020. 58

ALL-REDUCE PATTERN: MAP (FIRST STEP)

CORNELL CS4414 - FALL 2020. 59

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3
Subset 2

Subset 1

ALL-REDUCE PATTERN: SHUFFLE

CORNELL CS4414 - FALL 2020. 60

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3
Subset 2

Subset 1

Subset 3
Subset 2

Subset 1

Subset 3
Subset 2

Subset 1

ALL-REDUCE PATTERN: SORT

CORNELL CS4414 - FALL 2020. 61

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3Subset 2Subset 1
Subset 3Subset 2Subset 1

Subset 3Subset 2Subset 1

ALL-REDUCE PATTERN: REDUCE

CORNELL CS4414 - FALL 2020. 62

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Reduced results A Reduced results B Reduced results C

MAP-REDUCE IS A COMPLEX PATTERN!

All-Reduce is hard to get “used to” but very powerful once you
understand it and work with it.

Over the past ten years it has become the most widely used
“tool” to create parallel systems for machine learning

Many algorithms can be expressed in terms of it

CORNELL CS4414 - FALL 2020. 63

EXAMPLE: COUNT WORD FREQUENCIES

In the first step, each thread computes word frequencies in a
subset (shard) of the input files.

In the shuffle step, each worker ends up responsible for part of
the alphabet, based on the hash function.

In the reduce step, if a worker was sent multiple counts for the
same word, it sums them to end up with one total per word.

CORNELL CS4414 - FALL 2020. 64

EXAMPLE: MULTICORE SORTING

Map: Each worker scans its portion of the data, forming n “bins”
(perhaps, using the hashing rule).

Shuffle: Each worker sends the k’th bin to the k’th worker.

Reduce: Each worker merges bins and sorts these intermediary
results. We obtain sorted data spread over n workers.

CORNELL CS4414 - FALL 2020. 65

GOALS OF THESE PATTERNS?

Use all the NUMA cores.

Keep workers busy on independent shares of some data set, or
doing independent tasks. Ideally, there is no need for locking
because they use distinct data, or only read shared data.

Tasks communicate through std::list or bounded buffers

CORNELL CS4414 - FALL 2020. 66

SUMMARY

We are trying to work in stylized, familiar ways. Other developers
who see your code will recognize the patterns.

These patterns aim for concurrent computing and sharing with as
few locks as possible, to minimize overheads yet ensure correctness.

CORNELL CS4414 - FALL 2020. 67

WE CAN NEVER ELIMINATE ALL THE LOCKS!

If we eliminate locks, NUMA memory consistency breaks.

This means: Thread A might update X in memory, and then thread
B might read X and see an old value.

So… we can’t completely eliminate the locks.

CORNELL CS4414 - FALL 2020. 68

EVEN DISTRIBUTED SYSTEMS USE “LOCKS”

The ordered multicast pattern could arise inside a single C++
process that uses threads. We would implement it using locks.

But it could also arise between processes on different machines.
Here, we would use a “distributed consensus protocol” to ensure
fault-tolerant coordination for message order.

Same idea, but a different implementation
CORNELL CS4414 - FALL 2020. 69

We use software design patterns to promote standard ways of
building complex software systems.

We can also create standard coordination patterns, such as:
producer-consumer, leader-worker, ordered multicast, all-reduce.

Each has a simple, elegant pattern. Implementations are complex…
but we think about the pattern, not the way it was implemented!

CORNELL CS4414 - FALL 2020. 70

	Coordination
	Idea Map For Today
	Without coordination, many systems malfunction
	What is a coordination pattern?
	Producer – consumer Pattern
	Analogy: Software design patterns
	Modularity for complex, threaded programs
	Some examples.
	What exactly does “Modular” mean?
	More examples
	More examples
	C++ modularity features
	What about modularity for coordination, like in Homework 3 Part II?
	Inspiration: Software Engineering
	Example: The Object visitor pattern
	Reminder: Interfaces
	Example of how you might use visitor
	How to think about the visitor idea
	Visitor pattern use cases
	Why is it helpful to give this pattern a special name and a standard API?
	Why is this such a big deal?
	Factory pattern
	Why a factory is useful
	Templates are often used to implement modern C++ design patterns
	Summary: Why standard software engineering patterns help
	Synchronization patterns
	Synchronization patterns
	Leader / Workers pattern
	Leader / Workers pattern
	Leader / Workers pattern
	Leader / workers pattern
	Pool of tasks
	Dynamic Task pools
	Example: Logistic Regression
	Barrier synchronization
	Building a barrier
	Building a barrier
	Building a barrier
	Building a barrier
	Ordered Multicast pattern
	Ordered Multicast pattern
	Ordered Multicast pattern
	Ordered Multicast pattern
	Ordered Multicast pattern
	Ordered Multicast with Replies
	Ordered Multicast pattern
	All-reduce pattern: important in ML.�
	All-Reduce pattern: Sharded data set
	All-Reduce: Map step
	All-Reduce pattern: Map (first step)
	All-Reduce pattern: Map (first step)
	All-Reduce: Shuffle exchange
	All-Reduce pattern: Map (first step)
	All-Reduce pattern: Map (first step)
	All-Reduce pattern: Map (first step)
	All-Reduce pattern: Shuffle
	All-Reduce pattern: Sort
	After the shuffle step, Workers apply a Reduce function
	All-Reduce pattern: Map (first step)
	All-Reduce pattern: Shuffle
	All-Reduce pattern: Sort
	All-Reduce pattern: reduce
	Map-reduce is A complex pattern!
	Example: count word frequencies
	Example: multicore sorting
	Goals of these patterns?
	Summary
	We can never eliminate all the locks!
	Even distributed systems use “locks”
	Slide Number 70

