
FINISH SOME LEFTOVER C++ TOPICS
THEN: DEADLOCKS, LIVELOCKS

Professor Ken Birman
CS4414 Lecture 16
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BEFORE WE DIVE IN… 

First, a “left over” mini-topic:

A quick glimpse of boolinq: A way to do database and file 
system access from C++ that leads to really nice looking code
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LINQ FOR C++ (BOOLINQ)…
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LINQ AND BOOLINQ

LINQ: A family of higher-level templated librarys that support 
database access or scaning collections of files. 

Uses a notation popular in ML systems (seen in Pandas/NumPy 
dialect of Python, Tensor Flow, Spark/Databricks, Julia…).
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KEY IDEA

Connect to database, file system or “key-value” storage.

Obtain a collection that’s supports iterators.

Now you can just write expressions that look like database 
expressions anywhere in your C++ code, and they can mix C++ 
and database operators very easily.
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ITERATORS AND PAIRS

LINQ centers on:
 (key, value) pairs.  A key could just be a name, a file path, or 

any unique id.  
Example: for a database the key is a row-id, value is the row

 A collection could be std::list, std::map, etc.
 Iterators:  C++ object used in for loops to scan a collection, or a

range within a collection.
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LINQ EXAMPLES

Things to notice:

- Code is very “succinct”

- Lots of use of lambdas

- Very powerful

- Mixes with normal C++
(in fact, is a C++ library)
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Sum the even numbers from an array of  integers:
int src[] = {1, 2, 3, 4, 5, 6, 7, 8};
auto dst = from(src)

.where( [](int a) { return a % 2 == 1; })  // 1, 3, 5, 7

.select([](int a) { return a * 2; })               // 2, 6, 10, 14

.where( [](int a) { return a > 2 && a < 12; }) // 6, 10

.toStdVector();     // dst will be a std::vector with 6, 10

Order descending all the distinct numbers from an array of  integers, 
transform them into strings and print the result.
int numbers[] = {3, 1, 4, 1, 5, 9, 2, 6};
auto result = from(numbers)

. distinct()

. orderby_descending([](int i) {return i;})

. select([](int i){std::stringstream s; s<<i; return s.str();})

. toStdVector();
for(auto i : result)

std::cout << i << std::endl;

Visit boolinq on GitHub to download, learn more

https://github.com/k06a/boolinq


EXAMPLE WITH STRUCTS

In a list of  friends, find the subset who are under age 18:

struct Friends { std::string name; int age; };

Friends src[] = {
{“Kevin”, 14}, {“Anton”, 18}, {“Agata”, 17}, “Saman”, 20}, {“Alice”, 15}, 

};

auto dst = from(src).where([](const Friends & who) { return who.age < 18; })
.orderBy([](const Friends & who) { return who.age; })
.select( [](const Friends & who) { return who.name; })
.toStdVector();

// dst type: std::vector<:string>…  items: “Kevin”, “Agata”, “Alice”
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EXAMPLE WITH STRINGS

In a list of  text messages, count the number of  messages to Dennis by sender:

struct Message {  std::string PhoneA; std::string PhoneB;  std::string Text;  };

Message messages[] = {
{“Anton”,  “Troll”, “Hello, friend!”}, 
{“Denis”,  “Mark”,  “Join us to watch the game?"}, 
{“Anton”,  “Sarah”, “OMG! ”}, 
{“Denis”,  “Jimmy", “How r u?”}, 
{“Denis”,  “Mark",  “The night is young!”}, 

};

int DenisUniqueContactCount =
from(messages)

.where([](const Message & msg) { return msg.PhoneA == “Denis”; })

.distinct([](const Message & msg) { return msg.PhoneB; })

.count();
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SOME LINQ OPERATORS
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Filters and reorders:
• where(predicate), where_i(predicate)
• take(count), takeWhile(predicate), takeWhile_i(predicate)
• skip(count), skipWhile(predicate), skipWhile_i(predicate)
• orderBy(), orderBy(transform)
• distinct(), distinct(transform)
• append(items), prepend(items)
• concat(linq)
• reverse()
• cast()

Transformers:
• select(transform), select_i(transform)
• groupBy(transform)
• selectMany(transfom) 

Bits and Bytes:
• bytes(ByteDirection?)
• unbytes(ByteDirection?)
• bits(BitsDirection?, BytesDirection?)
• unbits(BitsDirection?, BytesDirection?)

Aggregators:
• all(), all(predicate)
• any(), any(lambda)
• sum(), sum(), sum(lambda)
• avg(), avg(), avg(lambda)
• min(), min(lambda)
• max(), max(lambda)
• count(), count(value), count(predicate)
• contains(value)
• elementAt(index)
• first(), first(filter), firstOrDefault(), firstOrDefault(filter)
• last(), last(filter), lastOrDefault(), lastOrDefault(filter)
• toStdSet(), toStdList(), toStdDeque(), toStdVector()

Coming soon:
• gz(), ungz(), leftJoin, rightJoin, crossJoin, fullJoin



HOW TO “CONNECT” TO A DATABASE LIKE 
MYSQL OR ORACLE
LINQ requires a “connector” but you won’t have to build it: 
databases, file systems and key-value stores provide these.

You specify the name of the database and the connector returns 
a collection object that supports iterators.  So simply by 
constructing a connection you can access the data in LINQ.

Example: In MySQL, you could use the X-DevAPI.
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https://dev.mysql.com/doc/x-devapi-userguide/en/working-with-collections-basic-crud.html


HOW DOES THIS TIE INTO C++ FOR ML?

Many machine learning systems are trained on data in vectors, arrays 
or higher-dimensional tensors.

A database query returns a table as a result.  Think of the table as a 
collection of (row-id, row-contents) pairs.  Easy to perform in LINQ

Finally, we pass the data to ML algorithms expressed as matrix 
multiplications, eigenvalue computations, etc.  We end up with ML code 
in a high-level form that executes extremely efficiently.
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NEXT: OUR MAIN TOPIC…
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IDEA MAP FOR THE REST OF OUR LECTURE

Today we focus on deadlocks and livelocks.
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Lightweight vs. Heavyweight

Thread “context”

C++ mutex objects.  Atomic data types.

Reminder: Thread Concept

Deadlocks and Livelocks

The monitor pattern in C++

Problems monitors solve (and problems they don’t solve)



DEADLOCK: UNDERSTANDING

Deadlock arises in situations where we have multiple threads 
that share some form of protected object or objects.

For simplicity, A and B share X and Y.

Now suppose that A is holding a lock on X, and B has a lock on 
Y.  A tries to lock Y, and B tries to lock X.   Both wait, forever!
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MORE EXAMPLES

We only have one object, X.

A locks X, but due to a caught exception, exits the lock scope.  
Because A didn’t use scoped_lock, the lock isn’t released.

Now B tries to lock X and waits.  Because A no longer realizes it 
holds the lock, this will persist forever.
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ACQUIRING A MUTEX “TWICE”

Suppose that A is in a recursive algorithm, and the same thread 
attempts to lock mutex X more than once.  The recursion would 
also unlock it the same number of times.

This is possible with a C++ “recursive_mutex” object.

But the standard C++ mutex is not recursive.  
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WHAT IF YOU TRY TO RECURSIVELY LOCK A 
NON-RECURSIVE MUTEX?
The resulting behavior is not defined.

On some platforms, this will deadlock silently.  A waits for A!

On others, you get an exception, “Deadlock would result.”
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MORE EXAMPLES

A and B lock X and Y.  The developer noticed the deadlock 
pattern but did not understand the issue.

C++ lock primitives have optional “timeout” arguments.  So the 
developer decided to add a “random backoff” feature:
 When locking an object, wait t milliseconds.
 Initially, t=0 but after a timeout, change to a random value [0..999]
 Then retry
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WHAT DOES THIS GIVE US?

Now A locks X (and holds the lock), and B locks Y

A tries to lock Y, times out, retries… forever

B tries to lock X, times out, retries… forever

They aren’t “waiting” yet they actually are waiting!
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DEADLOCK AND LIVELOCK DEFINITIONS

We say that a system is in a deadlocked state if one or more 
threads will wait indefinitely (for a lock that should have been 
released).

Non-example: A is waiting for input from the console.  But Alice 
doesn’t type anything.  
Non-example: A lock is used to signal “a cupcake is ready”, but 
we have run out of sugar and none can be baked.
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NECESSARY AND SUFFICIENT CONDITIONS 
FOR DEADLOCK

1. Mutual exclusion: The system has resources protected by locks 
2. Non-shareable resources: while A holds the lock, B waits.
3. No preemption: there is no way for B to “seize the lock” from A.  
4. Cyclic waiting: A waits for B, B waits for A (a “circular” pattern)

With recursion using non-recursive locks, A could deadlock “by itself”
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CONDITIONS FOR LIVELOCK

A livelock is really the same as a deadlock, except that the 
threads or processes have some way to “spin”.

As a result, instead of pausing, one or more may be spin-waiting.

We can define “inability to enter the critical section” as a wait, in 
which case the four necessary and sufficient conditions apply.

CORNELL CS4414 - FALL 2020. 23



C++ AND LINUX ARE FULL OF RISKS!

If you think about it, you can find hundreds of ways that Linux 
could potentially be at risk of deadlocks!

If you code with threads in C++ you run that risk too!

The developers of Linux designed the system to be free of 
deadlock.   You can do so in your applications too.  But it takes 
conscious though and a careful design.
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HOW TO AVOID DEADLOCKS!

Acquire locks in a fixed order that every thread respects.  This 
rule implies that condition 4 (cyclic waiting) cannot arise.

Example: Recall A and B with X and Y.
 We had A holding a lock on X and requesting a lock on Y: 

if our rule says lock X before Y, this is legal and A must wait.
 Meanwhile B held a lock on Y.  Given our rule, B is not allowed

to request a lock on X at this point.  
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… THIS RULE CAN BE IMPRACTICAL

There are many applications that learn what they must lock one 
item at a time, in some order they cannot predict.

So in such a situation, B didn’t know it would need a lock on X at 
the time it locked Y.

… now it is too late!
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… ON THE OTHER HAND, THE RULE IS USEFUL

When you actually can impose an order and respect the rule, it is 
a very simple and convenient way to avoid deadlock.

Ordered locking is very common inside the Linux kernel.  It has a 
cost (an application may need to sort a list of items, for example, 
before locking all of them), but when feasible, it works.
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TIMER BASED SOLUTIONS

Sometimes it is too complicated to implement orderd locking.

So we just employ a timeout.  

If B is running and tries to get a lock, but a timeout occurs, B 
aborts (releasing all its locks) and restarts.
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BACKING OUT AND RETRYING

For this purpose, B would employ “try_lock”.

This is a feature that acquires a lock if possible within some 
amount of time, but then gives up.

If B gets lucky, it is able to lock Y, then X, and no deadlock 
arises.  But if the lock on Y fails, B must unlock X.
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Backout can be costly



CONCEPT: ABORT AND RETRY

We say that a computation has “aborted” if it has a way to 
undo some of the work it has done.

For example, B could be executing, lock Y, then attempt to lock 
X.  The try_lock fails, so B releases the lock on X and throws 
away the temporary data it created – it “rolls back”.  Then it 
can retry, but get a lock on X first.  Hopefully this will succeed.
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DOES THIS WORK?

Many database systems use abort/retry this way.

If deadlocks are very rare, the odds are that on retry, B will be 
successful.

But if deadlocks become common, we end up with a livelock.
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PREEMPTIVE SOLUTION (“WOUND-WAIT”)

This method requires some way for the system to detect a 
deadlock if one arises, and a way for threads to abort.

When A and B start executing, each notes its start time.

Rule: in a deadlock, the older thread wins. So if A was first, A 
gets to lock Y and B aborts.  If B was older, A aborts.
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DETECTING DEADLOCKS

Clearly, we gain many options if a system has a way to detect 
deadlocks.  Does C++ support this?

… you might think so, given the “deadlock would arise” 
exception for recursive locking.  But in fact this is done just by 
tracking the thread-id for the thread holding a mutex.
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HOW TO BUILD A DEADLOCK DETECTOR

We wrap every locking operation with a method that builds a 
graph of which thread is waiting for which other thread.

For example, if A tries to lock Y, but B is holding that lock, we 
add a node for A, a node for B, and an A → edge.

If a thread is waiting for long enough, run “cycle detection”.
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CYCLE DETECTION ALGORITHMS

Run the depth-first search algorithm.

Back-edges imply a cycle; success with no back-edges implies 
that the graph is cycle-free, hence there is no deadlock.

Complexity: V+E,  where V is the number of threads (nodes) and 
E is the number of wait-edges.
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PRIORITY INVERSIONS

In some systems, threads are given different priorities to run.
 Urgent: The thread should be scheduled as soon as possible.  
 Normal:  The usual scheduling policy is fine.
 Low: Schedule only when there is nothing else that needs to run.

A priority inversion occurs if a higher priority thread is waiting for a lower 
priority thread.  

Deadlock can now arise if there is a steady workload of high priority tasks, so 
that the lower priority thread doesn’t get a chance to run.
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HOW TO DETECT THIS SORT OF PROBLEM

If we create a deadlock detector, we can extend it do handle 
priority-inversion detection!

For each mutex, track the priority of any thread that accesses it.

If we ever see a mutex that is accessed by a high and a low 
priority thread, a risk of priority inversion arises!
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WHAT TO DO ABOUT IT?

One option is to temporarily change the priority of the lower 
priority thread.

Suppose that A holds a mutex on X.

B, higher priority than A, wants a lock on X.  We can “bump” A 
to higher priority temporarily, then restore A to lower priority 
when it releases the lock on X.
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NONE OF THESE IS CHEAP… 

Recall our discussion of C++ versus Java and Python.

These methods of watching for cycles or priority inversions, 
possibly forcing threads to abort, rollback and retry, etc, are all 
examples of runtime mechanisms that can be very costly!

If you have no choice, then you use them.  But don’t be naïve 
about how expensive they can become!

CORNELL CS4414 - FALL 2020. 39



JIM GRAY’S STUDY

In the 1990’s, databases were used for storing all forms of data

By the early 2000’s, they became extremely big and heavily 
loaded.  People began to move them to NUMA machines and to 
use lots of threads.

Surprisingly, they slowed down!  
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JIM TRACKED DOWN THE CAUSE

It turned out that with more and more load on the database server, 
hence lots of threads, the database locking algorithm was 
discovering a lot of deadlocks.

Running the cycle detector, aborting all of those waiting threads, 
rolling back and then retrying – it all added up to huge overheads!

Jim showed that once this occurred, his databases slowed down
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THE “FULL STORY”

He found that if you have a system with t threads or servers, 
and the system is trying to process n “simultaneous” operations 
(transactions), it could slow down as

O( n3 t5 )
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You added threads or servers to have your system
handle more load

… but it slows down, dramatically!



… NOT WHAT WE WANTED!

People who buy a NUMA machine and run a program with more 
threads want more performance, not less!

Also, the situation Jim identified didn’t arise instantly.  It only 
showed up under heavy load.  This made it hard to debug…
 A Heisen-performance-bug!
 Very bad news… Hard to find, impossible to fix!
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WHAT DID JIM RECOMMEND?

He found ways to slice his big data sets into n distinct, 
independent chunks.  He called this sharding.

Then he put each shard – each chunk of data – into its own 
database.  He ran the n databases separately!

… like when fast-wc had a separate std::map for each thread.
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SUMMARY

Deadlock is a risk when we have concurrent tasks (threads or 
processes) that share resources and use locking.

There are simple ways to avoid deadlock, but they aren’t 
always practical.  Ordered locking is a great choice, if feasible.

Complex options exist, but they can have high overheads.
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